نوشته شده در

نیتریک‌اکساید استنشاقی در پیوند قلب

نیتریک‌اکساید استنشاقی که به بیماران مبتلا به حمله قلبی داده می‌شود ممکن است دوره نقاهت را کمتر کند. با توجه به نتایجی که در ESC Congress 2014 ارائه شد، نیتریک‌اکساید استنشاقی که به بیماران مبتلا به حمله قلبی قبل و در طی درمان با مداخله عروق کرونری پوست (PCI) تحویل داده شد، میزان آسیب دیده بافت را کاهش داد، اما ممکن است دوره نقاهت بهبود یابد.

نیتریک‌اکساید استنشاقی، یک گشادکننده‌ی عروق ریوی در بیماران مبتلا به فشارخون ریوی ناشی از نارسایی قلبی است و ممکن است بیماران با واکسن انقباض ریوی برگشت‌پذیر را شناسایی کنند که در آنها عوامل مانند نیتروپروسید باعث فشارخون سیستمی می‌شوند. نیتریک‌اکساید استنشاقی موجب افزایش فشار پرشده بطن چپ توسط مکانیزم ناشناخته می‌شود.

طبق تحقیقات  Stefan Janssens، MD، PhD از بیمارستان دانشگاه Gasthuisberg of Leuven در بلژیک، آزمایش NOMI (نیتریک‌اکساید برای استنشاق برای کاهش آسیب مجدد مجدد در انفارکتوس میوکارد حاد سکته قلبی) بر اساس این فرضیه بود که استنشاق نیتریک‌اکساید می‌تواند آسیب به بافت قلب را در زمان رپرفیوژن (بازگرداندن جریان خون هنگامی که یک مجرای مسدود شده باز می شود) کاهش دهد. این مطالعه نشان می‌دهد که بین 48-72 ساعت پس از عمل هیچ تفاوتی در تعیین‌ نارسایی قلب و مرگ بین بیماران دریافت شده نیتریک‌اکساید و کسانی که در معرض اکسید قرار نگرفتند وجود ندارد.

با این حال، یک تجزیه و تحلیل فرعی از پیش تعیین شده بیماران مبتلا به نیتروگلیسرین intracoronary یا وریدی (IC / IV NTG) که تجویز آن به اختیارات محققان محلی محول شده بود، نشان دهنده تعامل قابل توجهی با استفاده از نیتریک‌اکساید استنشاقی، در میان افراد مبتلا، با انفارکت های مؤثرتری نسبت به بیمارانی که قبلا NTG دریافت کرده بودند همراه بود. در مجموع جمعیت، MRI در 48-72 ساعت نشان دهنده روند بهبود عملکرد با اکسیدنیتروژن بود که در 4 ماه قابل توجه بود. بهبود عملکرد به طور معنی داری با نیتریک‌اکساید در گروه زیر گروه مبتلایان به NTG بهتر بود.

نیتریک‌اکساید عوارض جانبی عمده ای را ایجاد نمی‌کند و برای یک نقطه ثانویه کامپوزیت نقطه پایانی مرگ، ایسکمی مکرر، سکته مغزی یا مجدد آن، نسبت به میزان رویداد کمتر همراه بود.

محقق NOMI اولین است که برای بررسی تاثیر استنشاق اکسید نیتریک بر آسیب های مجدد میوكارد، اندازه انفاركت و بهبودی قلب، گفت: “در حالی که این مقدار کاهش میزان نارسایی قلب را در جمعیت کلی مطالعه نشان نداد، یافته‌های این تحقیق نشان می‌دهد که استنشاق نیتریک‌اکساید تحقیقات بیشتری را در بیماران STEMI نیاز دارد.”

افزایش فشار دهلیزی چپ در نارسایی مزمن قلبی با افزایش ضروری در فشار خون ریه همراه است تا یک گرمای فشار برای جریان رو به جلو در گردش خون ریخته شود. افزایش بیشتر فشار خون شریانی ریه از عوارض واکسن ریه است. حضور پرفشاری خون ریوی برای بیماران تحت پیوند قلب اهمیت دارد، زیرا عامل خطر برای مرگ زودرس در دوره پس از عمل است. بطن راست قلب اهداکننده آسیب ایسکمیک در طول روش‌های برداشت و لانه گزینی را ایجاد می‌کند، و این باعث می‌شود که بعلت اختلال حاد و شکست در مواجهه با افزایش پس از بارگذاری آسیب‌پذیر باشد. به این ترتیب، بیماران با افزایش پایدار مقاومت به عروق ریه به طور کلی به عنوان کاندیدای پیوند قلب به علت میزان مرگ و میر اولیه بسیار بالا پس از عمل حذف می‌شوند.

منابع:

 

Semigran, M.J., Cockrill, B.A., Kacmarek, R., Thompson, B.T., Zapol, W.M., Dec, G.W. and Fifer, M.A., 1994. Hemodynamic effects of inhaled nitric oxide in heart failure. Journal of the American College of Cardiology, 24(4), pp.982-988

Blanch, L., Joseph, D., Fernandez, R., Mas, A., Martinez, M., Valles, J., Diaz, E., Baigorri, F. and Artigas, A., 1997. Hemodynamic and gas exchange responses to inhalation of nitric oxide in patients with the acute respiratory distress syndrome and in hypoxemic patients with chronic obstructive pulmonary disease. Intensive care medicine, 23(1), pp.51-57.

نوشته شده در

استرس اکسیداتیو و سرکوب تومور

مطالعه‌ی جدیدی در شماره فوریه مجله سرطان سلول ( Journal of Cancer Cell) منتشر شده است که نشان می‌دهد P38-آلفا  MAPK در حضور استرس اکسیداتیو فعال شده و باعث مهار تشکیل تومور می‌شود. این مطالعه رویکرد جدیدی را در مطالعه‌ی مکانیسم‌های خاصی که منجر به سرکوب سرطان می‌شوند، فراهم می‌سازد. شناسایی این مکانیسم‌ها برای توسعه داروهای ضد سرطان جدید مناسب خواهد بود.

