نوشته شده در

نیتریک اکساید در بیماری‌های قلبی‌عروقی

نیتریک اکساید (NO) یک پیام‌رسان رادیکال آزاد است که نقش مهمی در حفاظت مقابل بروز و پیشرفت بیماری‌های قلبی‌عروقی دارد. بیماری قلبی‌عروقی با تعدادی از اختلالات مختلف شامل هیپوکلسترولمی، فشار خون بالا و دیابت همراه است.

نیتریک اکساید دارای طیف وسیعی از خواص بیولوژیک است که باعث حفظ هوموستاز عروقی می‌شود که با لیست رو به رشدی از عوامل مختلف، از جمله مواردی که به طور معمول به عنوان عوامل خطر برای آترواسکلروز مانند فشار خون بالا و هیپوکلسترولمی همراه است، کاهش انتشار نیتریک اکساید به دیواره شریانی منجر به اختلال سنتز یا تخریب اکسیدکننده بیش از حد می‌گردد.کاهش اکسید نیتروژن ممکن است موجب انقباض عروق کرونر در طی ورزش یا استرس ذهنی شود و باعث تحریک ایسکمی قلب در بیماران مبتلا به بیماری عروق کرونر شود.

علاوه بر این، کاهش نیتریک اکساید ممکن است التهاب عروقی را تسهیل کند که می‌تواند منجر به اکسیداسیون لیپوپروتئین‌ها و تشکیل سلول‌های فوم و آترواسکلروز شود. درمان‌های متعددی برای ارزیابی احتمال معکوس کردن اختلال اندوتلیال با افزایش انتشار نیتریک اکساید از اندوتلیوم، از طریق تحریک سنتز اکسید نیتریک یا حفاظت از اکسید نیتریک از غیر فعال شدن اکسیداتیو و تبدیل به مولکول‌های سمی، مورد بررسی قرار گرفته است.

بیماری‌های قلبی‌عروقی زمینه‌ای برای اکثر بیماری‌ها مانند آترواسکلروز است که به نوبه خود با اختلالات عملکردی اندوتلیال مرتبط است. نقش محافظتی قلبی NO شامل تنظیم فشار خون، مهار تجمع پلاکت‌ها و چسبندگی لکوسیتی و پیشگیری از تکثیر سلول‌های عضلانی صاف است. به نظر می‌رسد که کاهش قابلیت زیستی NO یکی از عوامل اصلی بیماری‌های قلبی و عروقی است.

در شرایط پاتولوژیک، تولید بیش از حد اکسید نیتروژن توسط NOS القا شده صورت گرفته که داروهای ضدافسردگی مانند سیکلوسپورین A مهار بیان NOS را از طریق واسطه‌های پیچیده داخل سلولی انجام می‌دهد. اختلال در فعالیت NOS در دیواره شریان همراه با توسعه آترواسکلروز، اسپاسم و ترومبوز، ممکن است به بهبود انواع بیماری‌ها مانند پرفشاری خون و بیماری‌های عروقی و دیابتی کمک کند. هم‌چنین معکوس کردن نقص تولید نیتریک اکساید با عوامل درمانی از جمله مهارکننده آنزیم تبدیل آنژیوتانسین، منجر به حفاظت در مقابل بروز بیماری‌های قلبی عروقی می‌شود.

 

منابع:

Cannon, R.O., 1998. Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clinical chemistry44(8), pp.1809-1819.

Naseem, K.M., 2005. The role of nitric oxide in cardiovascular diseases. Molecular aspects of medicine26(1), pp.33-65.

Napoli, C. and Ignarro, L.J., 2009. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Archives of pharmacal research, 32(8), pp.1103-1108.

Dusting, G.J., 1995. Nitric oxide in cardiovascular disorders. Journal of vascular research32(3), pp.143-161.

 

نوشته شده در

ژن‌های مرتبط با طول عمر در بیماری کلستاز نوزادی

محققان ژن‌های مرتبط با بقا را در کودکان مبتلا به کلستاز نوزادی شناسایی می‌کنند.

دانشمندان در مرکز پزشکی بیمارستان کودکان یک الگوی بیانی برای ۱۴ ژن  دخیل در طول عمر نوزادان مبتلا به کلستازی نوزادان را شناسایی کردند. این بیماری در کودکان با پیوند کبد بسیار رایج است.

این پژوهشگران هم‌چنین دریافتند که آنتی‌اکسیدان N استیل سیستئین (NAC) منجر به کاهش آسیب کبدی و فیبروز (بافت پیوندی رشته‌ای) در موش مبتلا به کلستازی و افزایش زمان بقا می‌شود.

کلستازی نوزادی همچنین به نام  extrahepatic ductopenia ، یک بیماری کبدی در کودکان است که در آن یک یا چند مجرای صفرا، به طور غیر طبیعی باریک و یا مسدود می‌شوند. این بیماری می‌تواند مادرزادی یا اکتسابی باشد. کلستازی به عنوان یک نقص مادرزادی بیشتر در آسیای شرقی با مقدار 1 در 5000 تولد، رایج است. علائم این بیماری در حدود دو تا هشت هفته پس از زایمان ظاهر می‌شود. هنگامی که یک کودک مبتلا به کلستازی باشد، جریان صفراوی از کبد به کیسه صفرا مسدود شده و این باعث می‌شود که صفرا در داخل کبد به دام افتاده و در نهایت باعث نارسایی کبد شود.

در ابتدا، علائم کلستازی مانند علائم زردی نوزادان، یک بیماری معمولی بی‌ضرر که معمولا در نوزادان دیده می‌شود، قابل تشخیص نیستند. علائم متفاوتی از کلستازی معمولا بین دو تا هشت هفته پس از تولد مشخص می‌شود. نوزادان و كودكان مبتلا به کلستازی پیشرفته، وضعیتی است كه در آن صفرا نمی‌تواند كبد را ترک كند و در داخل آن جمع می‌شود. هنگامی که کبد، بیلی‌روبین را از طریق مجاری صفراوی به صورت صفرا خارج نمی‌کند، بیلی روبین شروع به جمع شدن در خون کرده و علایم ایجاد می‌شوند. این علائم عبارتند از زرد شدن پوست، خارش، جذب کم مواد مغذی (باعث تاخیر در رشد)، مدفوع کمرنگ، ادرار تیره و شکم تحریک شده. این بیماری اگر بدون درمان باقی بماند، ماده صفراوی می‌تواند منجر به نارسایی کبدی شود. بر خلاف دیگر انواع زردی،  کلستاز وابسته به صفراوی آپریزی اغلب باعث کریستال شدن، یک نوع آسیب مغزی ناشی از اختلال عملکرد کبدی می‌شود. این به این دلیل است که در کلستازی صفراوی، کبد بیمار هنوز قادر به ساخت بیلی‌روبین است اما قادر به عبور از مانع خون مغزی نیست.

بررسی رابطه بین تاثیر 14 ژن در این بیماری، تشخیص و توسعه درمان‌های جدید را فراهم می‌کند. یک روش بررسی بسیار قوی، طراحی یک آزمایش بالینی برای فعال کردن مسیر گلوتاتیون است. گلوتاتیون مولکولی است که در نوزادان با کلستازی صفراوی بسیار بیان شده است. فعال‌سازی مسیر، توسط آنتی‌اکسیدان NAC در جهت بهبود جریان صفراوی و جلوگیری از پیشرفت فیبروز صورت می‌گیرد.

