نوشته شده در

روش‌های تعیین ظرفیت آنتی اکسیدانتی (قسمت اول)

شواهد بیوشیمیایی، زیستی و بالینی فراوان وجود دارد که نشان می‌دهد واکنش اکسایشی ناشی از رادیکال‌های آزاد (ROS) درایجاد بیماری‌های مختلف، تسریع پیری و فساد موادغذایی دخالت دارد. به دلیل خاصیت آنتی اکسیدان‌ها در ممانعت از اثرات رادیکال آزاد در ایجاد بیماریها و فساد مواد غذایی، نقش و اثر آنتی اکسیدانها مورد توجه محققین، پزشکان وعموم مردم قرار گرفته است و مطالعات ارزیابی ظرفیت آنتی اکسیدانی یکی از متداولترین موضوعات مورد بررسی در سالهای اخیر بوده است.روشهای تعیین ظرفیت آنتی اکسیدانی بر اساس ساز و کار انتقال اتم هیدروژن شامل  TRAP،ORAC  و CBA و بر اساس سازوکار روش انتقال الکترون شاملFRAP , TEAC  و DPPH میباشد. در کنار این روشهای تقریبا سنتی در سالهای اخیر روشهای دستگاهی مانند DSC نیز در تعیین ظرفیت آنتی اکسیدانی و پیشرفت اکسیداسیون مطرح شده است.در اینجا به بررسی معایب و مزایای روش TRAP می پردازیم.TRAP یکی از روش‌های متداول تعیین ظرفیت آنتی اکسیدانی پلاسمای خون می‌باشد. در این روش نیز سرعت پراکسیداسیون القا شده توسط AAPH (2’-Azobis (2-AmidinoPropane) Hydrochloride) از طریق کاهش شدت فلوئورسنس پروتئین آر فیکواریترین اندازه گرفته می‌شود. روش TRAP به طرق متعددی انجام میشود روش اولیه آزمون TRAP به این ترتیب است که بعد از اضافه کردن AAPH به پلاسما مقدار اکسیداسیون مواد قابل اکسید شدن از طریق اندازه‌گیری مقدار اکسیژن مصرفی در طول واکنش توسط الکترودهای اکسیژن اندازه گرفته می‌شود. در حضور آنتی اکسیدان‌ها در پلاسما زمان آغاز واکنش اکسیداسیون و یا مصرف اکسیژن به تاخیر میافتد. مدت زمان فاز تاخیری پلاسما با زمانی که مقادیر خاصی از استاندارد یا Trolox به پلاسمای خون اضافه شده است (استاندارد داخلی) مقایسه شده و به این ترتیب مقدارظرفیت آنتی اکسیدانی خون محاسبه می‌شود.

مزايا و معايب روشTRAP

این روش را می‌توان جهت ارزیابی ظرفیت آنتی اکسیدانی سرم و یا پلاسما (به طور کلی شرایط داخل بدن) بکار برد و میزان ظرفیت آنتی اکسیدان‌های غیرآنزیمی مانند گلوتاتیون و آسکوربیک اسید را اندازه گرفت اما از آنجایی که نقطه پایانی متفاوتی را می‌توان برای این روش در نظر گرفت بنابراین امکان مقایسه نتایج در تحقیقات مختلف وجود ندارد. این روش نسبتا پیچیده و زمان‌بر بوده و علاوه بر این اجرای آن نیاز به تخصص و تجربه دارد.

در بخش بعدی به بررسی روش ORAC در سنجش ظرفیت آنتی اکسیدانتی می‌پردازیم. برای مطالعه ادامه مطلب کلیک کنید.

منبع:

حسینی سپیده، قراچورلو مریم، غیاثی طرزی بابک و قوامی مهرداد. مروری بر روشهای تعیین ظرفیت آنتی اکسیدانی (اساس واکنش، روش کار، نقاط قوت و ضعف). Food Technology and Nutrition.