P38-آلفا MAPK یک پروتئین نشانگر است که نقش مهمی در هماهنگی پاسخ‌های سلولی به استرس، از جمله استرس اکسیداتیو (که توسط افزایش تجمع گونه های اکسیژن فعال (ROS) در داخل سلول ایجاد می‌شود) دارد با این وجود هنوز مسیر‌ فعالیت P38-آلفا MAPK و مکانیسم‌های درگیر که در سرکوب سرطان نقش دارند به خوبی شناخته نشده‌اند. دکتر  نِبرادا از مرکز ملی سرطان اسپانیادر مادرید و همکارانش با مطالعه‌ی تغییرات بدخیمی که در سلول‌های موش های فاقد P38-آلفا نسبت به موش‌های گروه کنترل ایجاد شده بود به اهمیت مطالعه‌ی P38 -آلفا در سرکوب تومور پی بردند. کمبود P38-آلفا باعث افزایش تکثیرسلولی، مرگ سلولی از طریق آپوپتوز و افزایش تغییرات بدخیم در سلول می‌شوند. محققان مشاهده کردند که سطح ROS در سلول‌های فاقد P38-آلفا، نسبت به سلول‌های کنترل بسیار بالا است و علاوه بر این ، فعال شدن P38-آلفا در اثرROS در سلول‌های کنترل، آپوپتوز را تحریک می‌کند.در حالی که سلول‌های فاقد P38-آلفا به آپوپتوز ناشی از ROS مقاوم هستند. محققان یافته‌‌هایی به دست آوردند که از لحاظ بالینی بسیار اهمیت داشتند. آن‌ها با بررسی چند رده سلول سرطانی انسان مشاهده کردند که افزایش سطح ROS باپتانسیل تومورزایی در ارتباط هست. دانشمندان پیشنهاد می‌کنند که ممکن است سلول‌های سرطانی برای رهایی از سرکوب تومور، عملکرد P38-آلفا را از طریق کاهش حساسیت به استرس اکسیداتیو کم می‌کنند. در واقع بسیاری از سلول‌های تومور سبب افزایش بیان پروتیئن GST (پروتئین گلوتاتیون- اس- ترانسفراز) می‌شوند که این پروتیئن نیز مانع از فعال‌سازی P38-آلفا توسط ROs می‌گردد. بیان کاهش GST در سلول‌های سرطانی با افزایش فعالیت P38 -آلفا و آپوپتوز همراه است در حالی که افزایش بیان GST منجر به کاهش فعالیت P38 –آلفا، سطوح بالای ROS، و افزایش بدخیمی سلول‌های سرطانی می‌شود. روی هم رفته یافته‌ها نشان می‌دهد که P38-آلفا نقش مهمی در تنظیم منفی تشکیل تومور در پاسخ به انکوژن ناشی از ROS با تحریک آپوپتوز دارد و سلول‌های سرطانی ممکن است از این سیستم حفاظتی با جدا کردن ROS از P38-آلفا  فرار کنند! نتایج، مکانیسم‌های استفاده شده در مسیر‌های سرکوب تومور به وسیله‌ی سلول‌های سرطانی را نشان می‌دهد و پیشنهاد می‌کند که بازگرداندن فعالیت P38-آلفا ناشی از ROS برای مثال با هدف قرار دادن پروتیئن GST ممکن است یک راه درمانی بالقوه در سرکوب تومور باشد.

منبع :

Dolado et al.: “p38-alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis.” Publishing in Cancer Cell 11, 191-205, February 2007. DOI 10.1016/j.ccr.2006.12.013

 

نوشته شده در

آیا با کاهش رادیکال‌های آزاد در زخم‌های دیابتی می‌توان به روند درمان آن‌ها کمک کرد؟

زخم‌های مزمن از جمله زخم‌های دیابتیک که معمولا پا و ساق پا را درگیر می‌کنند. در آمریکا سالانه 6.5 میلیون نفر را درگیر و ضرر مالی که برای آمریکا دارد در حدود 25 میلیارد دلار می‌باشد. سوال اینجاس که چرا این زخم‌ها هزینه زیادی را دربر دارند؟

پروفسور مانولا مارتینز-گرینز از دانشگاه کالیفرنیا در این مورد دو فرضیه را بیان می‌کند که یکی مربوط به عدم تعادل بین رادیکال‌های آزاد و سیستم آنتی اکسیدانتی می‌باشد ودیگری اینکه باکتری‌ها با ساخت بیوفیلم مانع از تاثیر آنتی‌بیوتیک و یا داروها  بر روی زخم شده و آنها را به سمت مزمن شدن می‌برد.

همانطور که میدانید رادیکال‌های آزاد در هوموستاز و انتقال پیام‌ها نقش داشته و به صورت طبیعی در بدن تولید می‌شوند، ولی افزایش نامتعارف آنها باعث التهابات مزمن می‌شود که در زخم‌های دیابتیک هم مزمن بودن زخم هست که درمان را مشکل می‌کند.

در تحقیقی که این پروفسور و همکارانش بر روی موش‌های دیابتی انجام داده‌اند متوجه شده‌اند که با کاهش گونه‌های فعال اکسیژن (ROS) زخم‌های دیابتی روند ترمیم بهتری را نشان می‌دهند. برای دستیابی به این نتیجه، تیم تحقیقاتی آنها دو آنزیم کاتالاز و گلوتاتیون پراکسیداز را که نقش اصلی در تعادل ROS در سلول را دارند را در موش‌های دیابتی مهار کرده و در این حیوانات زخم‌ها با سرعت کمتری بهبود یافت و در ادامه برای نشان دادن نقش آنتی‌اکسیدانت‌ها، ویتامین E و ان استیل سیستئین را به گروه‌ها اضافه نمودند که نتایج حاکی از روند سریع بهبود زخم‌ها نسبت به گروه‌هایی که آنزیم‌ها مهار شده بودند، را نشان می‌داد. با کاهش ROS، بیوفیلم باکتری نیز از هم می‌پاشد و همه اینها در کنار هم بهبود زخم را می‌تواند تسریع کند. محققین بر این باورند که برای دستیابی به درمان موفق در زخم‌های مزمن باید به ظرفیت آنتی اکسیدانتی بدن توجه ویژه‌ایی داشته و در طول درمان تعادل را بین میزان ROS و ظرفیت آنتی اکسیدانتی برقرار نمود. این تحقیق با توجه به اینکه برای اولین بار هست که با حذف آنزیم‌های آنتی‌اکسیدانتی توانسته زخم‌های مزمن را ایجاد کند در نتیجه مسیر جدیدی برای تحقیق بر روی درمان زخم‌های مزمن را برای دانشمندان و محققین جوان فراهم کرده است.

منبع:

17 in New Orleans, La., at the 53rd annual meeting of the American Society for Cell Biology. (Article)

نوشته شده در

سوپراکسید دیسموتاز در تحقیقات زخم

ترمیم زخم متشکل از پروسه‌ها و واکنش‌های بسیار زیادی است. به‌صورت کلاسیک ترمیم زخم به ۴ فاز تقسیم می‌شود:

۱. فاز هوموستاز

۲. فاز التهابی

۳. فاز پرولیفراسیون

۴. فاز بلوغ و Remodeling

با وجود این دسته‌بندی، این فازها کاملا جدا از هم نیستند و بعضا همپوشانی در آن‌ها دیده می‌شود. بلافاصله بعد از هر آسیب، پلاکت‌ها شروع به تجمع کرده، پلاک‌ها را تشکیل می‌دهند و در عروق آسیب‌دیده مانع از خون‌ریزی می‌شوند. همزمان، پروسه‌های التهابی شروع می‌شوند و طیفی از سلول‌های التهابی به محل ضایعه جذب می‌شوند.