محققان بیوپسی‌های کبدی و داده‌های بالینی از نوزادان مبتلا به کلستازی که جریان صفراوی در آن‌ها کاهش یا متوقف شده بود را دریافت کردند. نوزادان در مرکز تحقیقات بیماری‌های کبد کودکان مطالعه شدند. بیوپسی‌های کبدی در زمان تشخیص بیماری به دست آمده است.  دانشمندان NAC را به موش‌های نوزاد مبتلا به کلستازی و فیبروز، که بیلی‌روبین و فیبروز کبدی را کاهش می‌دهد، تجویز کردند. بیلی‌روبین یک ماده زرد نارنجی است که در طول تجزیه عادی گلبول‌های قرمز ساخته می‌شود. بیلی‌روبین از طریق کبد عبور و در نهایت از بدن دفع می‌شود. با این حال، سطوح بالاتر این ماده می‌تواند مشکلات کبدی ایجاد کند.

دکتر Bezerra بیان می‌کند: “ما هنوز نمی‌دانیم که آیا NAC در نوزادان مبتلا به کلستازی ایمن و موثر است یا خیر. آزمایشات بالینی آینده قطعا تاثیر این ماده را در این بیماری مشخص خواهد کرد.”

 

منابع:

Bezerra, J.A., Wells, R.G., Mack, C.L., Karpen, S.J., Hoofnagle, J.H., Doo, E. and Sokol, R.J., 2018. Biliary Atresia: Clinical and Research Challenges for the Twenty‐First Century. Hepatology68(3), pp.1163-1173.

Berauer, J.P., Mezina, A.I., Okou, D.T., Sabo, A., Muzny, D.M., Gibbs, R.A., Hegde, M.R., Chopra, P., Cutler, D.J., Perlmutter, D.H. and Bull, L.N., 2019. Identification of Polycystic Kidney Disease 1 Like 1 Gene Variants in Children With Biliary Atresia Splenic Malformation Syndrome. Hepatology.

Mack, C.L., Spino, C., Alonso, E.M., Bezerra, J.A., Moore, J., Goodhue, C., Ng, V.L., Karpen, S.J., Venkat, V., Loomes, K.M. and Wang, K., 2019. A Phase I/IIa trial of intravenous immunoglobulin following portoenterostomy in biliary atresia. Journal of pediatric gastroenterology and nutrition68(4), pp.495-501.

نوشته شده در

استرس اکسیداتیو و التهاب

استرس اکسیداتیو به عنوان عدم تعادل بین تولید گونه‌های اکسیژن فعال (ROS) و از بین بردن آنها توسط مکانیسم‌های محافظ مشاهده می‌شود، که می‌تواند منجربه التهاب مزمن شود. استرس اکسیداتیو می‌تواند عوامل مختلف رونویسی را فعال کند، که منجربه بیان افتراقی برخی از ژن‌های درگیر در مسیرهای التهابی می‌شود. التهاب ناشی از استرس اکسیداتیو عامل بسیاری از بیماریهای مزمن است. پلی‌فنول‌ها پیشنهاد شده است که به عنوان درمان کمکی برای اثر ضدالتهابی احتمالی آنها ، همراه با فعالیت آنتی اکسیدانی و مهار آنزیم های درگیر در تولید ایکوزانوئیدها مفید است. اخیرا تحقیقاتی با هدف بررسی خواص پلی‌فنول‌ها در ضد التهاب و اکسیداسیون و مکانیسم‌های پلی‌فنول‌های مهار‌کننده مسیرهای سیگنال‌دهی مولکولی که توسط استرس اکسیداتیو فعال شده‌اند، و همچنین نقش‌های احتمالی پلی‌فنول‌ها در اختلالات مزمن التهابی انجام شده‌است. چنین داده‌هایی می‌تواند برای پیشرفت در درمان داروهای آنتی‌اکسیدان آینده و داروهای جدید ضدالتهابی مفید باشند.
التهاب یک مکانیسم دفاعی طبیعی در برابر عوامل بیماری زا است و با بسیاری از بیماری‌های بیماری‌زا مانند عفونت‌های میکروبی و ویروسی، قرار گرفتن در معرض آلرژن‌ها، تشعشعات و مواد شیمیایی سمی، بیماری‌های خودایمن و مزمن، چاقی، مصرف الکل، مصرف دخانیات و … همراه است. رژیم غذایی بسیاری از بیماری‌های مزمن مرتبط با تولید بیشتر ROS منجربه استرس اکسیداتیو و انواع اکسیداسیون پروتئین می‌شود. علاوه براین، اکسیداسیون پروتئین به آزادشدن مولکول‌های سیگنال‌های التهابی تبدیل می‌شود و پراکسی‌ردوکسین 2 (PRDX2) به عنوان یک سیگنال التهابی شناخته شده‌است.

رابطه بین استرس اکسیداتیو و التهاب توسط بسیاری از محققان تایید شده‌است. استرس اكسيداتيو در بيماري‌هاي مزمن التهابي نقش بيماري‌زايي دارد. آسیب استرس اکسیداتیو مانند پروتئین‌های اکسیده‌شده‌، محصولات گلیکوزیزه شده و پراکسیداسیون لیپید منجربه تخریب نورون‌ها می‌شود که بیشتر در اختلالات مغزی گزارش می‌شود. ROS های ایجاد شده در بافت‌های مغزی می‌توانند ارتباط سیناپسی و غیرسیناپسی بین نورون‌ها را تعدیل کنند که منجربه التهاب عصبی و مرگ سلولی و سپس ازبین رفتن حافظه می‌شود.

گلوتاتیون تری‌پپتید (GSH) یک آنتی‌اکسیدان تیول داخل سلولی است. سطح پایین‌تر GSH باعث تولید بیشتر ROS می‌شود، که منجربه عدم تعادل پاسخ ایمنی، التهاب و حساسیت به عفونت می‌شود. مطالعه در مورد نقش GSH و فرم اکسیده شده آن و عملکرد نظارتی آنها و بیان ژن در فراتر از فعالیتهای اصلاح رادیکال آزاد در ارتباط با GSH نشان می‌دهد که GSH از طریق دی سولفیدهای مختلط بین سیستئین پروتئین و گلوتاتیون‌ها در تنظیم سیستم ایمنی مشاركت می‌كند.

محرکهای التهابی باعث انتشار پرکسی‌ردوکسین۲، یک آنزیم درون سلولی فعال ردوکس می‌شود. پس از انتشار، به‌عنوان یک واسطه التهابی وابسته به ردوکس عمل می‌کند و ماکروفاژها را برای تولید و رهاسازی TNF-α فعال می‌کند. سالزانو و همکاران با استفاده از روش‌های پروتئومیکی طیف سنجی جرمی نتیجه گرفتند که پراکسی‌ردوکسین(PRDX2) و تیروکسین (TRX) از ماکروفاژها می‌توانند وضعیت ردوکس گیرنده‌های سطح سلول را تغییر داده و باعث القاء پاسخ التهابی شوند، که یک هدف درمانی جدید بالقوه برای بیماری‌های التهابی مزمن ایجاد می‌کند.

منابع:

 .Oxidative Medicine and Cellular Longevity,Volume 2016, Article ID 7432797, 9 pages,Oxidative Stress and Inflammation

Fernández-Sánchez, A., Madrigal-Santillán, E., Bautista, M., Esquivel-Soto, J., Morales-González, Á., Esquivel-Chirino, C., Durante-Montiel, I., Sánchez-Rivera, G., Valadez-Vega, C. and Morales-González, J.A., 2011. Inflammation, oxidative stress, and obesity. International journal of molecular sciences, 12(5), pp.3117-3132.