نوشته شده در

بیومارکرهای استرس اکسیداتیو

بیومارکر چیست ؟ ( قسمت اول )

بیومارکرهای سرطان ( قسمت دوم )

 

استرس اکسیداتیو، قسمت سمی اکسیژن و متابولیسم را نشان می‌دهد. استرس اکسیداتیو به عنوان عدم تعادل بین اکسیدان‌ها و آنتی‌اکسیدان‌ها به نفع اکسیدان‌ها شناخته شده که منجر به اختلال در سیگنالینگ مجدد، کنترل چرخه سلولی و آسیب مولکولی می‌شود.

بیومارکرهای استرس اکسیداتیو به سه دسته اصلی تقسیم می‌شوند:
– گونه‌های فعال اکسیژن ROS
– DNA / RNA، چربی‌ها و پروتئین‌هایی که توسط اکسیداسیون آسیب دیده‌اند
– آنتی‌اکسیدان‌ها

درباره این سه گروه این توضیح را باید افزود که:
– ROS نشان‌دهنده عواملي هستند كه استرس‌اكسيداتيو را تحريك مي كنند و باعث آسیب به اجزاي سلول می‌شوند.
– آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، آسیب‌های ناشی از اکسیداسیون را نشان می‌دهد
– آنتی‌اکسیدان‌ها سیستم‌های مبارزه با استرس اکسیداتیو را نشان می‌دهند

• گونه فعال اکسیژن ROS

گونه فعال اکسیژن، گونه‌های شیمیایی واکنشی هستند که حاوی اکسیژن فعال می‌باشند. آن‌ها عبارتند از پراکسید، سوپراکسید، هیدروکسیل رادیکال، اکسیژن مجزا و آلفا اکسیژن.
با توجه به ماهیت گذار آن‌ها، به راحتی در سلول‌های زنده با استفاده از تست‌های رنگ‌سنجی، مانند DCFDA، اندازه‌گیری می‌شوند. این بیومارکرها قابل اندازه‌گیری در خون، پلاسما، بافت و ادرار هستند.

• آسیب DNA / RNA، پراکسیداسیون لیپید، و اکسیداسیون / نیترات پروتئین

استرس اکسیداتیو را می‌توان به طور غیرمستقیم با اندازه‌گیری سطوح آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، به جای اندازه‌گیری مستقیم گونه‌های فعال اکسیژن، اندازه‌گیری کرد. بیومارکرهای استرس اکسیداتیو پایدارتر از انواع اکسیژن فعال هستند.

آسیب DNA / RNA

انواع مختلفی از آسیب DNA / RNA وجود دارد که می‌تواند به عنوان بیومارکرهای استرس اکسیداتیو اندازه‌گیری شود.  8-hydroxydeoxyguanosine احتمالا به عنوان یکی از رایج ترین بیومارکرهای آسیب DNA برای استرس اکسیداتیو است. تست‌های مکان‌های apurinic / apyrimidinic و آزمون‌های آسیب ناشی از آلدهید می‌تواند به عنوان اندازه‌گیری‌های مستقیم از آسیب DNA استفاده شود که به طور بالقوه مرتبط با استرس اکسیداتیو است.

پراکسیداسیون لیپید

مالون‌دی‌آلدئید MDA یکی از معمول‌ترین شاخص‌های لیپیدی استرس اکسیداتیو است. این ماده از طریق پراکسیداسیون اسیدهای چرب غیراشباع تشکیل شده است و معمولا با استفاده از آزمون TBARS اندازه‌گیری می‌شود. تست TBARS به طور کامل برای MDA خاص نیست، همانطور که سایر آلدهید‌ها نیز سیگنال مشابهی را با این تست تولید می‌کنند، با این حال، تست TBARS عموما راحت‌تر از استفاده از HPLC برای اندازه گیری MDA است. آزمون‌های ELISA رقابتی برای MDA نیز در دسترس هستند.
دیگر بیومارکرهای پراکسیداسیون چربی شامل 4-HNA، 8-ایزوپروستان، هیدروپراکسید لیپیدها و LDL اکسید شده است.

