نوشته شده در

بیومارکرهای استرس اکسیداتیو

بیومارکر چیست ؟ ( قسمت اول )

بیومارکرهای سرطان ( قسمت دوم )

 

استرس اکسیداتیو، قسمت سمی اکسیژن و متابولیسم را نشان می‌دهد. استرس اکسیداتیو به عنوان عدم تعادل بین اکسیدان‌ها و آنتی‌اکسیدان‌ها به نفع اکسیدان‌ها شناخته شده که منجر به اختلال در سیگنالینگ مجدد، کنترل چرخه سلولی و آسیب مولکولی می‌شود.

بیومارکرهای استرس اکسیداتیو به سه دسته اصلی تقسیم می‌شوند:
– گونه‌های فعال اکسیژن ROS
– DNA / RNA، چربی‌ها و پروتئین‌هایی که توسط اکسیداسیون آسیب دیده‌اند
– آنتی‌اکسیدان‌ها

درباره این سه گروه این توضیح را باید افزود که:
– ROS نشان‌دهنده عواملي هستند كه استرس‌اكسيداتيو را تحريك مي كنند و باعث آسیب به اجزاي سلول می‌شوند.
– آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، آسیب‌های ناشی از اکسیداسیون را نشان می‌دهد
– آنتی‌اکسیدان‌ها سیستم‌های مبارزه با استرس اکسیداتیو را نشان می‌دهند

• گونه فعال اکسیژن ROS

گونه فعال اکسیژن، گونه‌های شیمیایی واکنشی هستند که حاوی اکسیژن فعال می‌باشند. آن‌ها عبارتند از پراکسید، سوپراکسید، هیدروکسیل رادیکال، اکسیژن مجزا و آلفا اکسیژن.
با توجه به ماهیت گذار آن‌ها، به راحتی در سلول‌های زنده با استفاده از تست‌های رنگ‌سنجی، مانند DCFDA، اندازه‌گیری می‌شوند. این بیومارکرها قابل اندازه‌گیری در خون، پلاسما، بافت و ادرار هستند.

• آسیب DNA / RNA، پراکسیداسیون لیپید، و اکسیداسیون / نیترات پروتئین

استرس اکسیداتیو را می‌توان به طور غیرمستقیم با اندازه‌گیری سطوح آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، به جای اندازه‌گیری مستقیم گونه‌های فعال اکسیژن، اندازه‌گیری کرد. بیومارکرهای استرس اکسیداتیو پایدارتر از انواع اکسیژن فعال هستند.

آسیب DNA / RNA

انواع مختلفی از آسیب DNA / RNA وجود دارد که می‌تواند به عنوان بیومارکرهای استرس اکسیداتیو اندازه‌گیری شود.  8-hydroxydeoxyguanosine احتمالا به عنوان یکی از رایج ترین بیومارکرهای آسیب DNA برای استرس اکسیداتیو است. تست‌های مکان‌های apurinic / apyrimidinic و آزمون‌های آسیب ناشی از آلدهید می‌تواند به عنوان اندازه‌گیری‌های مستقیم از آسیب DNA استفاده شود که به طور بالقوه مرتبط با استرس اکسیداتیو است.

پراکسیداسیون لیپید

مالون‌دی‌آلدئید MDA یکی از معمول‌ترین شاخص‌های لیپیدی استرس اکسیداتیو است. این ماده از طریق پراکسیداسیون اسیدهای چرب غیراشباع تشکیل شده است و معمولا با استفاده از آزمون TBARS اندازه‌گیری می‌شود. تست TBARS به طور کامل برای MDA خاص نیست، همانطور که سایر آلدهید‌ها نیز سیگنال مشابهی را با این تست تولید می‌کنند، با این حال، تست TBARS عموما راحت‌تر از استفاده از HPLC برای اندازه گیری MDA است. آزمون‌های ELISA رقابتی برای MDA نیز در دسترس هستند.
دیگر بیومارکرهای پراکسیداسیون چربی شامل 4-HNA، 8-ایزوپروستان، هیدروپراکسید لیپیدها و LDL اکسید شده است.

اکسیداسیون / نیترات پروتئین

آسیب اکسیداتیو به پروتئین‌ها می‌تواند به شکل کربن لیپتین پروتئین و نیتراسیون پروتئین (3-نیتروتیروزین) باشد. گونه‌های فعال اکسیژن هم‌چنین می‌توانند تولید محصولات پیشرفته گلیکوزیله AGE و پروتئین‌های AOPP را ایجاد کنند. همه این بیومارکرها را می‌توان با روش‌های استاندارد اندازه‌گیری کرد.