نوشته شده در

انسولین در مقابله با استرس اکسیداتیو و التهاب موثر نیست

تزریق زیرپوستی انسولین (CSII) برای درمان دیابت نوع ۱ به عنوان استاندارد طلایی مطرح است. این روش تزریق گرچه به اندازه تزریق داخل بطنی، فیزیولوژیک نیست اما می‌تواند در بسیاری از بیماران باعث تغییرات گلایسمیک شود که خود یک محرک قوی تولید گونه‌های فعال اکسیژن است. با وجود اینکه نقش این استرس اکسیداتیو در دیابت به عنوان یک عامل مطرح است و خصوصیات دقیق آن مشخص نشده است، مخصوصا در کبد که به عنوان یک ارگان حساسیت به انسولین مدنظر است. در طی شرایط فیزیولوژیک، یک سیستم آنتی‌اکسیدانتی طبیعی مسولیت تنظیم تعادل را بر عهده دارد. بقای میزبان نیز به قابلیت سلول و بافت به قابلیت مقابله و یا سازگاری با این استرس بستگی دارد. بافت باید بتواند در مقابله با این استرس به ترمیم و یا حذف مولکلول‌ها و سلو‌ل‌های آسیب دیده بپردازد.

سیگریست و همکاران در مرکز مطالعات دیابت اروپا (CEED، استراسبورگ، فرانسه) در ژانویه سال ۲۰۱۶ در مقاله‌ای که در ژورنال Experimental Biology and Medicine‌ چاپ شد نشان دادند که در مدل دیابتی رت، افزایش سریعی در استرس اکسیداتیو هپاتیک و بیومارکرهای التهابی اتفاق می‌افتد که به همراه کاهش بسیار شدید ذخیره گلیکوژن و سنتز پروتئین است. با تجویز مداوم زیر پوستی انسولین بوسیله یک مینی-پمپ اسموتیک، استرس اکسیداتیو در کبد و بصورت سیستمیک کاهش یافت اما با ادامه یافتن وضعیت دیابتیک این کاهش از بین رفت. در حقیقت، CSII نتوانست تعادل گونه‌های آنتی و پرواکسیداتیو را حفظ کند. این نتایج برای اولین بار نشان داد که برای مقابله با عوارض دیابت، استفاده از درمان آنتی‌اکسیدانتی می‌تواند یک روش جدید باشد چرا که درمان‌های معمول با انسولین به تنهایی برای محافظت کبد در مقابل عوارض مزمن دیابت کافی نیست. از این جهت نتیجه‌گیری می‌شود که ترکیب درمان انسولین با سایر مواد درمانی جهت مقابله با استرس اکسیداتیو و التهاب مورد نیاز است.

نوشته شده در

آنتی‌اکسیدان‌ها، درمان جدید پارکینسون

محققان گزارش دادند که گروه جدید و قدرتمند آنتی­‌اکسیدان‌ها می‌­تواند درمانی قوی برای بیماری پارکینسون باشد.

طبق تحقیقات دکتر بابی توماس، دانشمند عصب دانشکده پزشکی گرجستان و نویسنده مقاله در مجله Antioxidants & Redox Signaling ،  یک گروه از آنتی اکسیدان ها با نام  triterpenoidمصنوعی مانع پیشرفت پارکینسون در یک مدل حیوانی شده است.

 

توماس و همکارانش توانستند از مرگ سلول‌های مغزی تولید کننده دوپامین که در طی پارکینسون رخ می­‌دهد جلوگیری کنند که این عمل با استفاده از داروهای تقویت کننده  Nrf2، یک آنتی‌­اکسیدان طبیعی و ضدالتهابی قوی صورت گرفته است.

استرس­ها و قرار گرفتن در معرض آسیب­‌های مختلف، باعث افزایش استرس اکسیداتیو می‌­شوند و بدن با التهاب که بخشی از روند بازسازی طبیعی است پاسخ می‌­دهد. این التهاب باعث ایجاد محیطی در مغز می­‌شود که برای عملکرد طبیعی آن مفید نیست. علائم آسیب اکسیداتیو در مغز پیش از آنکه سلول های عصبی در اثر پارکینسون از بین بروند، قابل تشخیص است.

 

ژن Nrf2 به عنوان تنظیم­‌کننده اصلی استرس اکسیداتیو و التهاب به طور قابل­‌توجهی در زمان شروع پارکینسون کاهش یافته و در واقع، فعالیت Nrf2 به طور معمول با افزایش سن کاهش می‌یابد. دکتر توماس بیان می­‌کند: “در بیماران پارکینسون شما به وضوح می­‌توانید افزایش قابل توجهی از استرس اکسیداتیو را مشاهده کنید، به همین دلیل از داروها به صورت انتخابی برای فعال کردن Nrf2 استفاده کردیم.”

 

آن­ها تعدادی از آنتی‌­اکسیدان‌هایی را که در حال حاضر تحت مطالعه برای طیف گسترده‌ای از بیماری‌­ها مانند نارسایی کلیه، بیماری­های قلبی و دیابت است، تجزیه و تحلیل کردند و تری­ترپنوئیدها را موثرترین ترکیب بر روی Nrf2 یافتند. دکتر مایکل اسپارن، استاد داروسازی، سم شناسی و پزشکی در دانشکده پزشکی داکوتای جنوبی، توانست ترکیب شیمیایی تری­ترپنوئیدها را جهت محافظت از بروز خونریزی مغزی تغییر دهد.

 

هم­چنین در نوروبلاستمای  انسانی و سلول‌های مغزی موش توانستند مقدار افزایش Nrf2 در پاسخ به تولید تریترپروئیدهای مصنوعی را ثبت کنند. سلول‌های dopaminergic انسان برای بررسی در دسترس نیست بنابراین دانشمندان از سلول­های نوروبلاستوما انسان استفاده می­‌کنند که درواقع سلول‌­های سرطانی هستند که خواصی مشابه با نورون دارند.

 

شواهد اولیه نشان می‌دهد که سنتز تریترپروئیدهای مصنوعی فعالیت Nrf2 در آستروسیت‌ها را افزایش می‌­دهد. آستروسیت نوعی سلول مغزی است که نورون­ها را تغذیه می‌­کند و برخی از پسماندهای آن­را از بین می‌­برد. این داروها در موش آزمایشگاهی که ژن nrf2 حذف شده است، از سلول­های مغز محافظت نمی‌کند که اثبات می­کند Nrf2 هدف این دارو است.

 

محققان از پروتئین قدرتمند نوروتوکسین MPTP برای مقابله با آسیب سلول‌های مغز مانند پارکینسون در عرض چند روز استفاده کردند. آنها اکنون به تاثیر تریترپنوئید‌های مصنوعی در یک مدل حیوانی می‌­پردازند که از نظر ژنتیکی برای پیشرفت آهسته بیماری مشابه انسان برنامه‌ریزی شده ­است. محققان در دانشکده پزشکی جانز هاپکینز، برروی سلول‌های بنیادی pluripotent التهابی، سلول‌های بنیادی بالغ تحقیق می­‌کنند که می‌توانند نورون‌های دوپامینرژیک برای آزمایش داروها ایجاد کنند.