درحالی که این سلول‌های ایمنی سایتوکاین‌های پیش‌التهابی ترشح می‌کنند، سلول‌های التهابی (به‌ویژه نوتروفیل‌ها) مقادیر زیادی گونه‌های فعال اکسیژن (ROS) تولید می‌کنند. این مواد برای حفاظت بدن در مقابل یک عفونت ضروری هستند اما در صورت تولید بیش از حد می‌توانند به بافت‌های اطراف صدمه بزنند. در پروسه عادی ترمیم زخم، سایتوکاین‌های التهابی و سلول‌های ایمنی طی چند روز پس از آسیب کاهش می‌یابند. درست در این زمان، کراتنوسیت‌ها، فیبروبلاست‌ها و سلول‌های اندوتلیال شروع به ترشح فاکتورهای رشد متعدد می‌کنند.

 

 

در فاز پرولیفراتیو، به‌همراه بازسازی اپیتلیال و رگ‌زایی (آنژیوژنز)، سنتز کلاژن و ترکیب ماتریکس انجام گرفته و باعث تولید بافت گرانوله می‌شود. سلول‌های اپیتلیال به‌صورت افقی حرکت می‌کنند تا به همتایان خود از طرف مقابل برسند. فیبروبلاست‌ها از لبه‌های زخم فراخوانده می‌شوند تقسیم شده و باعث تحریک کراتینوسیت‌ها به مهاجرت و تقسیم می‌شوند. رگ‌زایی جدید (Neovascularization) اتفاق می‌افتد و شروع به تغذیه و اکسیژن‌رسانی بافت در حال اتصال می‌کند. سپس فیبروبلاست‌های تقسیم شده پروتئین‌های ماتریکس از جمله کلاژن را برای ساخت ماتریکس خارج سلولی (ECM) ترشح می‌کنند، که در مجموع باعث ساخت بافت پیوندی می‌شود.

هدف در این مطلب تشریح نحوه ترمیم زخم نیست و صرفا جهت مقدمه و آماده‌سازی موضوع مطالب ذکر شد. اکنون به نقش مهم آنزیم آنتی اکسیدانتی سوپراکسید دیسموتاز در این مورد می‌پردازیم.

سوپراکسید دیسموتاز و نقش آن در ترمیم زخم

آنیون‌های سوپراکسید ROSهای اولیه‌ای هستند که از اکسیژن مولکولی به‌وجود می‌آیند. اگر نیتریک اکساید (NO) که در اثر فعالیت آنزیم نیتریک اکساید سنتاز تولید می‌شود، در محیط موجود باشد، آنیون‌های سوپراکسید با آن واکنش داده و پراُکسی نیتریت‌ها را تولید می‌کنند. پراکسی نیتریت ماده‌ای برای از بین بردن باکتری و حفظ محیط زخم از عفونت‌ است، اما در عین حال ماده‌ای سمی و بسیار اکسید‌کننده نیز هست. برای جلوگیری از واکنش‌های آسیب‌رسان، آنیون‌های سوپراکسید اضافی تولید شده توسط آنزیم سوپراکسید دیسموتاز یا SOD به‌سرعت به H2O­2 تبدیل می‌شوند. خانواده آنزیم سوپراکسید دیسموتاز ۳ عضو دارد: SOD1 که در سیتوپلاسم و فضای بین‌غشایی میتوکندری موجود است. SOD2 که در ماتریکس میتوکندری وجود دارد و SOD3 که در فضای خارج سلولی موجود است و اولین خط دفاعی در مقابل استرس اکسیداتیو در فضای خارج سلول را تشکیل می‌دهد.

 

 

از آن‌جایی که پوست به‌نسبت سایر بافت‌ها بیشتر در معرض سمیت ناشی از اکسیژن قرار می‌گیرد، سوپراکسید دیسموتاز نیز در تحقیقات زخم بسیار مورد پرس‌وجو قرار گرفته است. آنزیم‌های SOD1 و SOD2 در سطح RNA در زخم‌ها به مقدار بسیار زیادی تشخیص داده شده‌اند. با این وجود فعالیت SOD در هنگام ترمیم زخم در رت‌ها کاهش می‌یابد. اما ممکن است این سوال پیش آید که آیا فعالیت SOD برای ترمیم زخم لازم است؟ پاسخ این سوال در موش‌های فاقد ژن کد کننده SOD1 کمی پیچیده است. در موش‌های ۲۰ هفته‌ای، نبود SOD1 باعث تاخیر در ترمیم می‌شود اما در موش‌های جوان‌تر (۵-۶ هفته) تفاوتی در زمان ترمیم در گروه فاقد SOD1 گزارش نشده است. شاید این نتایج اهمیت وجود SOD را در ترمیم زخم در پیری بیشتر بارز کند. چرا که گزارش شده است نبود SOD1 در فیبروبلاست‌های انسان باعث پیری سلول می‌شود. همچنین برای نگهداری سلول‌های فیبروبلاست جنینی موش (MEFs) نیز وجود SOD1 ضروری است. از این رو موش‌های فاقد SOD1‌ در سم‌زدایی و خنثی کردن آنیون‌های سوپراکسید تولید شده در متابولیسم سلولی، ناتوان هستند. علاوه بر این بافت آسیب‌دیده زخم در معرض اکسیژن اتمسفریک قرار می‌گیرد و این مورد با تاثیر بر چرخه ردوکس سلولی بر روند ترمیم تاثیر خواهد گذاشت.

در نهایت، اهمیت آنزیم‌های کنترل کننده اکسیدان‌ها بر کسی پوشیده نیست و شما می‌توانید در تحقیقات خود نیز برای سنجش سوپراکسید دیسموتاز اقدام کنید

 

 

 

منابع:

-Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014, 346, 941–945.

-Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112.

-Steiling, H.; Munz, B.; Werner, S.; Brauchle, M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 1999, 247, 484–494.

-Shukla, A.; Rasik, A.M.; Patnaik, G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 1997, 26, 93–101.

-Iuchi, Y.; Roy, D.; Okada, F.; Kibe, N.; Tsunoda, S.; Suzuki, S.; Takahashi, M.; Yokoyama, H.; Yoshitake, J.; Kondo, S.; et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 2010, 341, 181–194.

-Tsunoda, S.; Kibe, N.; Kurahashi, T.; Fujii, J. Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch. Biochem. Biophys. 2013, 537, 5–11.