اکسیداسیون / نیترات پروتئین

آسیب اکسیداتیو به پروتئین‌ها می‌تواند به شکل کربن لیپتین پروتئین و نیتراسیون پروتئین (3-نیتروتیروزین) باشد. گونه‌های فعال اکسیژن هم‌چنین می‌توانند تولید محصولات پیشرفته گلیکوزیله AGE و پروتئین‌های AOPP را ایجاد کنند. همه این بیومارکرها را می‌توان با روش‌های استاندارد اندازه‌گیری کرد.

• آنتی‌اکسیدان‌ها

آنزیم‌های آنتی‌اکسیدانی و دیگر مولکول‌های ROS، باعث آسیب اکسیداتیو می شوند. سه نوع آنتی‌اکسیدان به عنوان بیومارکر استرس اکسیداتیو وجود دارد: مولکول‌های کوچک، آنزیم‌ها و پروتئین‌ها (مانند آلبومین).
برای اندازه گیری ظرفیت کل‌آنتی اکسیدانی نمونه، از جمله مولکول‌کوچک و ظرفیت آنتی‌اکسیدانی پروتئین، تعدادی از تست‌ها وجود دارد. یکی از رایج‌ترین تست‌های کلسترول آنتی‌اکسیدانی، تست آنتی‌اکسیدانیTEAC است. تست آنتی‌اکسیدانی رادیکال اکسیژن ORAC یکی دیگر از آزمون‌های معمول استرس اکسیداتیو است که ظرفیت آنتی‌اکسیدان را با اندازه‌گیری توانایی آنتی‌اکسیدان‌ها برای کاهش رنگ فلورسنت توسط ROS اندازه‌گیری می‌کند.
فعالیت آنتی‌اکسیدانی نیز می‌تواند در سطح آنالیت‌های خاص اندازه‌گیری شود. به عنوان مثال با نگاه کردن به سطوح نسبی GSH و GSSG ، سطح آنالیت اندازه‌گیری می‌شود. گلوتاتیون احیا GSH به عنوان مولکولی فراوان در میان آنتی‌اکسیدان‌های درون سلولی در نظر گرفته می‌شود که GSSG را در فرم اکسید شده تشکیل می‌دهد. این واکنش توسط آنزیم گلوتاتیون ردوکتاز فعال می‌شود.
در غیر این صورت، سطح فعالیت آنزیم‌های آنتی‌اکسیدانی مانند GST و سوپراکسید‌دیسموتاز می‌تواند در رابطه با سطوح استرس اکسیداتیو اندازه‌گیری شود.

 

منابع:

Valavanidis, A., Vlachogianni, T. and Fiotakis, C., 2009. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C27(2), pp.120-139.

Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P., 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical chemistry43(7), pp.1209-1214.

Lykkesfeldt, J., 2007. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica chimica acta380(1-2), pp.50-58.

نوشته شده در

استرس اکسیداتیو و سرکوب تومور

مطالعه‌ی جدیدی در شماره فوریه مجله سرطان سلول ( Journal of Cancer Cell) منتشر شده است که نشان می‌دهد P38-آلفا  MAPK در حضور استرس اکسیداتیو فعال شده و باعث مهار تشکیل تومور می‌شود. این مطالعه رویکرد جدیدی را در مطالعه‌ی مکانیسم‌های خاصی که منجر به سرکوب سرطان می‌شوند، فراهم می‌سازد. شناسایی این مکانیسم‌ها برای توسعه داروهای ضد سرطان جدید مناسب خواهد بود.