 

منبع:

Kaidery, N.A., Banerjee, R., Yang, L., Smirnova, N.A., Hushpulian, D.M., Liby, K.T., Williams, C.R., Yamamoto, M., Kensler, T.W., Ratan, R.R. and Sporn, M.B., 2013. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxidants & redox signaling18(2), pp.139-157.

نوشته شده در

عصاره دارچین، عامل کاهش استرس اکسیداتیو در سندرم متابولیک

مطالعه جدید محققان نشان داده است که مصرف روزانه عصاره دارچین می‌تواند سطح آنتی‌اکسیدانی بدن را افزایش و در نتیجه استرس اکسیداتیو را در ارتباط با سندرم متابولیک کاهش دهد.

سندروم متابولیک حدود 32 درصد از بزرگسالان را تحت تاثیر قرار داده و با چاقی، فشار خون بالا و کاهش سوخت و ساز بدن با سنجش گلوکز و انسولین مشخص می‌شود. سندرم  متابولیک با افزایش خطر ابتلا به دیابت نوع 2 و بیماری قلبی‌عروقی همراه است.

محققان 24 نفر از افراد مبتلا به اختلال دیابتی و تحت استرس اکسیداتیو را مورد مطالعه قرار دادند. بیماران به دو گروه تصادفی  تقسیم شدند: گروه اول با دوز روزانه 500 میلی‌گرم عصاره دارچین و گروه دوم به مدت 12 هفته با داروی Placebo تیمار شدند.در نتیجه این مطالعه، محققان دریافتند که در گروه عصاره دارچین در مقایسه با گروه Placebo ، سطح آنتی‌اکسیدانی پلاسما به طور قابل توجهی افزایش یافته است، سطوح گونه فعال مرتبط با استرس اکسیداتیو مانند مالون‌دی‌آلدئید (MDA) نیز در گروه دارچین پایین‌تر بود، اما در بیماران تیمار شده با Placebo تغییری مشاهده نشد.

این مطالعه نشان می‌دهد که ترکیبات فعال موجود در عصاره دارچین ممکن است در کاهش خطر ابتلا به این بیماری‌ها به وسیله محافظت از سلول‌ها از اکسیداسیون مضر کمک کنند. افراد مبتلا به اختلال عملکرد انسولین در معرض خطر بیشتری از بیماری‌های مزمن تهدید کننده زندگی هستند، از جمله دیابت و بیماری‌های قلبی.

مطالعات حیوانی قبلی، مصرف روزانه عصاره دارچین را به تنظیم فشار خون، هم‌چنین سطح پایین گلوکز خون، تری‌گلیسیرید، کلسترول تام و LDL کلسترول مرتبط کرده است. امروزه دارچین به عنوان یک تنظیم کننده قند خون در میان افراد دیابتی استفاده می‌شود. دارچین بدن را از آسیب های اکسیدانتی محافظت کرده و گیاه کامل دارویی برای افراد دیابتی به شمار می‌رود

منابع:

Roussel, A.M., Hininger, I., Benaraba, R., Ziegenfuss, T.N. and Anderson, R.A., 2009. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. Journal of the American College of Nutrition28(1), pp.16-21.

Qin, B., Panickar, K.S. and Anderson, R.A., 2010. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journal of diabetes science and technology4(3), pp.685-693.

Mang, B., Wolters, M., Schmitt, B., Kelb, K., Lichtinghagen, R., Stichtenoth, D.O. and Hahn, A., 2006. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. European journal of clinical investigation36(5), pp.340-344.

نوشته شده در

آنتی‌اکسیدان محافظ مغز در برابر آلزایمر

تحقیقات جدید نشان می‌دهند که چطور یک آنتی‌اکسیدان محافظ مغز می‌تواند از زوال عقل و آلزایمر جلوگیری کند.

آنتی‌اکسیدان سوپراکسید دیسموتاز یا  SOD1 با رادیکال‌های آزاد که باعث آسیب اکسیداتیو در مغز می‌شود، مبارزه می‌کند با این حال، یک تیم تحقیقاتی دانشگاه ایالتی آیووا، مزایای محافظتی SOD1 را به طور چشمگیری ضعیف می‌داند. درحالی که سطح پروتئین‌های tau در  بیماری آلزایمر افزایش می‌یابد اما بر اساس نتایج، محققان معتقدند SOD1 برای مقابله با اثرات مضر پروتئین tau مبارزه می‌کند اما در نهایت نبرد را از دست می‌دهد.

در افراد مبتلا به اختلال شناختی ضعیف و آلزایمر، SOD1  بیشتر به بخش خاکستری مغز مربوط می‌شود که نقش مهمی در حافظه دارد. با این حال، نتایج نشان می‌دهد 90 درصد از این تاثیر مثبت توسط tau از بین می‌رود. این مساله باعث نمی‌شود که سوپراکسیددیسموتاز به عنوان عامل منفی در آلزایمر شناخته شود، بلکه اثر پروتئین tau را در تشدید آسیب اکسیداتیو بیان می‌کند.

مکلیمانز، فارغ التحصیل PhD و دستیار تحقیق، علوم غذایی و تغذیه انسانی و بریجت کلارک، کارشناس تحقیقاتی دانشنامۀ سیکلون تابستان، این مطالعه را منتشر کردند که توسط مجله Antioxidants & Redox Signaling منتشر شده است. علاقه آن‌ها به آنتی‌اکسیدان‌ها که به طور طبیعی در بدن و در غذاها وجود دارد، منجر به بررسی این مساله شد که چگونه SOD1 پیری را تحت تاثیر قرار می‌دهد.

کلارک گفت: “این مطالعه می‌تواند بیشتر به بررسی نحوه کاهش میزان تغذیه و جلوگیری از تولید عصبی و پیری در مغز مربوط شود. Auriel Willett  استادیار علوم غذایی و تغذیه انسان، که به تحقیق نظارت داشت بیان می‌کند که میزان پروتئین SOD1 و tau در افراد با درجه‌های مختلف بیماری آلزایمر متفاوت است. محققان آزمایش‌های بالینی را بر روی بزرگسالان محدوده سنی 65 تا 90 ساله مبتلا به آلزایمر در زمینه ابتلا به بیماری‌های عصبی، مورد مطالعه قرار دادند. از 287 نفر در این مطالعه، 86 نفر اختلال شناختی داشتند، 135 نفر اختلال خفیف داشتند و 66 نفر مبتلا به بیماری آلزایمر بودند.

مک ليمانس گفت، بسياری از محققان آزمایشات خود را در زمینهSOD1  و مغز بر اساس تحليل مغز پس از مرگ مبتلایان به آلزايمر انجام می‌دهند. طبق همین بررسی‌ها تاثیر SOD1  در آلزایمر و تاثیر بیومارکرها در مغز و مایع مغزی نخاعی در بزرگسالان مشخص شده بود. امروزه تحقیقات بیشتر، نقش پروتئین tau را در توسعه آلزایمر نشان می‌دهد. Willette  گفت: “بیماری ممکن است تا حدی شروع شود یا پیشرفت کند، زیرا آنتی‌اکسیدان‌ها در مغز ما کارآیی خود را هنگام افزایش آسیب اکسیداتیو، افزایش می‌دهند.”