نوشته شده در

آنتی‌اکسیدان‌ها و گسترش سرطان ؟

طبق یک مطالعه منتشر شده در آوریل و در مجله  Science Translational Medicine، دو نوع از داروهای مورد استفاده برای درمان دیابت نوع 2 می‌تواند متاستاز تومورهای انسان را در موش‌ها گسترش دهد.  این دو نوع ترکیب حاوی مهارکننده‌های دی‌پپتیدیل پپتیداز 4 (DPP-4) و  بازدارنده آلفالیپوئیک‌اسید (ALA) است که باعث سرعت بخشیدن به متاستاز ناشی از فعال شدن یک مسیر پاسخ آنتی‌اکسیدانی می‌شود. در این مسیر پروتئین‌های متاستاز فعال می‌شوند. نتایج این تیم نشان‌دهنده ارتباط بین آنتی‌اکسیدان‌ها و گسترش سرطان است.

مهم‌ترین یافته در این زمینه بیان می‌کند که متاستاز، سرطان‌های موجود را با فعال شدن پاسخ آنتی‌اکسیدانی ترویج می‌دهد.

زاکاری شافر، زیست‌شناس سلولی از دانشگاه نوتردام، گفت: “این اطلاعات محرمانه هستند و نتیجه تحقیق با مطالعات دیگر مطابقت دارد که فعالیت آنتی‌اکسیدانی می‌تواند برای متاستاز سلول‌های سرطانی مفید باشد.”

ژنگ و همکاران برای اولین بار از داروهای ضد دیابتی معمول استفاده کردند، از جمله متفورمین و آنالوگ‌های انسولین وتوانایی آن‌ها را برای افزایش تکثیر یا افزایش مهاجرت سلول‌های سرطانی در آزمایشگاه بررسی کردند. محققان نشان دادند که مهارکننده‌های DPP-4  از مهاجرت و تهاجم سلول‌ها جلوگیری می‌کند اما بر روی تکثیر سلول‌های سرطانی ملانوم، کبد، کولون، پستان، ریه و تخمدان تاثیرگذار نیست.

در موش‌ها، این داروها موجب انتشار بیشتر سلول‌های تومور کبدی و کولون و همچنین افزایش میکرومتاستاز در مقایسه با حیوانات با همان تومورهایی بود که هیچ داروهای ضددردی دریافت نکردند. آزمایش‌های بیشتر در آزمایشگاه نشان داد که اثرات مهار‌کننده DPP-4  بر روی انتقال تومور سلول با توانایی ترکیبات برای کاهش استرس‌اکسیداتیو سلول‌های سرطانی همراه است: داروها منجر به کاهش گونه‌های فعال اکسیژن (ROS) ، افزایش گلوتاتیون و افزایش آنتی‌اکسیدان آندوژنز می‌شود. محققان نشان می‌دهند که مهارکننده سنتز گلوتاتیون در سلول‌های سرطانی علاوه بر مهارکردن DPP-4 مانع از انتقال سلول‌های تومور می‌شود.

برای درک این‌که چگونه این ترکیبات بر روی مسیرهای استرس اکسیداتیو سلولی اثر می‌گذارند، محققان فاکتور رونویسی (NRF2) را که از طریق بازدارنده DPP-4 فعال می‌شوند، هم در کشت سلولی و هم در موش بررسی کردند.. پنج مهار‌کننده متفاوت DPP-4  همه در NRF2 فعال شده‌اند. هنگامی که محققان NRF2 را در پروتئین بازدارنده DPP-4 و سلول‌های سرطانی کبد از بین بردند، سلول‌ها کاهش مهاجرت سلول‌های تومور و بیان پروتئین‌های مرتبط با متاستاز را نشان دادند.

محققان اثر مشابهی را در in vivo مشاهده کردند. موش‌هایی که با سلول‌های نابودکننده NRF2 تلقیح شده بودند، متاستازهای ناشی از مهارکننده DPP-4 کمتری داشتند. محققان گزارش دادند که NRF2 هم‌چنین متاستازهای مستقل از هرگونه درمان دارویی دیابت را تحت تاثیر قرار داده است. فعال‌سازی فاکتور رونویسی باعث بیان پروتئین‌های متاستاز و مهاجرت سلولی در کشت شده و فعال‌سازی فارماکولوژیک NRF2 در موش، باعث افزایش میکرومتاستاز شد.

یکی دیگر از فعال کننده NRF2 شناخته شده، با نام ALA که برای درمان نوروپاتی دیابتی استفاده می‌شود، و اثرات مشابهی را به عنوان مهارکننده DPP-4 دارد، مورد مطالعه قرار گرفت. تجزیه و تحلیل داده‌های بیان اولیه تومور و متاستاتیک، نشان داد که در نمونه‌های با متاستاتیک بیشتر، احتمال افزایش بیان NRF2 را با متاستاز گره لنفاوی مرتبط می‌کند. مطالعات قبلی نشان داده است که NRF2 توسط آنکوژن‌ها فعال می‌شود، که تومورها را قادر می‌سازد تا ROS را خنثی کنند که مانع رشد آن‌ها می‌شود. شافر اشاره کرد که آیا سایر داروها با فعالیت آنتی‌اکسیدانی با یک مکانیزم مشابه کار می‌کنند یا اینکه سلول‌های سرطانی، خود نیز از مکانیسم‌های دیگر برای حفظ آنتی‌اکسیدان استفاده می‌کنند.

گام بعدی این است که مطالعه متاستاز تومور در موش‌های دیابتی داشته باشیم، که به اندازه کافی منعکس‌کننده کاربرد بالینی فعلی داروهای ضدویروسی خواهد بود.

برگئو تأکید کرد: “آنتی اکسیدان‌ها و داروهایی که NRF2 را فعال می‌کنند باعث ایجاد سرطان نمی‌شوند.” “در عوض، آن‌ها به سلول‌های سالم کمک می‌کنند سالم بمانند و به سلول‌های سرطانی کمک می کنند تا در بدن گسترش پیدا کنند.

 

منابع:

Caglayan, A., Katlan, D.C., Tuncer, Z.S. and Yüce, K., 2019. Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. Journal of Trace Elements in Medicine and Biology52, pp.254-262.

Shrivastava, A., Aggarwal, L.M., Mishra, S.P., Khanna, H.D., Shahi, U.P. and Pradhan, S., 2019. Free radicals and antioxidants in normal versus cancerous cells—An overview.

 

نوشته شده در

دفاع ایمنی بدون آسیب‌های جانبی

هنگامی که میکروب‌ها ناخواسته وارد بدن می‌شوند، گلبول‌های سفید خون وارد صحنه شده و شروع به مبارزه با آن‌ها می‌کنند. فرآیندی که در آن گلبول‌های سفید با مهاجمان به مبارزه می‌پردازند باید بسیار دقیق باشد، در غیر این صورت ممکن است بخش سالمی از بدن به وسیله یک نوع آسیب بیولوژیکال که بدن به خود وارد می‌کند، دچار آسیب گردد. محققان دانشگاه بازل سوئیس، نقش آنزیم مهمی را در این فرآیند کشف کرده‌اند که به گلبول‌های سفید خون اجازه می‌دهد تا با دقت بسیار بالا همانند یک تک تیرانداز ماهر به عوامل بیگانه حمله کنند.