P38-آلفا MAPK یک پروتئین نشانگر است که نقش مهمی در هماهنگی پاسخ‌های سلولی به استرس، از جمله استرس اکسیداتیو (که توسط افزایش تجمع گونه های اکسیژن فعال (ROS) در داخل سلول ایجاد می‌شود) دارد با این وجود هنوز مسیر‌ فعالیت P38-آلفا MAPK و مکانیسم‌های درگیر که در سرکوب سرطان نقش دارند به خوبی شناخته نشده‌اند. دکتر  نِبرادا از مرکز ملی سرطان اسپانیادر مادرید و همکارانش با مطالعه‌ی تغییرات بدخیمی که در سلول‌های موش های فاقد P38-آلفا نسبت به موش‌های گروه کنترل ایجاد شده بود به اهمیت مطالعه‌ی P38 -آلفا در سرکوب تومور پی بردند. کمبود P38-آلفا باعث افزایش تکثیرسلولی، مرگ سلولی از طریق آپوپتوز و افزایش تغییرات بدخیم در سلول می‌شوند. محققان مشاهده کردند که سطح ROS در سلول‌های فاقد P38-آلفا، نسبت به سلول‌های کنترل بسیار بالا است و علاوه بر این ، فعال شدن P38-آلفا در اثرROS در سلول‌های کنترل، آپوپتوز را تحریک می‌کند.در حالی که سلول‌های فاقد P38-آلفا به آپوپتوز ناشی از ROS مقاوم هستند. محققان یافته‌‌هایی به دست آوردند که از لحاظ بالینی بسیار اهمیت داشتند. آن‌ها با بررسی چند رده سلول سرطانی انسان مشاهده کردند که افزایش سطح ROS باپتانسیل تومورزایی در ارتباط هست. دانشمندان پیشنهاد می‌کنند که ممکن است سلول‌های سرطانی برای رهایی از سرکوب تومور، عملکرد P38-آلفا را از طریق کاهش حساسیت به استرس اکسیداتیو کم می‌کنند. در واقع بسیاری از سلول‌های تومور سبب افزایش بیان پروتیئن GST (پروتئین گلوتاتیون- اس- ترانسفراز) می‌شوند که این پروتیئن نیز مانع از فعال‌سازی P38-آلفا توسط ROs می‌گردد. بیان کاهش GST در سلول‌های سرطانی با افزایش فعالیت P38 -آلفا و آپوپتوز همراه است در حالی که افزایش بیان GST منجر به کاهش فعالیت P38 –آلفا، سطوح بالای ROS، و افزایش بدخیمی سلول‌های سرطانی می‌شود. روی هم رفته یافته‌ها نشان می‌دهد که P38-آلفا نقش مهمی در تنظیم منفی تشکیل تومور در پاسخ به انکوژن ناشی از ROS با تحریک آپوپتوز دارد و سلول‌های سرطانی ممکن است از این سیستم حفاظتی با جدا کردن ROS از P38-آلفا  فرار کنند! نتایج، مکانیسم‌های استفاده شده در مسیر‌های سرکوب تومور به وسیله‌ی سلول‌های سرطانی را نشان می‌دهد و پیشنهاد می‌کند که بازگرداندن فعالیت P38-آلفا ناشی از ROS برای مثال با هدف قرار دادن پروتیئن GST ممکن است یک راه درمانی بالقوه در سرکوب تومور باشد.

منبع :

Dolado et al.: “p38-alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis.” Publishing in Cancer Cell 11, 191-205, February 2007. DOI 10.1016/j.ccr.2006.12.013

 

نوشته شده در

آنتی‌اکسیدان‌ها و هزار مسیر تاثیر بر سلول سرطانی

یک فرم جایگزین آنزیمی که در مسیر متابولیسم گلوکز دخیل است، سلول‌های سرطانی را از استرس‌اکسیداتیو محافظت می‌کند.

محققان با فعال کردن آنزیمی که در تجزیه گلوکز دخالت دارند، می‌توانند رشد سلول‌های سرطانی ریه را تسکین دهند و آسیب‌های تولید شده توسط گونه‌های فعال اکسیژن(ROS) تولید شده در متابولیسم طبیعی را کاهش دهند. این گونه‌های فعال اکسیژن می‌توانند باعث آسیب به سلول در غلظت‌های بالا شود. یافته‌های منتشر شده در Science Express می‌تواند در جهت تحت تاثیر قرار دادن درمان‌های سرطان مورد استفاده قرار گیرد و رشد تومور را به حداقل برساند.
Karen Vousden از مؤسسه تحقیقات سرطان گلاسکو، گفت: این مطالعه نشان می‌دهد که چگونه تومورها به طور طبیعی با افزایش استرس اکسیداتیو روبرو می‌شوند و راه را برای تبدیل این مکانیسم علیه سرطان فراهم می‌کند.