محققان در ایالت آیووا می‌گویند مطالعات بیشتری نیاز است تا تعیین کند آیا افزایش تولید SOD1 احتمالا از طریق رژیم یا دارو ممکن است به پیشرفت بیماری آلزایمر تاثیر داشته باشد یا خیر؟

 

منابع:

McLimans, K.E., Clark, B.E., Plagman, A., Pappas, C., Klinedinst, B., Anantharam, V., Kanthasamy, A. and Willette, A.A., 2019. Is CSF SOD1 a Biomarker of Tau but not Amyloid Induced Neurodegeneration in Alzheimer’s Disease?. Antioxidants and Redox Signaling,

نوشته شده در

تاثیر حملات میگرنی در استرس اکسیداتیو

مقالات اخیر درباره حملات میگرنی اطلاعات جالبی را ارائه داده است؛ حملات میگرنی مکانیسمی یکپارچه هستند که توسط آن مغز از خود محافظت و ترمیم می‌کند. میگرن تقریباً ۱۴٪ از جمعیت جهان یا ۱.۰۴ میلیارد نفر را تحت تأثیر قرار داده‌است. تحقیقات نشان می‌دهد افرادی که میگرن را تجربه می‌کنند، سطح استرس اکسیداتیو بالاتری دارند.
جاناتان بورکوم، دکترا از دانشگاه ماین، بر این باور است که محرک‌های میگرنی – از جمله استرس، اختلال در خواب، سر و صدا، آلودگی هوا و رژیم غذایی – می‌توانند استرس‌اکسیداتیو مغز را افزایش دهند، که یک عدم تعادل بین تولید رادیکال‌های آزاد و توانایی بدن در مقابله با اثرات مضر آنهاست. دکتر بورکوم گفت: “استرس اکسیداتیو یک سیگنال مفید از آسیب قریب الوقوع است زیرا تعدادی از شرایط نامطلوب در مغز می تواند باعث بروز آن شود.” بنابراین ، هدف قرار دادن استرس اکسیداتیو ممکن است به جلوگیری یا پیشگیری از میگرن کمک کند. وی در مقاله‌ای، به طور جداگانه به مؤلفه‌های حمله میگرن می‌پردازد. در زمینه تهدید شناخته‌شده برای مغز- قطع جریان خون- هر یک از مؤلفه‌ها محافظ هستند: تقویت دفاعی آنتی‌اکسیدانی، کاهش تولید اکسیدان، کاهش نیازهای انرژی و به ویژه آزادکردن فاکتورهای رشد در مغز که از موجود محافظت می‌کند و از تولد و پیشرفت نورون‌های جدید پشتیبانی می‌کنند. دکتر Borkum توضیح داد: “بین این مؤلفه‌های حمله میگرنی حلقه‌های بازخورد وجود دارد که آنها را به یک سیستم یکپارچه وصل می‌کند.” “بنابراین ، به نظر می رسد که حملات میگرنی به سادگی توسط استرس اکسیداتیو تحریک نمی‌شود، آنها به‌طور فعال مغز را از آن محافظت و ترمیم می‌کنند.”

سالهاست که حمله میگرن ـدرد، حالت تهوع و حساسیت به نور و صداـ به عنوان یک اختلال مشاهده شده‌است. با این‌حال، معمولاً علائم یک بیماری (مانند تب، تورم، درد یا سرفه) خود بیماری نیست بلکه بخشی از دفاع بدن در برابر آن است. دکتر بوركوم گفت: این تئوری در اینجا به ما می‌گوید كه برای حل میگرن واقعاً باید آسیب پذیری اساسی مغز را بدانیم، یعنی آنچه باعث استرس اکسیداتیو می‌شود. این تئوری مسیرهای جدیدی را برای یافتن داروهای پیشگیری و شیوه زندگی پیشنهاد می‌کند، مواردی که بر کاهش استرس اکسیداتیو و افزایش رهایی فاکتورهای رشد متمرکز شده‌اند. همچنین نورپردازی در خانه‌داری، یا اینکه مغز چگونه خود را حفظ و بهبود بخشد، تأثیر می‌گذارد. دکتربوکروم گفت: “وجود یک سیستم یکپارچه برای محافظت و ترمیم مغز می‌تواند بسیار مفید باشد، برای مثال، ممکن است روزی بتوانیم از این مکانیسم یاد بگیریم که چگونه از بیماری‌های عصبی جلوگیری کنیم.”

منبع:

 Medical Science News,Oct 2017,Migraine attacks may actively protect and repair the brain from oxidative stress.

نوشته شده در

استرس اکسیداتیو باعث پیری در سلول‌های RPE می‌شود

دژنراسیون سلولی مرتبط با سن (AMD) یکی از مهمترین دلایل کوری در افراد کهنسال محسوب می‌شود. این پدیده که هر دو چشم را درگیر می‌کند بوسیله آسیب دیدن رتینای میانی (ماکولا) ایجاد می‌شود. ماکولا در نور روز مسولیت دید رنگ‌ها را در انسان بر عهده دارد. بنابراین ضایعات ماکولا در انسان تاثیر بسیار مهمی در بینایی دارد.

مطالعات پیشین پیشنهاد کرده‌اند که تاثیرات استرس اکسیداتیو بر سلول‌های بینایی می‌تواند نقشی در بوجود آمدن AMD داشته باشند. استرس اکسیداتیو زمانی اتفاق می‌افتد که گونه‌های فعال اکسیژن (ROS) با پروتئین و DNA مداخله دارند. در این مطالعه نیز آریان و همکاران از هیدروژن پراکساید به عنوان یک ماده فعال استفاده کرده‌اند تا در سلول‌های رنگی اپیتلیال رتینای انسان، استرس اکسیداتیو ایجاد کنند. سلول‌های رنگی اپیتلیال رتینا وظیفه تغذیه سلول‌های رتینا را برعهده دارند. این استرس اکسیداتیو باعث پیشرفت زیادی در پیری سلول‌ها شد و از تقسیم آن‌ها جلوگیری نمود. این نتایج به قدرت اثبات می‌کند که استرس اکسیداتیو نقش بسیاری در توسعه AMD‌ در جمعیت کهنسال دارد. با وجود اینکه روش‌های مختلف برای سنجش ظرفیت تام آنتی‌اکسیدانتی معرفی شده است، مطالعات بیشتر در مورد نقش آنتی‌اکسیدانت‌ها احتمالا می‌تواند به عنوان یک راهکار درمانی برای AMD در قشر کهنسال مطرح گردد.

 

منبع:

Aryan, N., Betts-Obregon, B. S., Perry, G., & Tsin, A. T. (2016). Oxidative Stress Induces Senescence in Cultured RPE Cells. The Open Neurology Journal, 10, 83–87. http://doi.org/10.2174/1874205X01610010083

نوشته شده در

آیا آنتی‌اکسیدان‌ها می‌توانند باعث تشدید سرطان شوند؟

علیرغم اینکه آنتی‌اکسیدان‌ها در صنعت مکمل‌های غذایی بسیار درآمدزا می‌باشند، اما بسیاری از افراد از اطلاعات کافی در مورد آنتی‌اکسیدان‌ها و فواید آنها برای انسان غافل‌اند. اعتقاد رایج بر‌این‌است که آنتی اکسیدان‌ها قادر به پیشگیری از سرطان بوده و سلول‌ها را در برابر”گونه‌های فعال اکسیژن” یا “رادیکال‌های آزاد” محافظت کنند. رادیکال‌های آزاد در سلول‌ها تولید و قادر به تخریب ساختارهای سلولی و ژنوم آن می‌باشند که نتیجه آن بروز سرطان خواهد بود.