• آنتی‌اکسیدان‌ها

آنزیم‌های آنتی‌اکسیدانی و دیگر مولکول‌های ROS، باعث آسیب اکسیداتیو می شوند. سه نوع آنتی‌اکسیدان به عنوان بیومارکر استرس اکسیداتیو وجود دارد: مولکول‌های کوچک، آنزیم‌ها و پروتئین‌ها (مانند آلبومین).
برای اندازه گیری ظرفیت کل‌آنتی اکسیدانی نمونه، از جمله مولکول‌کوچک و ظرفیت آنتی‌اکسیدانی پروتئین، تعدادی از تست‌ها وجود دارد. یکی از رایج‌ترین تست‌های کلسترول آنتی‌اکسیدانی، تست آنتی‌اکسیدانیTEAC است. تست آنتی‌اکسیدانی رادیکال اکسیژن ORAC یکی دیگر از آزمون‌های معمول استرس اکسیداتیو است که ظرفیت آنتی‌اکسیدان را با اندازه‌گیری توانایی آنتی‌اکسیدان‌ها برای کاهش رنگ فلورسنت توسط ROS اندازه‌گیری می‌کند.
فعالیت آنتی‌اکسیدانی نیز می‌تواند در سطح آنالیت‌های خاص اندازه‌گیری شود. به عنوان مثال با نگاه کردن به سطوح نسبی GSH و GSSG ، سطح آنالیت اندازه‌گیری می‌شود. گلوتاتیون احیا GSH به عنوان مولکولی فراوان در میان آنتی‌اکسیدان‌های درون سلولی در نظر گرفته می‌شود که GSSG را در فرم اکسید شده تشکیل می‌دهد. این واکنش توسط آنزیم گلوتاتیون ردوکتاز فعال می‌شود.
در غیر این صورت، سطح فعالیت آنزیم‌های آنتی‌اکسیدانی مانند GST و سوپراکسید‌دیسموتاز می‌تواند در رابطه با سطوح استرس اکسیداتیو اندازه‌گیری شود.

 

منابع:

Valavanidis, A., Vlachogianni, T. and Fiotakis, C., 2009. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C27(2), pp.120-139.

Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P., 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical chemistry43(7), pp.1209-1214.

Lykkesfeldt, J., 2007. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica chimica acta380(1-2), pp.50-58.

نوشته شده در

استرس اکسیداتیو در وقفه تنفسی

استرس اکسیداتیو مانع از وقفه تنفسی در خواب می‌شود؟

محققان می‌گویند ، وقفه تنفسی خواب ممکن است با افزایش بار اکسیداتیو همراه باشد.

این اطلاعات از آنجا که OSAS سندرم وقفه تنفسی  درخواب با عوارض قابل توجهی همراه است که شامل عوارض قلبی و عروقی نیز می‌شود ، مهم است ، بنابراین افزایش استرس اکسیداتیو ممکن است توضیحی مناسب برای رابطه بین OSAS و عوارض قلبی عروقی باشد.

آنها دریافتند که تغییرات یک شبه در کاهش گلوتاتیون و نسبت گلوتاتیون احیا (GSH) به گلوتاتیون اکسیده شده (GSH: GSSG) در بیماران مبتلا به OSAS شدید با افراد دارای اختلال خواب تفاوت معنی داری دارد.

این یافته ها می‌گوید: “یافته‌های ما نشان می‌دهد كه بیماران OSAS ، افزایش سطح GSH خود را در طی شب نسبت به گروه كنترل نشان داده‌اند.” “این ممکن است در دوره طبیعی OSAS از آنجا که پیشنهاد شده است که غلظت بالای GSH خون با طول عمر طولانی در حیوانات و انسان‌ها ارتباط دارد ، مهم باشد.”

18 بیمار مبتلا به OSAS شدید ، که به عنوان شاخص وقفه تنفسی (AHI)  بالای 30 سال تعریف شده بودند ، هیچ درمان قبلی برای OSAS دریافت نکرده بودند و عاری از عوارض جانبی شناخته شده برای افزایش استرس اکسیداتیو بودند.

بیماران مبتلا به OSAS و 13 فرد مبتلا به خروپف اولیه اما AHI زیر 5 سنجش شده با اسپیرومتری ، اکوکاردیوگرافی و مطالعه کامل پلی‌مونوگرافی قرار گرفتند. قبل و صبح روز بعد از پلی‌مونوگرافی ، نمونه خون برای ارزیابی نشانگرهای استرس اکسیداتیو جمع آوری شد.

این‌ها شامل نشانگرهای پراکسیداسیون لیپیدها و مواد واکنش پذیر اسید تیوباربیتوریک [TBARS] ، اکسیداسیون پروتئین (سطح کربونیل) و پراکسیداسیون  GSH نسبت GSSG به عنوان معیار سمیت سلولی ، تولید پراکسید اکسیژن (کاتالاز) و سوپر اکسید دیسموتاز مس و روی و ظرفیت آنتی اکسیدانی کل هستند.

شرکت کنندگان با و بدون OSAS قبل از پلی‌مونوگرافی سطح مشابهی از نشانگرهای استرس اکسیداتیو ارزیابی شده داشتند. اما در طول شب ، سطح GSH به طور متوسط ​​15٪ در بیماران مبتلا به OSAS کاهش یافته و به طور متوسط ​​63٪ در افراد فاقد OSAS افزایش یافته است. تغییر مشابهی برای نسبت GSH: GSSG مشاهده شد. این اختلافات هر دو معنی دار بود.