این آنزیم میلو پراکسیداز (MPO) نام دارد و ظاهر سبزرنگی که در مناطق عفونی بدن مشاهده می‌شود ناشی از این ترکیب است. هنگامی که یک گلبول سفید خون به یک باکتری حمله می‌کند، پراکسید هیدروژن (H2O2) آزاد شده و MPO این ماده را به HOCL یا هیپوکلریک اسید تبدیل می‌کند، که مانند یک انفجار کوچک عمل کرده و باکتری‌ها را در شعاع کمتر از 1 میکرومتر از طریق ایجاد سوراخ‌هایی در آنها از بین می‌برد.

پروفسور Dirk Bumann، سرپرست این تیم تحقیقاتی، در این‌باره توضیح می‌دهد که: “باکتری‌ها در برابر این بمب اسیدی ابزاری جهت مقاومت ندارند و از آنجایی که هیپوکلریک اسید بسیار واکنش پذیر است، بلافاصله با نزدیکترین بیومولکول‌ها واکنش داده و فقط به صورت موضعی عمل کرده و به محیط‌های اطراف گسترش نمی‌یابد، در نتیجه باکتری‌ها از بین رفته و بافت‌های اطراف آن مصون مانده و آسیبی نمی‌بینند.”

اساسا MPO به عنوان یک سیستم کنترلی-مهاری عمل کرده تا پراکسید هیدروژن تبدیل شده، تنها در یک منطقه کوچک آزاد شود.

محققان برای پاسخ به این سوال که عدم وجود آنزیم میلوپراکسیداز در بدن می تواند چه عواقبی بدنبال داشته باشد؟ به بررسی سلولهای افرادی که این آنزیم را به دلیل ژنتیکی نداشتند، پرداختند. در این افراد، گلبول های سفید خون همچنان H2O2 را در مواجهه با یک عامل خارجی آزاد می‌کردند، اما این هیدروژن پراکسید هرگز به هیپوکلریک اسید تبدیل نمی‌شد که ماحصل آن کشته‌شدن باکتری‌ها بهمراه آسیب رسیدن به بافت‌های اطراف بود. Nina Khanna، بعنوان عضوی از این تیم تحقیقاتی می‌افزاید: ” آسیب همزمان به سلول‌های خونی و بافت‌ها بدون حضور MPO، ممکن است ناشی از عواقب درازمدت پیری زودرس و سرطان باشد اما هنوز به طور سیستماتیک مورد بررسی قرار نگرفته است.”

علاوه بر این، محققان دریافتند که آزاد شدن H2O2 در موش‌هایی که MPO را نداشتند و با سالمونلا آلوده شده بودند، سبب آسیب بافتی همراه با «تشدید آسیب‌های اکسیداتیو در لیپیدها و DNA» شده بود.

محققان می‌گویند این یافته‌ها می‌تواند به ایجاد استراتژی‌های جدید درمانی برای مبارزه با عفونت‌های باکتریایی کمک کند.

جهت مطالعه بیشتر می‌توانید به مقاله این تحقیق که در مجله nature microbiology به چاپ رسیده مراجعه نمایید.

منبع:

Schürmann N, Forrer P, Casse O, Li J, Felmy B, Burgener AV, Ehrenfeuchter N, Hardt WD, Recher M, Hess C, Tschan-Plessl A. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature microbiology. 2017 Jan 23;2:16268.

نوشته شده در

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در

مصرف نمک یا سلامتی؟!

سدیم یک ماده مغذی ضروری است و از طریق طعم نمکی اشتها آور است. با این حال، مصرف زیاد سدیم به اثرات منفی سلامتی مانند فشار خون بالا، بیماری‌های قلبی عروقی و سکته مغزی مرتبط است. در کشورهای صنعتی، حدود 75 درصد سدیم در رژیم غذایی از غذاهای تولید شده و غذاهایی که از خانه خارج می‌شوند، می‌آید. با این وجود، کاهش سدیم در غذاهای فرآوری شده با توجه به قابلیت‌های خاص سدیم از لحاظ طعم و طعم غذای مرتبط با غذا (به عنوان مثال، افزایش نمکی، کاهش تلخ، افزایش شیرینی و سایر طعم های مشابه) به چالش کشید. در بررسی‌های اخیر پزشکی، نقش حسی سدیم در غذا، عوامل تعیین‌کننده طعم نمکی و انواع استراتژی‌هایی مانند جایگزین‌های سدیم (به عنوان مثال، نمک های پتاسیم) و کاهش تدریجی سدیم، برای کاهش سدیم در غذاهای فرآوری شده با حفظ سلیقه، بحث می‌شود.

کلرید سدیم (NaCl)  محرک پیش‌نمونه‌ای برای طعم شور است. سدیم باعث افزایش ویژگی‌های حساسیتی غذاها می شود، با افزایش شوری، کاهش تلخی و افزایش شیرینی و دیگر اثرات طعم مطابقت دارد. فاکتورهایی که میل فرد و پذیرش غذاهای شور را مشخص می‌کنند، درک شده اند، اما عوامل محیطی مانند سطح سدیم در غذاها و رژیم غذایی عادی نقش مهمی دارند. در حالی‌که سدیم برای عملکرد طبیعی انسان ضروری است، مصرف بیش از حد سدیم همراه با افزایش فشار خون است که علت اصلی بیماری های قلبی-عروقی است. برآورد شده است که 62 درصد سکته مغزی و 49 درصد بیماری قلبی عروقی ناشی از فشار خون بالا است. مصرف بیش از حد سدیم همراه با بسیاری از دیگر اثرات منفی سلامت، از جمله سرطان معده، کاهش تراکم استخوان  و احتمالا چاقی همراه است.

یک گزارش از Asaria و همکاران محاسبه شده است که یک کاهش 15 درصدی در مصرف سدیم جمعیت می تواند از 8.5 میلیون مرگ و میر ناشی از قلب و عروق در سراسر جهان بیش از 10 سال جلوگیری کند.  تجزیه و تحلیل فرایند تهیه شده توسط سازمان جهانی بهداشت نتیجه می‌گیرد که شواهد قوی برای تأثیر هزینه‌های راهبرد کاهش ملی سدیم وجود دارد؛ به عنوان مثال، بیماری‌های قلبی عروقی از گران‌ترین مشکلات بهداشت هستند که 11 درصد کل هزینه‌های بهداشتی در سراسر جهان را تشکیل می‌دهند. انتظار می‌رود میانگین استراتژی کاهش سدیم فقط 0.3٪ هزینه های جاری در برنامه کنترل فشار خون در مقایسه با سایر هزینه های مرتبط با قلب و عروق در سرتاسر دنیا باشد. کاهش مصرف سدیم برای افراد مبتلا به فشارخون بالا و فشار خون مفید است، گرچه افراد مبتلا به فشار خون بالا به میزان بیشتری تحت تاثیر قرار می گیرند.