با این حال سلول‌ها انواع مختلفی از سطوح رادیکال‌های آزاد را تولید می‌کنند، مانند برخی سلول‌های  سیستم ایمنی که برای تخریب پاتوژن‌ها مورد استفاده قرار می‌گیرند. بنابراین بایستی از مزایا و معایب حذف رادیکال‌های آزاد با کمک آنتی‌اکسیدان‌ها آگاه بود. چنانچه همه رادیکال‌های آزاد حذف شوند، ممکن‌ است از اقدامات مفید آن‌ها جلوگیری گردد. دلیل این امر می‌تواند عدم وجود  اطلاعات جامع در مورد نقش آنتی اکسیدان‌ها به عنوان اجازه دهنده یا ممانعت کننده از بروز سرطان و درمان آن بوسیله آنتی‌اکسیدان‌ها باشد.

محققان در کالج کینگ لندن اخیرا تحقیقاتی در مجله موسسه ملی سرطان منتشر کرده‌اند که نشان می‌دهد رادیکال‌های آزاد تنها به عنوان عوامل مضر شناخته نمی‌شوند. مکمل‌های آنتی‌اکسیدان می‌توانند در برخی موارد آسیب بیشتری در مقایسه با فواید خود در سلول‌ها از خود برجای گذارند.

شکل دادن به سلول‌های سرطانی

در سال 2008 این مطلب بیان شد که سلول‌های ملانوم – جدی‌ترین شکل سرطان پوست – می‌توانند شکل خود را بسته به مقدار دو مولکول کلیدی مخالف هم به نام‌هایRac و Rho که مانند یک سوئیچ عمل می‌کنند، تغییر دهند. اگر Rac بیشتر و Rho کمتر وجود داشته باشد، سلول‌ها به حالت کشیده Spindly تبدیل می‌شوند و در حالت عکس سلول‌ها کروی می‌شوند. به تازگی روشن شده است سلول‌های کروی به راحتی قادر به مهاجرت و در نتیجه متاستاز خواهند بود.

 

به منظور بررسی این‌که چگونه Rac و Rho در مسیر تاثیر رادیکال‌های آزاد بر سرطان دخالت دارند، سلول‌های ملانوم در آزمایشگاه رشد داده و با استفاده از آنتی‌اکسیدان‌ها برای حذف گونه‌های فعال اکسیژن تیمار شدند. در نتیجه سلول‌ها شکل کروی به خود گرفته ، سریع‌تر مهاجرت کرده و باعث گسترش سریع توده‌های سرطانی در سطح بدن شدند.

مهار سیگنال‌های Rho و افزایش Rac ، مقدار رادیکال‌های آزاد را افزایش و در‌نتیجه سلول ها را کشیده‌تر و حرکت آنها را کندتر می‌سازد. از سوی دیگر افزایش رادیکال‌های آزاد، موجب بیان برخی ژن‌های سلولی مانند p53 می‌شود که موجب محافظت سلول در مقابل سرطان می‌گردد،لکن در خود سلول در طول سرطان این اثر از بین می‌رود. ژن دیگر PIG3 است که به ترمیم DNA کمک و به طور غیرمنتظره‌ای منجربه سرکوب فعالیت Rho  می‌شود.

این مطالعه با بررسی تومور‌های پوستی موش تایید شد. اگر سلول‌های سرطانی سطوح بالاتری از PIG3  داشته باشند، به‌ علت افزایش رادیکال‌های آزاد، حیوانات زنده‌مانی بیشتری دارند. این تومورها به آرامی رشد می‌کنند و سلول‌های سرطانی به اندازه زیاد گسترش نمی‌یابند.

در مقابل، بیماران انسانی که سطوح پایین PIG3 داشتند، سلول‌های سرطانی کروی بیشتری دارا بودند و سریعا در سطح بدن گسترش یافتند. در عین حال، پرونده‌های ژنتیکی بیماران سرطانی نشان داد افرادی که مبتلا به ملانوم گسترش یافته‌اند مقادیر کم PIG3، اما سطح بالایی از پروتئین‌ها تحت کنترل Rho را نشان می‌دهد.

 

بنابراین، به طور خلاصه، استفاده از داروها برای کاهش Rho و افزایش محصولات Rac  باعث افزایش رادیکال‌های آزاد و به همین ترتیب PIG3 می‌شود که باعث کاهش احتمال گسترش سلول‌های سرطانی می‌گردد. شواهد بدست آمده از این مطالعه قویا این فرضیه را که استفاده از آنتی‌اکسیدان‌ها قادر به مهار و درمان ملانوما می‌باشد را رد کرد.

 

احتیاط مصرف آنتی‌اکسیدان‌ها

از آنجائیکه اکثر تحقیقات برروی سلول‌های ملانوم در محیط‌های آزمایشگاهی انجام شده است نتیجه گیری قطعی مستلزم مطالعات بیشتری مبنی بر نقش داروهای مهار کننده مسیر سیگنالینگ  Rho بر روی سلول‌های سرطانی می‌باشد. از سویی دیگر داروهای مشابهی در تحقیقات بالینی برای گلوکوم، فشارخون بالا و بیماری‌های قلبی مورد آزمایش قرارگرفته‌ و ایمنی مصرف آن‌ها در بیماران تایید شده است. تحقیقات رو به رشد نشان می‌دهد این خانواده از داروها می‌تواند به کاهش سرعت گسترش سرطان پوست کمک کند.

مطالعات دیگر نشان می‌دهد که آنتی‌اکسیدان‌ها می‌توانند خطر ابتلا به سرطان را بالا ببرند و سرعت پیشرفت آن‌را افزایش دهند. دوزهای بالایی از آنتی‌اکسیدان‌ها هم‌چنین می‌توانند در برخی از درمان‌های سرطانی مانند شیمی‌درمانی دخالت داشته باشند که بر رادیکال‌های آزاد تأثیر می‌گذارند و در نهایت باعث کشتن سلول‌های سرطانی می‌شوند.

در حالی که نتایج به طور قطع از آسیب‌های آنتی‌اکسیدان‌ها به سلول‌های سالم عاجز هستند اما استفاده از آنتی‌اکسیدان‌ها در بیماران مبتلا به سرطان از توجه ویژه‌ای برخوردار است. آگاهی کامل از مزایا و معایب مصرف مکمل‌های آنتی‌اکسیدانی، مستلزم مطالعات تکمیلی برای ارائه راهکاری جهت مهار رادیکال‌های “بد” و تفکیک آن‌ها از رادیکال‌های “خوب” می‌باشد.

 : منبع

Herraiz, C., Calvo, F., Pandya, P., Cantelli, G., Rodriguez-Hernandez, I., Orgaz, J.L., Kang, N., Chu, T., Sahai, E. and Sanz-Moreno, V., 2016. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination. JNCI: Journal of the National Cancer Institute, 108.1.