اما در تغییر یک شبه در سایر نشانگرهای استرس اکسیداتیو بین دو گروه تفاوت وجود نداشت. محققان خاطرنشان كردند كه تغييرات سطح نشانگرهاي زيستي با شاخص AHI ، برانگيختگي و عدم اشباع ارتباطي ندارد.

آنها گفتند: “مطالعه حاضر شواهدی را ارائه می‌دهد که نشان می‌دهد استرس اکسیداتیو یک شبه در بیماران OSAS حداقل در مسیر GSH / GSSG افزایش می‌یابد.”

 

منابع:

Gupta, V., Mo, L., Modi, R., Munnur, K., Nerlekar, N., Cameron, J., Seneviratne, S., Joosten, S., Hamilton, G. and Wong, D., 2018. Apnoea–Hypopnoea Index is a Better Predictor than Measures of Hypoxemic Burden for Significant Coronary Artery Plaque Burden in Obstructive Sleep Apnoea. Heart, Lung and Circulation27, p.S217.

 

Tang, T., Huang, Q., Liu, J., Zhou, X., Du, J., Wu, H. and Li, Z., 2019. Oxidative stress does not contribute to the release of proinflammatory cytokines through activating the Nod-like receptor protein 3 inflammasome in patients with obstructive sleep apnoea. Sleep and Breathing23(2), pp.535-542.

نوشته شده در

درمان فلجی با ژل‌های ترمیم کننده

هنگامی که یک عصب در سیستم عصبی محیطی پاره یا قطع می‌شود، بسته به نوع آسیب ممکن است به کلی از کار بیفتد و یا زمان زیادی صرف شود تا این آسیب ترمیم گردد. با توجه به محل این آسیب، ممکن است بخشی از بدن بیمار از بین برود و یا برای سال‌ها یا حتی بقیه عمر منجر به فلجی گردد. با این حال، به تازگی دانشمندان ادعا می‌کنند یک نوع ژل و ایمپلنتی را ایجاد کرده‌اند که می‌تواند به بهبود اعصاب آسیب دیده کمک کند.

این ایمپلنت یک لوله زیست تخریب پذیر بسیار کوچک و قابل انعطاف است که در اطراف دو انتهای آسیب دیده عصب قرار می‌گیرد و منجر می‌شود تا این دو انتها در راستای یکدیگر قرار گرفته و ثابت گردند، بعلاوه سطح داخلی این ایمپلنت با ژل خاصی پوشیده شده است که ژل هدایت کننده ترمیم (Guiding Regeneration Gel) نامیده می‌شود این ژل منجر به رشد فیبرهای عصبی جدید می‌گردد و دارای سه ترکیب اصلی زیر می‌باشد:

  • آنتی اکسیدانت‌ها، که به جلوگیری از التهاب کمک می‌کنند.
  • پپتیدهای سنتتیک لامینین (ترکیبات آمینو اسیدی)، که نوعی مسیر هدایت کننده برای رشد فیبر‌های عصبی را فراهم می‌کند تا فاصله بین دو انتهای عصب آسیب دیده ترمیم شود.
  • اسید هیالورونیک، که معمولا در جنین انسان یافت می‌شود، مانع از خشکی بافت می‌شود.

در حال حاضر سیستم ایمپلنت-ژل با موفقیت در حیوانات آزمایشگاهی آزمایش شده است و انتظار می‌رود تا چند سال آینده به صورت بالینی بر روی انسان نیز استفاده گردد. همچنین این ژل می‌تواند در زمینه سلول درمانی به عنوان وسیله‌ای جهت حفظ سلول‌ها برای پیوند استفاده شود.

 

منبع:

American Friends of Tel Aviv University. “Reversing paralysis with a restorative gel.” ScienceDaily.  (accessed July 6, 2017).

 

نوشته شده در

آنتی‌اکسیدان قهوه، موثرتر از ویتامین C

بر اساس مطالعه انجام شده توسط محققان دانشگاه گرانادا، دانه‌های قهوه دارای فعالیت آنتی‌اکسیدانی 500 برابر بیشتر نسبت به ویتامین C هستند و به عنوان آنتی‌بیوتیک و ضد میکروبی قوی عمل می‌کنند. دانه‌های قهوه به عنوان آنتی‌اکسیدان قدرتمند و تقویت‌کننده ایمنی شناخته شده است.
تحقیقات جدید نشان داد که فلفل و ترکیبات فنلی دارای خواص آنتی‌اکسیدانی و ضد میکروبی بسیار زیاد هستند. اما قهوه 500 برابر قدرت آنتی اکسیدانی بیشتری نسبت به ویتامین C دارد. دانه‌های قهوه هم‌چنین حاوی مقادیر بالایی از ملانوئیدین‌ها هستند که به قهوه رنگ قهوه ای می‌دهند. ملانوئیدین‌ها ضدمیکروب قوی هستند. خواص بیولوژیکی این ملانوئیدین‌ها می‌تواند برای طیف وسیعی از کاربردهای علمی مانند جلوگیری از پاتوژن‌های مضر در محصولات غذایی استفاده شود.
استخراج آنتی‌اکسیدان قهوه و کاربرد آن در صنعت غذایی می‌تواند در کاهش آسیب‌های حاصل از استرس اکسیداتیو مفید باشد که در این راستا ملانوئیدین به عنوان ضدمیکروب قوی نقش اساسی را ایفا می‌کند. هم‌چنین قهوه دارای کافئین بوده که در رفع خستگی بسیار موثر است. خستگی آدرنال به مجموعه‌ای از نشانه‌ها گفته می‌شود که در اثر استرس اکسیداتیو به وجود آمده و در دراز مدت سلامت فرد را تهدید می‌کند.