علی‌رغم نتایج منفی بهداشتی و هزینه‌های مراقبت های بهداشتی مرتبط با مصرف زیاد سدیم، انسان در بیشتر کشورهای توسعه یافته بسیار بالاتر از سطوح توصیه شده مصرف می‌کند و باعث کاهش سدیم در سلامت عمومی می شود. به همین دلیل، طیف وسیعی از استراتژی‌های کاهش سدیم در غذاهای مختلف اعمال شده است. با این حال، موفقیت اغلب محدود می‌شود، زیرا کاهش میزان سدیم بر کیفیت ذوق و طعم تاثیر می‌گذارد.

منابع:

Liem, D.G., Miremadi, F. and Keast, R., 2011. Reducing sodium in foods: the effect on flavor. Nutrients, 3(6), pp.694-711.

نوشته شده در

نیتریک‌اکساید در کاهش درد بیماران مبتلا به کم خونی‌داسی‌شکل

بیماری کم‌خونی سلول ‌داسی‌شکل شایع ترین بیماری ژنتیکی است و توسط سازمان های بین المللی مانند سازمان بهداشت جهانی (WHO) و سازمان آموزشی، علمی و فرهنگی سازمان ملل (یونسکو) به عنوان یکی از مهمترین مشکلات بهداشت عمومی شناخته شده‌است. سلول‌های داسی‌شکل به سرعت از بین می‌روند و باعث کمبود سلول‌های قرمز خون می‌شوند. علاوه بر این وقتی می‌خواهند از رگ‌های کوچک عبور کنند گیر می‌افتند و باعث گرفتگی رگ‌ها می‌شوند. این بیماری می‌تواند درد و مشکلات جدی دیگری از قبیل عفونت، سندرم حاد قفسه سینه و سکته مغزی به وجود آورد.  تورم در دست و پا از اولین نشانه های بیماری سلول داسی شکل است که اغلب با تب همراه است. این تورم به علت گیر کردن سلول های داسی شکل در رگها رخ می‌دهد. روش درمان آن استفاده از داروهای ضد درد و نوشیدن مایعات بیشتر مانند آب است. یکی از دلایلی که این بیماران به اورژانس و بیمارستان مراجعه میکنند درد است. علت این دردها نیز گیرکردن سلول‌های داسی‌شکل است که با توجه به بیماری دردها شدید و خفیف است.

مطالعه ای از 18 بیمار در آتلانتا، شیکاگو و دیترویت نشان داد که هضم نیتریک‌اکساید برای چهار ساعت کنترل درد بهتر از افرادی است که تنها مرفین را دریافت می‌کنند. دکتر C. Alvin Head، رئیس گروه بیهوشی در کالج پزشکی دانشکده پزشکی گرجستان ادامه داد: “این مطالعه نشان می دهد که شما می توانید گاز را نفس بکشید و درد کمتری داشته باشد “.  رئیس، نویسنده مربوط به مطالعه منتشر شده در مجله آمریکایی هماتولوژی گفت: مطالعه ای بزرگتر به تعیین دوز بهینه و همچنین زمان‌بندی و مدت زمان درمان کمک خواهد کرد. اگر یافته‌ها همچنان ادامه داشته باشد، او تصور می‌کند که بیماران سلول داسی‌شکل، بسیار شبیه به آسم، آنالایزر اکسید نیتریک مفید برای جلوگیری از یک بحران درد کامل دارند. درد ناشی از آن است که هموگلوبین غیر طبیعی شکل بیمار مانع انتقال اکسیژن می‌شود. در همان زمان بیمار را در اتاق اورژانس یا کلینیک می بینید، آنها مقدار قابل توجهی از درد را تجربه می کنند.

در حالی که مشخص نیست که چگونه نیتریک‌اکساید کمک می‌کند، Head دارای شواهد آزمایشگاهی و برخی از علائم اولیه بالینی است که نیتریک‌اکساید، وابستگی زیادی به هموگلوبین، شکل طبیعی و شارژ هموگلوبین را بازیابی می‌کند. شارژ منفی بیشتر به سلول‌ها کمک می‌کند تا یکدیگر را دفع کنند، پلیمرهای چسبنده را ذوب می‌کنند و ممکن است از تشکیلات جدید جلوگیری کنند. در واقع، او معتقد است که یکی از وظایف معمول نیتریک‌اکساید در بدن، کمک به جلوگیری از تشکیل لخته است.

وی گفت: “اگر بدون مورفین اضافه تسکین درد داشته باشید، باید با این مسئله مخالفت کنیم”. شرکت کنندگان در مطالعه نیتریک‌اکساید مورفین کمتری از گروه کنترل استفاده می‌کردند و دو ساعت پس از پایان درمان به کاهش درد ادامه می‌دادند. هیچ بیماری نشانه‌ای از سمیت نیتریک‌اکساید نداشت. مورفین سرانجام در نهایت با ترکیبی از داروهای دیگر مانند نیتریک‌اکساید جایگزین می‌شود که به علت اثر به روی عامل اصلی درد می باشند.

او در حال برنامه ریزی مطالعات انسانی و حیوانی است تا ببینید آیا دوزهای بسیار کمی از اکسید نیتریک در دوران بارداری نیز می تواند میزان درد را بهبود بخشد.

منابع:

Serjeant, G.R. and Serjeant, B.E., 1992. Sickle cell disease(Vol. 3). Oxford: Oxford university press

.2010 , medical life sciences, Nitric oxide inhalation reduces pain in sickle cell disease patients 

.

نوشته شده در

راهی برای جلوگیری از آلزایمر

محققان معتقدند که یک ساختار پروتئینی به نام آمیلوئید بتا، عامل اصلی آسیب عصبی در بیماری آلزایمر است.
مطالعه‌ای در دانشگاه کالیفرنیا سان دیگو که در مجله Journal of Biological Chemistry به چاپ رسیده، نشان می‌دهد که آمیلوئید بتا یکی از پروتئین‌های آنتی‌اکسیدانتی مغز را مختل می‌کند، همچنین در این مطالعه راهی برای محافظت از اثرات مضر آمیلوئید بر روی پروتئین‌های آنتی اکسیدانتی پیشنهاد شده است.
پروفسور جری یانگ در این رابطه می‌گوید: به نظر می‌رسد آمیلوئید، سبب آسیب به سلول‌ها می‌شود. در مطالعه حاضر شیوه بسیار دقیقی از یک فعل و انفعال بالقوه، در رابطه با اینکه آمیلوئید چطور می‌تواند باعث ایجاد بیماری شود و راه مقابله با آن چیست را پیدا کردیم.
این مطالعه بر روی کاتالاز (آنزیمی که اکسیدانت‌های اضافی را از بین می‌برد) تمرکز داشته، زیرا کاتالاز به طور معمول به جلوگیری از آسیب مغزی در بیماران مبتلا به آلزایمر کمک می‌کند و در مطالعات قبلی نشان داده شده که پروتئین‌های کاتالاز در پلاک‌های آمیلوئیدی ذخیره می‌شوند.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