دانشمندان مدت‌هاست دریافته‌اند که سلول‌های سرطانی تمایل دارند فرم دیگری از آنزیم پیرووات کیناز (PKM1) داشته باشند که بخشی از مسیر گلیکولیزی است و گلوکز را به پیروات و ATP می‌شکند. بر خلاف PKM1 که سطح فعالیت آن‌ها ثابت است، فعالیت PKM2 می‌تواند بالا یا پایین باشد و فرم جایگزینی آنزیم در کمک به رشد سلول‌های تومور نقش مهمی ایفا می‌کند.
دانشمندان هم‌چنین با این واقعیت که سلول‌های سرطانی می‌توانند از آسیب به اجزای سلولی اصلی که به طور ناگهانی در نتیجه سطوح بالای ROS پایدار می‌باشند، تحریک شوند، سلول‌های سرطانی ROS بیشتری تولید می‌کنند، اما به طریقی از عواقب معمولی اجتناب می‌کنند. کار قبلی نشان داد که مسیر PKM2 در این مسیر آسیب اکسیداتیو نقش مهمی ایفا می‌کند.
Anastasiou و همکارانش خطوط سلولی سرطان ریه را با عوامل اکسیدکننده افزایش دادند و سطوح ROS و PKM2 را افزایش دادند اما متوجه شدند که این سلول‌ها فعالیت PKM2 را کاهش داده‌اند. از سوی دیگر، هنگامی که عامل‌های کاهش دهنده را اضافه می‌کنند تا سطوح ROS را کاهش دهند و اکسیداسیون PKM2 را معکوس کنند، فعالیت آنزیمی افزایش می‌یابد و این نشان می‌دهد که PKM2 به عنوان سنسور برای ROS عمل می‌کند.

سپس محققان فرم جهش PKM2 را ایجاد کردند که همچون PKM1 هم‌چنان به عنوان سطح “ROS” عمل می‌کند. سلول‌های سرطانی با فرم جهش PKM2 باعث آسیب بیشتر نسبت به کنترل سرطان‌ها شدند، که نشان می‌دهد توانایی سلول سرطانی برای کاهش فعالیت PKM2 در پاسخ به میزان ROS بالا نقش کلیدی در حفظ سلول‌ها از آسیب دارد. هم‌چنین محققان دریافتند که کاهش فعالیت PKM2 موجب می‌شود که سلول‌های سرطانی با بازسازی گلوتاتیون، یک مولکول خنثی کننده ROS، زنده بمانند.
آزمایش به گونه‌ای طراحی شد که سلول‌هایی با جهش اکسیداتیو PKM2 طراحی شده و به موش‌ها تزریق کرده و رشد آن‌ها را بررسی کردند. سلول‌های با فرم جهش‌یافته، تومورهای کوچک‌تر از همتایان نوع وحشی داشتند.

یافته‌های این پژوهش نشان می‌دهد که محققان ممکن است یک روز بتوانند PKM2 را فعال کنند تا سلول‌های سرطانی بیشتر به درمان‌های سرکوب کننده مانند شیمی‌درمانی و رادیوتراپی آسیب پذیر باشند.
هم‌چنین پرسش مهم این است که آیا می‌توان از مکانیزم‌هایی استفاده کرد که بتواند PKM2 را فعال کند؟ اگر بتوان PKM2 را فعال کرد، آیا می‌توان به عنوان درمان اصلی بیماری سرطان کاربرد داشته باشد؟

منابع:

Alexander, B.M., Wang, X.Z., Niemierko, A., Weaver, D.T., Mak, R.H., Roof, K.S., Fidias, P., Wain, J. and Choi, N.C., 2012. DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology* Biology* Physics83(1), pp.164-171.

Zhao, C., Tang, Z., Chung, A.C.K., Wang, H. and Cai, Z., 2019. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicology and environmental safety170, pp.495-501.