هورمون‌های تولید شده توسط غده فوق کلیه به ویژه هورمون استرس کورتیزول، نقش مهمی در تنظیم سیستم ایمنی بدن ایفا می‌کند. اگر سطوح کورتیزول خیلی پایین یا زیاد باشد، می‌تواند به عفونت ، التهاب مزمن، بیماری‌های خود ایمنی یا آلرژی‌ها منجر شود.

افرادی که از خستگی بیش از حد آدرنال رنج می‌برند ممکن است نیاز به قهوه داشته باشند، مطالعات نشان می‌دهند مصرف قهوه و کافئین، غده فوق کلیه را تحت تأثیر قرار داده و باعث رفع خستگی شده و در دراز مدت می‌تواند بر جلوگیری از بروز بیماری‌های حاصل از استرس اکسیداتیو تاثیرگذار باشد.

منابع:

Svilaas, A., Sakhi, A.K., Andersen, L.F., Svilaas, T., Ström, E.C., Jacobs, D.R., Ose, L. and Blomhoff, R., 2004. Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. The Journal of nutrition, 134(3), pp.562-567.

Nicoli, M.C., Anese, M., Manzocco, L. and Lerici, C.R., 1997. Antioxidant properties of coffee brews in relation to the roasting degree. LWT-Food science and Technology30(3), pp.292-297.

Borrelli, R.C., Visconti, A., Mennella, C., Anese, M. and Fogliano, V., 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry50(22), pp.6527-6533.

نوشته شده در

نیتریک‌اکساید استنشاقی در پیوند قلب

نیتریک‌اکساید استنشاقی که به بیماران مبتلا به حمله قلبی داده می‌شود ممکن است دوره نقاهت را کمتر کند. با توجه به نتایجی که در ESC Congress 2014 ارائه شد، نیتریک‌اکساید استنشاقی که به بیماران مبتلا به حمله قلبی قبل و در طی درمان با مداخله عروق کرونری پوست (PCI) تحویل داده شد، میزان آسیب دیده بافت را کاهش داد، اما ممکن است دوره نقاهت بهبود یابد.

نیتریک‌اکساید استنشاقی، یک گشادکننده‌ی عروق ریوی در بیماران مبتلا به فشارخون ریوی ناشی از نارسایی قلبی است و ممکن است بیماران با واکسن انقباض ریوی برگشت‌پذیر را شناسایی کنند که در آنها عوامل مانند نیتروپروسید باعث فشارخون سیستمی می‌شوند. نیتریک‌اکساید استنشاقی موجب افزایش فشار پرشده بطن چپ توسط مکانیزم ناشناخته می‌شود.

طبق تحقیقات  Stefan Janssens، MD، PhD از بیمارستان دانشگاه Gasthuisberg of Leuven در بلژیک، آزمایش NOMI (نیتریک‌اکساید برای استنشاق برای کاهش آسیب مجدد مجدد در انفارکتوس میوکارد حاد سکته قلبی) بر اساس این فرضیه بود که استنشاق نیتریک‌اکساید می‌تواند آسیب به بافت قلب را در زمان رپرفیوژن (بازگرداندن جریان خون هنگامی که یک مجرای مسدود شده باز می شود) کاهش دهد. این مطالعه نشان می‌دهد که بین 48-72 ساعت پس از عمل هیچ تفاوتی در تعیین‌ نارسایی قلب و مرگ بین بیماران دریافت شده نیتریک‌اکساید و کسانی که در معرض اکسید قرار نگرفتند وجود ندارد.

با این حال، یک تجزیه و تحلیل فرعی از پیش تعیین شده بیماران مبتلا به نیتروگلیسرین intracoronary یا وریدی (IC / IV NTG) که تجویز آن به اختیارات محققان محلی محول شده بود، نشان دهنده تعامل قابل توجهی با استفاده از نیتریک‌اکساید استنشاقی، در میان افراد مبتلا، با انفارکت های مؤثرتری نسبت به بیمارانی که قبلا NTG دریافت کرده بودند همراه بود. در مجموع جمعیت، MRI در 48-72 ساعت نشان دهنده روند بهبود عملکرد با اکسیدنیتروژن بود که در 4 ماه قابل توجه بود. بهبود عملکرد به طور معنی داری با نیتریک‌اکساید در گروه زیر گروه مبتلایان به NTG بهتر بود.