لیلا حبیب، دانشجوی کارشناسی ارشد مهندسی زیستی و نویسنده نخست این مقاله می‌افزاید: در این مطالعه، آمیلوئید به محیط کشت سلول‌های عصبی اضافه شد و اثرات آن مورد بررسی قرار گرفت. وی گفت: ما توانستیم تعامل میان بتا آمیلوئید و کاتالاز را ارزیابی کرده و به این نتیجه برسیم که در این بین، عملکرد فیزیولوژیکی کاتالاز دچار اختلال شده و تبدیل پراکسید هیدروژن به اکسیژن و آب به درستی صورت نمی‌پذیرد.
این محققان جهت جلوگیری از تعامل آمیلوئید با دیگر پروتئین‌ها، اقدام به پوشاندن آمیلوئید توسط مولکول‌های کوچکی کردند و توانستند فعالیت کاتالاز و پراکسید هیدروژن درون سلول‌ها را به سطوح نرمال بازگردانند. این پوشش که محققان برای بررسی اثر متقابل آمیلوئید و کاتالاز استفاده کردند، نامزدی برای پیدایش یک داروست که در آزمایشگاه پروفسور یانگ توسعه یافته است.

 

منبع:

Habib, Lila K., Michelle TC Lee, and Jerry Yang. “Inhibitors of catalase-amyloid interactions protect cells from β-amyloid-induced oxidative stress and toxicity.” Journal of Biological Chemistry 285.50 (2010): 38933-38943.

نوشته شده در

ارتباط TAC و بیومارکر MDA در مطالعات بالینی

زمانی که آنتی‌اکسیدان‌ها در بدن ضعیف می‌شوند و یا کاهش می‌یابند، سلول‌های بدن و بافت‌ها مستعد ابتلا به اختلالات عملکرد و بیماری می‌شوند بنابراین حفظ سطوح آنتی‌اکسیدانی کافی برای جلوگیری و یا حتی کنترل بسیاری از بیماری‌ها ضروری است.
استفاده از ظرفیت آنتی‌اکسیدانی تام (TAC) ، در بیوشیمی، پزشکی، علوم تغذیه و در بسیاری از بیماری‌های مختلف پاتوفیزیولوژی (بیماری‌های قلبی و عروقی، دیابت، بیماری‌های عصبی، روانپزشکی، اختلالات کلیوی و بیماری‌های ریوی) می‌تواند به عنوان یک بیومارکر قابل اعتماد تشخیصی و پیش آگهی مورد مطالعه قرار بگیرد، اگرچه چندین توصیه برای سنجش آن باید مورد توجه باشد. مطالعه بیومارکرهای آنتی‌اکسیدانی دیگر نیز مانند عناصر پاسخ آنتی‌اکسیدانی ژنتیکی (ARE) و یا ویتامین‌های آنتی‌اکسیدانی و دیگر بیومارکرهای ارزشمند اکسیداتیو / نیتروژنیک نیز می‌تواند برای ارزیابی مداخلات تغذیه‌ای با غذاهای غنی از TAC در مورد خطر و پیشگیری از بیماری، از جمله استراتژی های ضد پیری مفید باشد.

رادیکال‌های آزاد زمانی که بیش از حد تولید می‌شوند و یا در اثر کمبود آنتی‌اکسیدان‌ها سطح بالایی در سلول دارند، می‌توانند ساختار و عملکرد پروتئین را تغییر دهند و باعث پراکسیداسیون لیپیدها شده و باعث آسیب DNA گردد. تجزیه پراکسید‌های لیپید محصولات متنوعی را تولید می‌کند. از جمله آن، مالون‌دی‌آلدهید (MDA) یک محصول پراکسیداسیون لیپیدی است که به خوبی مطالعه و بررسی شده است. سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی در نتیجه حضور رادیکال‌های آزاد عمل می‌کند.

پراکسیداسیون لیپید ناشی از ROS در تغییرات بدخیم دخیل بوده و اهداف اولیه پراکسیداسیون توسط ROS اسید چرب غیر اشباع شده در چربی‌های غشایی است. علاوه بر این، تجزیه این لیپیدهای پراکسیداسیون، انواع محصولات نهایی مانند MDA را تولید می‌کند. MDA به عنوان بیومارکر موتاژنیک و سرطان زایی مورد توجه قرار گرفته است. همچنین می توان از آن به عنوان بیومارکر تشخیص بیان ژن‌های مربوط به پیشرفت تومور استفاده کرد. بنابراین، سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی حاصل از رادیکال‌های آزاد عمل می‌کند. افزایش سطح MDA در بیماران OSCC ( سرطان سلول‌های سنگفرشی دهان) نسبت به گروه شاهد مشاهده شده است. این افزایش در MDA ممکن است به علت شکل‌گیری رادیکال های آزاد بیش از حد و تجزیه اسیدهای چرب اشباع‌نشده موجود در غشاء باشد و یا ممکن است به علت اصلاح ناکافی رادیکال‌های آزاد توسط سیستم آنتی‌اکسیدانی ضعیف سلولی باشد. افزایش سطح MDA و کاهش میزان TAC موجود در سرم و بافت بیماران OSCC در مطالعات به خوبی بررسی و اثبات شده است.

اثرات آنتی‌اکسیدانی NO-MDA با یکدیگر مرتبط هستند؛ NO باعث پراکسیداسیون لیپید می‌شود که به نوبه خود MDA را تولید می‌کند. فعالیت های MDA و NO در سرطان زایی بستگی به وضعیت آنتی‌اکسیدانی کل دارد. بدین ترتیب که این مکانیزم‌ها به طور متقابل در ارتباط هستند، نیاز به مطالعه آن‌ها با هم وجود دارد.
مطالعات نشان می‌دهد میزان استرس اکسیداتیو و نیتروژنیک در بیماران سرطانی دهان افزایش یافته و بیانگر سطح بالایی از NO و MDA و کاهش TAC به عنوان دفاع آنتی‌اکسیدانی اثبات شده است. افزایش سطح NO سرم و بافت منجر به پراکسیداسیون لیپیدها و در نتیجه باعث افزایش سطح سرمی و بافتی MDA می‌گردد. ارتباط مثبت NO-MDA نشان می‌دهد که DNA آسیب دیده در اثر اکسیداسیون، یک پدیده حیاتی برای سرطان زایی است که به دلیل تعامل ROS و RNS ( گونه‌های فعال نیتروژن) همراه با TAC رخ می‌دهد.