نوشته شده در

تغییرات میزان آنزیم گلوتاتیون پراکسیداز در دیابت و علل آن

از آنزیم‌های آنتی‌اکسیدان مهم شناخته شده می‌توان به گلوتاتیون پراکسیداز اشاره کرد. گلوتاتیون پراکسیداز (GPx) نام عمومی خانواده‌ای از آنزیم‌ها با فعالیت پراکسیدازی است که نقش بیولوژیکی اصلی آن‌ها محافظت ارگانیسم‌ها در برابر آسیب‌های اکسیداتیو می‌باشد. عملکرد بیوشیمیایی آنزیم گلوتاتیون پراکسیداز کاهش هیدروپراکسیدهای لیپیدی به الکل‌های مربوطه و کاهش پراکسید هیدروژن آزاد به آب است. آنزیم‌های GPx با استفاده از گلوتاتیون، پراکسیدها را به الکل کاهیده و از تشکیل رادیکال‌های آزاد جلوگیری می‌کنند. در واقع گلوتاتیون پراکسیدازها کاهش پراکسید هیدروژن (آب اکسیژنه) و طیف گسترده ای از پراکسیدهای آلی به الکل مربوطه و آب را با استفاده از گلوتاتیون سلولی کاتالیز می‌کنند. گلوتاتیون فراوان‌ترین ترکیب تیول دار غیرپروتئینی با جرم مولکولی پایین می‌باشد که نقش مهمی را در دفاع سلولی علیه استرس اکسیداتیو به عنوان کوفاکتور گلوتاتیون پراکسیداز برعهده دارد؛ همچنین گلوتاتیون در تنظیم بیان ژن،‌ انتقال سیگنال، تکثیر و مرگ سلولی، تولید سیتوکین‌ها و پاسخ ایمنی دخیل می‌باشد. نسبت گلوتاتیون احیا/ گلوتاتیون اکسید مهمترین شاخص کارایی و سلامتی یک سلول می‌باشد. کمبود گلوتاتیون در فرایند پیری و پاتوژنز بسیاری از بیماری‌ها شامل بیماری‌های قلبی – عروقی، دیابت، ایدز، بیماری‌های سیستم عصبی و تنفسی نقش ایفا می‌کند. استفاده از مواد پروتئینی حاوی پیش‌ماده سنتز گلوتاتیون و دوری از عوامل اکسیدان خارجی مانند اشعه‌های یونیزه کننده، سیگار، ورزش‌های شدید و مصرف بی‌رویه برخی داروها همگی می‌توانند راهکارهای مناسبی در جهت جلوگیری از تهی شدن سلول‌ها از منابع گلوتاتیون باشند.

رادیکال‌های آزاد مولکول‌هایی هستند که از نظر شیمیایی بسیار فعال بوده و طی واکنش‌های متابولیسمی بدن یا در نتیجه موارد دیگر نظیر استعمال دخانیات، قرار گرفتن در معرض اشعه‌های یونیزان، انجام فعالیت‌های شدید بدنی یا در ادامه‌ی برخی بیماری‌ها مانند دیابت ممکن است تولید گردند. ترکیبات ناپایدار رادیکال‌های آزاد بر روی چربی، پروتیین، DNA و کربوهیدرات‌های سلول‌ها تاثیر می‌گذارند؛ که از بین این مواد چربی‌ها بیشترین حساسیت را نسبت به رادیکال‌های آزاد دارا می‌باشند. تاثیر این رادیکال‌ها توسط سیستم دفاعی بدن در حالت طبیعی خنثی می‌گردد. عدم تعادل بین تاثیر دفاعی بدن و کاهش ظرفیت تولید آنتی‌اکسیدانی بدن باعث ایجاد استرس اکسیداتیو می‌شود. این حالت که از تولید اکسیدان‌هایی مثل اکسیژن فعال به‌وجود می‌آید، ممکن است باعث بروز آسیب سلولی شده و در ظهور برخی بیماری‌ها نقش اساسی ایفا کند.

بیماری دیابت یکی از بیماری‌های اصلی در کشورهای پیشرفته می‌باشد. میزان مرگ و میر بیماران دیابتی تیپ ۲ نسبت به افراد سالم به خصوص در رابطه با بیماری‌های قلبی و عروقی افزایش معناداری نشان داده است. مطالعات جدید نشان داده که دیابت با استرس اکسیداتیو در ارتباط بوده و باعث افزایش تولید رادیکال‌های آزاد می‌گردد.هایپرگلیسمی که از نتایج بیماری دیابت می‌باشد نیز یکی از عوامل ایجاد این استرس است. دیابت با افزایش گلوکز و تغییرات بیوشیمیایی در پراکسیداسیون قند و چربی‌ها همراه است. افزایش قند خون از یک سو و از سوی دیگر اختلال در سیستم دفاع آنتی‌اکسیدانی در دیابت، سبب تولید بیش از حد رادیکال‌های آزاد می‌شود. مطالعات آزمایشگاهی نشان داده‌اند استرس اکسیداتیو ناشی از افزایش قند خون مدت‌ها پیش از این که عوارض دیابت به صورت بالینی نمود کند، رخ می‌دهد. درنتیجه این استرس علاوه بر افزایش مقاومت به انسولین و تشدید دیابت، نقش مهمی در پاتوژنز عوارض و تشدید پیامدهای بعدی دیابت دارد. با این وجود مطالعات مختلفی که بر روی مدل‌های حیوانی و همچنین در گروه‌های مختلف بیماران دیابتی صورت گرفته، نتایج ضد و نقیضی در مورد تغییر فعالیت آنزیم‌های آنتی‌اکسیدانی در ابتلا به دیابت نوع ۲ نشان داده‌اند.
در آزمایش صورت گرفته توسط مرجانی و همکاران (۱۳۸۴) بر روی افراد دیابتی، میانگین فعالیت آنزیم گلوتاتیون پراکسیداز در بیماران دیابتی بالاتر از افراد سالم و دارای اختلافی معنادار بوده است. در مطالعه‌ای دیگر توسط Pasaoglu و همکاران درباره‌ی بررسی وضعیت آنتی‌اکسیدانی در افراد سالم و دیابتی، نتایج نشان داده که پراکسیداسون لیپیدها در بیماران دیابتی بالاتر و سطح گلوتاتیون احیا در گلبول‌های قرمز پایین‌تر از افراد سالم است. همچنین در این بررسی گزارش شده که در بیماران دیابتی در مراحل اولیه بیماری، سیستم دفاع آنتی‌اکسیدانی به مقابله با رادیکال‌های آزاد می‌پردازد ولی با پیشرفت مراحل بیماری به تدریج سیستم آنتی‌اکسیدانی دچار اختلال شده و فعالیت آنزیم‌های آنتی‌اکسیدانی کاهش می‌یابد.
با توجه به نتایج جدیدتر حاصل از تحقیقات طاهری و همکاران (۱۳۹۱) اختلاف در نتایج می‌تواند به علت تفاوت مطالعات در زمینه جنس، مدت ابتلا به دیابت، میزان و نحوه کنترل قند خون و گونه‌های مورد مطالعه مدل‌های حیوانی باشد. این تفاوت‌ها در آزمایشات انسانی نیز مطرح است. در این مطالعات بیان می‌شود که افزایش سطح آنزیم‌های گلوتاتیون پراکسیداز می‌تواند ناشی از پاسخ جبرانی بدن به شرایط اکسیداتیو باشد. همچنین در همان مقاله ذکر شده است که احتمالا پس از بالارفتن سطح آنزیم به دلیل پاسخ جبرانی بدن، با رشد و شدت یافتن بیماری یا کنترل ضغیف قند خون، سطوح آنزیمی گلوتاتیون پراکسیداز با کاهش روبرو خواهد شد.
دیابت نوع ۲ تا حد زیادی ناشی از پیروی ناسالم از سبک زندگی‌های پرخطر و ماشینی شدن بیش از اندازه آن‌ها است. همه روزه راهکارهایی برای جوگیری از دچار شدن به آسیب‌های ناشی از کاهش توان بدن در مقابله با استرس اکسیداتیو ارائه می‌شود. این راهکارها شامل توصیه‌های تجویزی و هم‌چنین دستورهایی جهت اجتناب از مصرف برخی مواد یا انجام ندادن برخی کارهای روزمره و پرخطر می‌شود. شما نیز برای سهیم شدن در مبارزه و پیشگیری با این بیماری تلخ و خطرناک، اطلاعات خود را در رابطه با این بیماری و مقابله با استرس اکسیداتیو ناشی از آن زیر این مطلب با دیگران به اشتراک بگذارید؛ یا برای اطلاع از راهکارهای جدید مقابله در خبرنامه ما عضو شوید.