نیتریک‌اکساید عوارض جانبی عمده ای را ایجاد نمی‌کند و برای یک نقطه ثانویه کامپوزیت نقطه پایانی مرگ، ایسکمی مکرر، سکته مغزی یا مجدد آن، نسبت به میزان رویداد کمتر همراه بود.

محقق NOMI اولین است که برای بررسی تاثیر استنشاق اکسید نیتریک بر آسیب های مجدد میوكارد، اندازه انفاركت و بهبودی قلب، گفت: “در حالی که این مقدار کاهش میزان نارسایی قلب را در جمعیت کلی مطالعه نشان نداد، یافته‌های این تحقیق نشان می‌دهد که استنشاق نیتریک‌اکساید تحقیقات بیشتری را در بیماران STEMI نیاز دارد.”

افزایش فشار دهلیزی چپ در نارسایی مزمن قلبی با افزایش ضروری در فشار خون ریه همراه است تا یک گرمای فشار برای جریان رو به جلو در گردش خون ریخته شود. افزایش بیشتر فشار خون شریانی ریه از عوارض واکسن ریه است. حضور پرفشاری خون ریوی برای بیماران تحت پیوند قلب اهمیت دارد، زیرا عامل خطر برای مرگ زودرس در دوره پس از عمل است. بطن راست قلب اهداکننده آسیب ایسکمیک در طول روش‌های برداشت و لانه گزینی را ایجاد می‌کند، و این باعث می‌شود که بعلت اختلال حاد و شکست در مواجهه با افزایش پس از بارگذاری آسیب‌پذیر باشد. به این ترتیب، بیماران با افزایش پایدار مقاومت به عروق ریه به طور کلی به عنوان کاندیدای پیوند قلب به علت میزان مرگ و میر اولیه بسیار بالا پس از عمل حذف می‌شوند.

منابع:

 

Semigran, M.J., Cockrill, B.A., Kacmarek, R., Thompson, B.T., Zapol, W.M., Dec, G.W. and Fifer, M.A., 1994. Hemodynamic effects of inhaled nitric oxide in heart failure. Journal of the American College of Cardiology, 24(4), pp.982-988

Blanch, L., Joseph, D., Fernandez, R., Mas, A., Martinez, M., Valles, J., Diaz, E., Baigorri, F. and Artigas, A., 1997. Hemodynamic and gas exchange responses to inhalation of nitric oxide in patients with the acute respiratory distress syndrome and in hypoxemic patients with chronic obstructive pulmonary disease. Intensive care medicine, 23(1), pp.51-57.

نوشته شده در

استرس اکسیداتیو، کاهش گلیکوژن و طول عمر

گلیکوژن با فرآیندهای متنوعی مرتبط است که جدیدترین آنها نقش آن در پیشرفت بیماری و پیری است. مطالعات انجام‌شده در Caenorhabditis elegans نشان داده‌است که رژیم‌های غذایی قندی بالا واسطه تجمع گلیکوژن، منجربه دو اثر متضاد می‌شوند. اولین مقاومت در برابر اکسیدان‌ها است که به سلول‌ها آسیب می‌رسانند و روند پیری را تسریع می‌کنند. برعکس، اثر دوم کاهش طول عمر است. از نظر مکانیکی، گلیکوژن شکل فعال آنتی‌اکسیدان گلوتاتیون را کاهش داده و بر فعالیت آنزیم AMPK تأثیر می‌گذارد. AMPK پروتئین کیناز فعال شده با ‘AMP 5 و یک آنزیم اصلی در تنظیم هموستاز انرژی است. به همین ترتیب، مسیرهای متابولیک متعددی را هماهنگ می‌کند و تقاضای انرژی را با عرضه مواد مغذی متعادل می‌کند. در C. elegans ، تخریب ذخیره‌های گلیکوژن باعث افزایش طول عمر ارگانیسم و ​​از بین‌بردن اثرات سمیت گلوکز می‌شود.

در یک روش درمانی، کاهش گلیکوژن با افزایش سطح سلولی اکسیدان‌ها ممکن است در بیماران مبتلا به قند خون و افراد مبتلا به بیماری‌های مربوط به ذخیره‌سازی گلیکوژن اثرات مفیدی را ایجاد کند. بنابراین، گلیکوژن چیزی بیش از یک ماکروملکول ذخیره‌سازی مواد مغذی است. این یک تنظیم‌کننده اصلی سوخت‌و ساز و پیری است. جالب اینجاست که از بین رفتن گلیکوژن سنتاز بر طول عمر تأثیر نمی گذارد و این نشان می دهد که ذخیره گلیکوژن برای محافظت در برابر مصرف بیش از حد گلوکز لازم نیست.

غلظت بحرانی گونه‌های اکسیژن فعال (ROS) می‌تواند مفید باشد؛ به‌ویژه در مورد ROS بدون قند، مانند ROS ناشی از ورزش. ورزش آنزیم‌هایی را که با تأثیر استرس اکسیداتیو مقابله می‌کنند تحریک می‌کند، در حالی‌که مکمل آنتی اکسیدان‌ها می‌توانند این اثر را تضعیف کنند. در عوض، ROS ناشی از قند خون، آنزیم های مسئول محافظت در برابر آسیب اکسیداتیو ، یعنی SOD و گلوتاتیون پراکسیداز (GPx) را تنظیم می کند. این اثرات به وضوح بین زمینه ای که ROS در ظرفیت آنها برای ایجاد سود یا سمیت برای حیوان ایجاد می شود ، تمایز قائل هستند.