هم چنین در بیماران مزمن کلیوی، سطح MDA و گلوتاتیون اکسیدشده (GSSG) افزایش و غلظت GSH و GPx کاهش یافته که بررسی‌ها در این بیماران سطح پایینی از TAC را نشان می‌دهد. بیماران مبتلا به صرع دارای گلوتاتیون ردوکتاز اریتروسیتوز و سطح ویتامین‌های A و C پایین نسبت به گروه شاهد هستند و سطوح بالاتری از اریتروسیت MDA، سرولوپلاسمی و همولیز را نسبت به افراد کنترل نشان دادند که در این بیماران نیز TAC کاهش یافته است.
Pleural effusion لنفوسیت‌ها در بیماران مبتلا به سرطان، کاهش سطح TAC و درجه بالاتری از آسیب اکسیداتیو DNA را نشان می‌دهد. کودکان مبتلا به سرطان استخوان، لنفوم Burkitt و لوسمی حاد ميلوئژن، سطح پلاسماي MDA بالاتري داشته و در زنان مبتلا به سرطان سینه ، بیماران مبتلا به فیبروآدنوم و آدنوکارسینوم پستان سطح پلاسما و اریتروسیت MDA افزایش یافته و غلظت GSH و ویتامین های C و E کاهش می‌یابد.

در نتیجه می‌توان به این نکته اشاره کرد که با افزایش سطح رادیکال‌های آزاد در سلول مانند NO و فعالیت اکسیداسیونی آن، سطح MDA به عنوان یک بیومارکر افزایش می‌یابد و سطح TAC که دفاع آنتی اکسیدانی در مقابل استرس اکسیداتیو محسوب می‌شود، در مقایسه با گروه شاهد کاهش معناداری را از خود نشان می‌دهد.  سنجش میزان TAC سلولی می‌تواند به تشخیص و پیش‌آگاهی بیماری و میزان استرس اکسیداتیو سلولی در نتیجه حضور رادیکال‌های آزاد منجر شود.

 

منابع:

 

Alipour, M., Mohammadi, M., Zarghami, N. and Ahmadiasl, N., 2006. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits. Journal of sports science & medicine5(4), p.682

Sies, H., 2007. Total antioxidant capacity: appraisal of a concept. The Journal of nutrition137(6), pp.1493-1495

Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M.L. and Benedito, J.L., 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary science80(2), pp.133-139

Samouilidou, E. and Grapsa, E., 2003. Effect of dialysis on plasma total antioxidant capacity and lipid peroxidation products in patients with end-stage renal failure. Blood purification21(3), pp.209-212

Korde, S.D., Basak, A., Chaudhary, M., Goyal, M. and Vagga, A., 2011. Enhanced nitrosative and oxidative stress with decreased total antioxidant capacity in patients with oral precancer and oral squamous cell carcinoma. Oncology80(5-6), pp.382-389.

 

نوشته شده در

سرکوب لیستریا بدون مرگ سلول میزبان

پروتئین‌های مرگ سلولی باعث سرکوب ليستریا بدون کشتن سلول‌های میزبان می‌شوند

تحقیقات جدید دانشگاه ایالتی کارولینای شمالی نشان می‌دهد که پروتئین‌های کلیدی شناخته شده جهت جلوگیری از عفونت‌های ویروسی با القای مرگ سلولی می‌توانند برخی از عفونت‌های باکتریایی را بدون ایجاد مرگ سلول‌های میزبان مسدود کنند.

پروتئین RIPK3 و MLKL به جای کشتن سلول‌های میزبان آلوده به لیستریا در دستگاه گوارش، ترکیب شیمیایی باکتری‌ها را تشخیص می‌دهند و MLKL به آن متصل می‌شود، در نتیجه از گسترش لیستریا جلوگیری می‌شود، در حالی که سلول‌های میزبان زنده می‌ماند.

Jun Ninomiya-Tsuji استاد علوم زیست‌شناسی و نویسنده مسئول مقاله‌ای که این پژوهش را توصیف می‌کند، بیان می‌کند که: “در حالی‌که ما نشان داده‌ایم که این پروتئین‌ها در سلول‌های اپیتلیال روده‌ای نسبت به سلول‌های ایمنی متفاوت عمل می‌کنند اما هنوز مطمئن نیستیم که چرا و چگونه این تمایز رخ می‌دهد”.

محققان متخصص تحقیقات سم‌شناسی ابتدا از سلول‌های روده انسان استفاده کردند تا نشان دهند که سلول‌های با کمبود RIPK3  توسط لیستریا آلوده شده بودند، در حالی که سلول‌های دارای RIPK3 دارای چنین عفونت‌هایی نبودند. محققان سپس از موش استفاده کردند تا ببینند که آیا لیستریا می‌تواند با عبور از سلول‌های روده به مجاری موش برسد. آن‌ها آلودگی لیستریا را در موش‌های با کمبود RIPK3 یافتند، اما آلودگی لیستریا کمتری در موش‌های نرمال مشاهده شد.

سپس محققان نشان دادند که RIPK3 و یک پروتئین  دیگر به نام MLKL که با آن کار می‌کند، با حضور لیستریا فعال می‌شود. فعال‌سازی پروتئین این مسیر، تکرار ليستریا را مهار می‌کند، که نشان می‌دهد که پروتئین‌ها به طور موثر ليستریا را از بین می‌برند. سپس به طرز شگفت‌آوری محققان نشان دادند که فعال شدن RIPK3 و MLKL توسط لیستریا باعث مرگ سلول نمی‌شود. در عوض، پروتئین MLKL خود را به لیستریا متصل می‌کند، و گسترش آن را متوقف می‌کند.

پروتئین‌های دیگر موجب مرگ سلول برای جلوگیری از عفونت‌های خاص، به ویژه در سلول‌های ایمنی بدن می‌شود. مرگ سلول‌های اپیتلیال در دستگاه گوارش ممکن است باعث برداشتن مانع مهمی برای بیماری‌های ویروسی و باکتری‌ شود، بنابراین ممکن است این پروتئین‌ها منجر به بهبود شرایط زنده‌مانی سلول در زمان آلودگی گردد.

محققان معتقدند که تحقیقات آینده تلاش خواهد کرد تا بدانند که چگونه و به چه علت این پروتئین‌ها روش متفاوتی ( به روش مرگ سلول یا عدم مرگ سلولی ) جهت جلوگیری از ایجاد باکتری در دستگاه گوارش دارند.

 

منابع:

Sai, K., Parsons, C., House, J.S., Kathariou, S. and Ninomiya-Tsuji, J., 2019. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. The Journal of cell biology218(6), pp.1994-2005

McDougal, C. and Sauer, J.D., 2018. Listeria monocytogenes: the impact of cell death on infection and immunity. Pathogens7(1), p.8