منابع:

Pasaoglu, H., Sancak, B. and Bukan, N., 2004. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. The Tohoku journal of experimental medicine, 203(3), pp.211-218.

PeerapatditMD, T., 2007. Glutathione and glutathione peroxidase in type 1 diabetic patients. J Med Assoc Thai, 90(9), pp.1759-67.

Sailaja Devi, M.M., Suresh, Y. and Das, U.N., 2000. Preservation of the antioxidant status in chemically‐induced diabetes mellitus by melatonin. Journal of pineal research29(2), pp.108-115.

Nangle, M.R., Gibson, T.M., Cotter, M.A. and Cameron, N.E., 2006. Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats. Planta medica72(6), p.494.

نوشته شده در

چگونه آنتی اکسیدان‌ها می توانند گسترش سرطان ریه را تشدید کنند

چند سال پیش، دانشمندان در سوئد، بحث‌های داغی را در هنگام انتشار تحقیقات نشان دادند که مصرف مکمل‌های آنتی اکسیدانی مانند ویتامین E باعث می‌شود که سرطان بیشتر تهاجمی باشد. آنها به این باور رسیدند که آنتی اکسیدان‌ها می توانند به مبارزه با سرطان کمک کنند. در حال حاضر، دو مطالعه مستقل سلولی، یکی از ایالات متحده و دیگری از سوئد، نشان می‌دهد که چگونه سلول‌های سرطانی ریه می‌توانند از آنتی اکسیدان ها استفاده کنند تا به گسترش آنها در سایر قسمت‌های بدن کمک کند.محققان پیش بینی می کنند که این یافته ها به درمان های جدید برای سرطان ریه منجر خواهد شد که باعث می شود افراد بیشتری در دنیا از سرطان‌ جان سالم به در برند.

سلول های سرطانی به مقدار زیاد قند یا گلوکز نیاز دارند تا به سرعت رشد کنند و متاستاز شوند و یا گسترش پیدا کنند. برای پاسخگویی به این نیاز، آنها از یک فرایند تولید انرژی استفاده می‌کنند که سریع‌تر از آن است که سلول های غیر سرطانی استفاده می کنند. مکانیسم انرژی سریع تر این است که مولکول های زیادی را به نام رادیکال‌های آزاد اکسیژن تولید می‌کند که فشارهای شیمیایی قابل توجهی روی سلول‌ها ایجاد می‌کند. متاستاز دلیل اصلی این است که سرطان چنین بیماری جدی است. بدون متاستاز، افراد قابل توجه کمتری از سرطان می میرند.

مطالعات جدید که محققان با استفاده از بافت موش و انسان انجام دادند، نشان می دهد که چگونه سلول‌های سرطانی ریه از آنتی اکسیدان‌ها برای مقاومت در برابر استرس اکسیداتیو و رشد استفاده می کنند. طبق تحقیقاتی در ایالات متحده چگونگی کمک دو جهش ژنتیکی به سلول های سرطانی ریه، برای غلبه بر استرس اکسیداتیو و ایجاد متاستاز توسط آنتی اکسیدان‌های خود اثبات شده است. جهش به تولید آنتی اکسیدان کمک می کند. همچنین مطالعه سوئدی نشان می‌دهد سلول‌های سرطانی ریه از آنتی اکسیدان‌های رژیم غذایی برای رسیدن به نتایج مشابه استفاده می‌کنند آنتی اکسیدان‌ها مکانیسم‌های متاستاز را تقویت می‌کنند.

به نظر می رسد که کاهش استرس اکسیداتیو از طریق آنتی اکسیدان‌ها می تواند ثبات BACH1 را افزایش داده و انباشت آن را در سلول های سرطانی ریه افزایش دهد.(تاثیر کاهش استرس اکسیداتیو بر روی پروتئین به نام Domain BTB و همولوگ 1 (CAC (BACH1 می‌باشد). BACH1 می تواند مکانیسم هایی را ایجاد کند که متاستاز را تقویت می کنند، یکی از آنها باعث می شود که سلول های سرطانی از گلوکز خون دریافت کنند و آن را به سوخت تبدیل کنند.

سرطان ریه سرطانی است که در سلولهای ریه آغاز می شود. این همان سرطان نیست که در جای دیگر شروع می شود و سپس به ریه ها می رود تا تومورهای ثانویه یا متاستاز های ثانویه ایجاد کند. هنگامی که سرطان که در ریه ها شروع می شود، متاستاز می شود، از طریق گره های لنفاوی به مغز و سایر قسمت های بدن گسترش می یابد.

مطالعات قبلی نشان داده است که حدود 30٪ از سرطان های ریه‌ غیر سلولی شکوفا می شوند، زیرا سلول های آنها یکی از دو نوع جهش را به وجود آورده اند که باعث تولید آنتی اکسیدانی می شود. مطالعه جدید ایالات متحده این جهش ها را بررسی کرد:

۱. یکی از دو جهش که تیم تحقیقاتی ایالات متحده انجام داد، سطح پروتئینی به نام NRF2 را افزایش می دهد که بر روی ژن هایی که سلول های سرطانی ریه را ایجاد می کنند، آنتی اکسیدان ها را ایجاد می کند.

۲. جهش دیگر که تیم تحقیقاتی ایالات متحده تحقیق کرد، KEAP1 را که پروتئینی است که باعث تخریب NRF2 می شود، سوئیچ می کند.

مارتین برگو، نویسنده ارشد مطالعات سوئدی جدید، می گوید: “ما در حال حاضر اطلاعات جدید مهمی در زمینه متاستاز سرطان ریه داریم.” این امکان را برای ما فراهم می کند تا درمان های جدیدی را ایجاد کنیم، مانند آنهایی که مبتنی بر مهار BACH1 هستند. ”

Bergo استاد علوم و علوم تغذیه در موسسه Karolinska در Solna، سوئد است. او تیم را در پشت مطالعات اصلی 2014 هدایت کرد که نشان داد که مکمل های آنتی اکسیدانی در رژیم غذایی، مانند ویتامین E، می تواند رشد تومور را تشدید کند.

او می گوید که یافته های جدیدشان “نشان می دهد که متاستاز تهاجمی ناشی از آنتی اکسیدان ها می تواند با متوقف ساختن BACH1 یا با استفاده از داروهایی که سرکوب شکر را متوقف می کنند، مسدود شود.” او اضافه می کند “همکاران آمریکایی ما” نشان می دهند که چگونه مهار کننده آنزیم دیگری، heme oxygenase که با BACH1 مرتبط است، می تواند فرآیند متاستاز را مهار کند. ”

محققان همچنین معتقدند که یافته ها نشان می دهد بینش های جدید در مورد مکانیسم سریع تر که سلول های سرطانی برای تولید انرژی استفاده می کنند، که دانشمندان به اثر Warburg اشاره می کنند: “برای بیماران مبتلا به سرطان ریه، مصرف ویتامین E ممکن است افزایش قابل توجهی در توانایی سرطان را به عنوان جهش‌های NRF2 و KEAP1  افزایش دهد.”