مطالعات نشان داده شده در C. elegans ثابت می‌کند که چگونه قرار گرفتن در معرض سطح پایین اکسیدان طول عمر را افزایش می‌دهد، درحالی‌که افزایش ROS داخل سلولی اثر ضدپیری ایجاد می‌کند. به طور مشابه، تنظیم ROS (که ناشی از اختلال در متابولیسم گلوکز است) همچنین پیری را کاهش می‌دهد. اثر مخالف -یعنی قرار گرفتن در معرض آنتی‌اکسیدان‌ها- نتوانست طول عمر را افزایش دهد. این مشاهدات نشان می‌دهد که سطح پایین ROS برای حیوانات مفید است و طول عمر را از طریق اثرات ضدپیری افزایش می‌دهد.

در کرم‌ها، رژیم‌های غذایی گلوکز بالا، همراه با عدم وجود ژن‌های واکنش استرس اکسیداتیو،  ROS را افزایش می‌دهند. علاوه براین، قرار گرفتن در معرض طولانی مدت با قند باعث کاهش سطح آنزیم آنتی اکسیدان SOD-3، یکی از مهمترین آنزیم های سم‌زدایی ROS می‌شود. این نشان می‌دهد که اثر گلوکز زیاد به جای مصرف گلوکز منجر به استرس اکسیداتیو فوری نمی‌شود و در نتیجه باعث کاهش استرس اولیه می‌شود. این همان چیزی است که ROS ناشی از فشارخون را از اشکال دیگرROS (به عنوان مثال ناشی از ورزش) متمایز می‌کند.

علی‌رغم کاهش SOD-3، نماتدها در برابر اکسیدان مقاوم‌تر هستند. این اثر غیرهماهنگ را می‌توان با مکانیسم مستقل از مسیر استرس اکسیداتیو توضیح داد، به جای اینکه توسط شار متابولیکی تغییر یافته تعیین شود. مهار گلیسیرالدهید-3-فسفات دهیدروژناز (GAPDH) ، که منجر به انحراف به مسیر پنتافسفات (PPP) برای تولید نیکوتین آمید آدنین دینوکلئوتید فسفات (NADPH .(NADPH برای کاهش فرم اکسیده شده گلوتاتیون (GSH) به شکل GSH کاهش یافته استفاده می‌شود. GSH حاصل ROS را خنثی می‌کند. این توانایی بیشتر برای محافظت در برابر اثر مضر اکسیدان‌ها در رژیم غذایی قندی، به طول عمر طولانی‌تر تبدیل نمی‌شود. در پاسخ به یک رژیم غذایی غنی از قند، استرس اکسیداتیو از بین می‌رود.

منابع:

Ristow, M. and Zarse, K., 2010. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Experimental gerontology45(6), pp.410-418.

medical lif sciences,

 

نوشته شده در

رادیکال‌های آزاد و پراکسیداسیون لیپیدی (قسمت اول)

هایپراکسید‌های لیپیدی واسطه‌های غیر رادیکالی هستند که از اسید‌های چرب غیر اشباع، فسفولیپید‌ها، گلیکولیپید‌ها، استرهای کلسترول و کلسترول حاصل می‌شوند. تولید این واسطه‌ها در واکنش‌های آنزیمی و غیرآنزیمی گونه‌های شیمیایی که از آن‌ها تحت عنوان گونه‌های فعال اکسیژن (Reactive Oxygen Species) نام‌برده می‌شود، اتفاق می‌افتد. این گونه‌های شیمیایی با تخریبی که در بافت‌های مختلف ایجاد می‌کنند، باعث بسیاری از تغییرات سمی در سیستم‌های بیولوژیک هستند. گونه‌های فعال اکسیژن به همراه سایر رادیکال‌های هیدروکسیل، لیپید اکسیل یا رادیکال‌های پروکسیل، اکسیژن منفرد و پراکسی‌نیتریت حاصل از نیتروژن اکساید تحت عنوان رادیکال‌های آزاد نامیده می‌شوند. این  گونه‌های شیمیایی ماهیت غیرمستقل داشته و یک یا چند الکترون منفرد در اوربیتال اتمی یا مولکولی دارند. آن‌ها به دو روش گرفتن یا دادن الکترون توسط یک غیررادیکال ایجاد می‌شوند و می‌توانند طی واکنشی به نام Homolytic fission یا همکافت ایجاد شوند. طی این واکنش یک پیوند کووالانسی می‌شکند و هر یک از اتم‌های طرفین پیوند یک الکترون منفرد را تصاحب می‌کنند. واکنش همکافت فعال‌ترین گونه‌های فعال، یعنی رادیکال هیدروکسیل OH را می‌سازد. طی واکنش سوختن نیز در دمای بالا با شکستن پیوند‌های C-C، C-H و  C-O یک پروسه رادیکال آزاد اتفاق می‌افتد. برعکس این مکانیسم تحت عنوان Heterolytic Fission‌ یا ناهمکافت نام دارد که طی آن پس از شکستن پیوند کووالانسی، یکی از اتم‌ها هر دو الکترون پیوندی را گرفته و دراای بار منفی می‌شود و در مقابل نیز اتمی با یک اوربیتال خالی دارای بار مثبت می‌شود.

نوشته شده در

مسیر ژنتیکی پروسه پیری

واکنش شیمیایی که منجر به تولید زنگ از آهن می‌شود نقش مشابهی در بدن دارد. تراکم استرس اکسیداتیو در سلول‌های سالم میزبان بیماری‌های مختلف در انسان مانند آلزایمر ، بیماری‌های قلبی ، سرطان و روند پیری می‌باشد.
مطالعات جدید مسیرهای تاثیر بیان ژن بر استرس اکسیداتیو را مشخص میکند. این مطالعات می‌توانند پایه بسیار مهمی در جهت تشخیص عامل استرس‌زا در شرایط پزشکی بوده و می‌تواند زمینه دستکاری ژنتیکی و تولید داروهای جدید را فراهم آورد.
به گفته ریچارد اندرسون از دانشکده پزشکی و بهداشت عمومی و نویسنده ارشد گزارش در مجله nature بسیاری از ژن‌های این مسیر کنترلی در بیماری‌های انسانی مهم هستند و این مسیر بسیار جدیدی در کنترل سنتز آنزیم‌های کلیدی درگیر در بسیاری از بیماری‌هاست.
استرس اکسیداتیو زمانی اتفاق می‌افتد که توانایی بدن برای خنثی‌سازی مواد شیمیایی بسیار سمی که به عنوان رادیکال‌های آزاد شناخته می‌شوند، بیش از حد تحمیل شده است. رادیکال‌های آزاد میتوانند به DNA و سایر مولکول‌ها که برای سلامتی سلول ضروری هستند، آسیب برساند.
آنزیم کلیدی در مسیر جدید که Star-PAP نام‌گذاری شده است، به عنوان بخشی از مجموعه کنترلی در مسیر بیان messenger RNA عمل میکند. mRNAها مولکول‌های مهمی هستند که اطلاعات ژنتیکی را از هسته سلول به سیتوپلاسم که پروتئین در انجا ساخته میشوند منتقل می‌کنند. این آنزیم مسئول اضافه کردن دنباله بیوشیمیایی به mRNA است که این دنباله برای پایداری مولکول‌های mRNA ضروری بوده، می‌توانند انها را خاموش و روشن کنند و در نتیجه تولید برخی آنزیم‌های کلیدی و پروتئین‌های موجود در سلول را کنترل می‌کنند. این دنباله‌های ژنتیکی همانند یک تمبر پستی عمل می‌کنند که مسیر هدایت mRNA از هسته سلولی به سیتوپلاسم را مشخص کرده و در سیتوپلاسم به پروتئین ترجمه می‌شود.
آنزیم STAR-PAP ترجمه تعداد محدودی از پروتئین ها و آنزیم ها در سلول را تنظیم می‌کند اما می‌تواند تاثیر بسیاری در استرس اکسیداتیو داشته باشد. یافته‌ها نشان می‌دهد مسیر جدید به عنوان یک کلید روشن-خاموش برای پروتئین‌هایی مانند Heme oxygenase-1 عمل کرده که سلول را از آسیب‌های استرس اکسیداتیو محافظت می‌کند.
این آنزیم یک کلید کنترلی اصلی در استرس اکسیداتیو سلول‌ها می‌باشد. به نظر می‌رسد بسیاری از ژن‌های درگیر در استرس اکسیداتیو هدف مستقیم مسیر STAR-PAP قرار می‌گیرند. . بررسی مسیر بیان ژن و آنزیم هایی که تاثیر گسترده بر روند استرس اکسیداتیو دارند از طریق دستکاری ژنتیکی میتوانند کاربردهای بالینی نیز داشته باشد.
اکسیداسیون میتواند به DNA، میتوکندری، غشای سلولی و سایر مکانیسم‌ها و ساختارهای ضروری سلول آسیب برساند که این آسیب‌ها سبب بروز مشکلاتی برای اندام های با بیشترین مصرف اکسیژن مانند قلب، ریه و مغز می شود.
داروهای جدید از طریق کنترل فعالیت آنزیم با استرس‌های اکسیداتیو مقابله می کنند. دکتر اندرسون معتقد است کشف یک مسیر ژنتیکی جدید در سلول‌ها مهم بوده اما هنوز مشخص نیست چگونه این مسیر می‌تواند بر بیماری‌های انسانی تاثیر بگذارد. ما مسیر جدیدی را در کنترل بیان ژن‌های درگیر در استرس اکسیداتیو کشف کرده‌ایم که می‌تواند نکته کلیدی در بیماری های قلبی‌، سکته و روند پیری باشد. اما هنوز عملکرد این مسیر و تاثیر آن بر شرایط کاملا مشخص نشده است.

منبع :

 

Mellman, D.L., Gonzales, M.L., Song, C., Barlow, C.A., Wang, P., Kendziorski, C. and Anderson, R.A., 2008. A PtdIns4, 5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature451(7181), p.1013.

نوشته شده در

عصاره دارچین، عامل کاهش استرس اکسیداتیو در سندرم متابولیک

مطالعه جدید محققان نشان داده است که مصرف روزانه عصاره دارچین می‌تواند سطح آنتی‌اکسیدانی بدن را افزایش و در نتیجه استرس اکسیداتیو را در ارتباط با سندرم متابولیک کاهش دهد.

سندروم متابولیک حدود 32 درصد از بزرگسالان را تحت تاثیر قرار داده و با چاقی، فشار خون بالا و کاهش سوخت و ساز بدن با سنجش گلوکز و انسولین مشخص می‌شود. سندرم  متابولیک با افزایش خطر ابتلا به دیابت نوع 2 و بیماری قلبی‌عروقی همراه است.

محققان 24 نفر از افراد مبتلا به اختلال دیابتی و تحت استرس اکسیداتیو را مورد مطالعه قرار دادند. بیماران به دو گروه تصادفی  تقسیم شدند: گروه اول با دوز روزانه 500 میلی‌گرم عصاره دارچین و گروه دوم به مدت 12 هفته با داروی Placebo تیمار شدند.در نتیجه این مطالعه، محققان دریافتند که در گروه عصاره دارچین در مقایسه با گروه Placebo ، سطح آنتی‌اکسیدانی پلاسما به طور قابل توجهی افزایش یافته است، سطوح گونه فعال مرتبط با استرس اکسیداتیو مانند مالون‌دی‌آلدئید (MDA) نیز در گروه دارچین پایین‌تر بود، اما در بیماران تیمار شده با Placebo تغییری مشاهده نشد.

این مطالعه نشان می‌دهد که ترکیبات فعال موجود در عصاره دارچین ممکن است در کاهش خطر ابتلا به این بیماری‌ها به وسیله محافظت از سلول‌ها از اکسیداسیون مضر کمک کنند. افراد مبتلا به اختلال عملکرد انسولین در معرض خطر بیشتری از بیماری‌های مزمن تهدید کننده زندگی هستند، از جمله دیابت و بیماری‌های قلبی.

مطالعات حیوانی قبلی، مصرف روزانه عصاره دارچین را به تنظیم فشار خون، هم‌چنین سطح پایین گلوکز خون، تری‌گلیسیرید، کلسترول تام و LDL کلسترول مرتبط کرده است. امروزه دارچین به عنوان یک تنظیم کننده قند خون در میان افراد دیابتی استفاده می‌شود. دارچین بدن را از آسیب های اکسیدانتی محافظت کرده و گیاه کامل دارویی برای افراد دیابتی به شمار می‌رود

منابع:

Roussel, A.M., Hininger, I., Benaraba, R., Ziegenfuss, T.N. and Anderson, R.A., 2009. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. Journal of the American College of Nutrition28(1), pp.16-21.

Qin, B., Panickar, K.S. and Anderson, R.A., 2010. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journal of diabetes science and technology4(3), pp.685-693.

Mang, B., Wolters, M., Schmitt, B., Kelb, K., Lichtinghagen, R., Stichtenoth, D.O. and Hahn, A., 2006. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. European journal of clinical investigation36(5), pp.340-344.

نوشته شده در

آنتی‌اکسیدان‌ها و گسترش سرطان ؟

طبق یک مطالعه منتشر شده در آوریل و در مجله  Science Translational Medicine، دو نوع از داروهای مورد استفاده برای درمان دیابت نوع 2 می‌تواند متاستاز تومورهای انسان را در موش‌ها گسترش دهد.  این دو نوع ترکیب حاوی مهارکننده‌های دی‌پپتیدیل پپتیداز 4 (DPP-4) و  بازدارنده آلفالیپوئیک‌اسید (ALA) است که باعث سرعت بخشیدن به متاستاز ناشی از فعال شدن یک مسیر پاسخ آنتی‌اکسیدانی می‌شود. در این مسیر پروتئین‌های متاستاز فعال می‌شوند. نتایج این تیم نشان‌دهنده ارتباط بین آنتی‌اکسیدان‌ها و گسترش سرطان است.

مهم‌ترین یافته در این زمینه بیان می‌کند که متاستاز، سرطان‌های موجود را با فعال شدن پاسخ آنتی‌اکسیدانی ترویج می‌دهد.

زاکاری شافر، زیست‌شناس سلولی از دانشگاه نوتردام، گفت: “این اطلاعات محرمانه هستند و نتیجه تحقیق با مطالعات دیگر مطابقت دارد که فعالیت آنتی‌اکسیدانی می‌تواند برای متاستاز سلول‌های سرطانی مفید باشد.”

ژنگ و همکاران برای اولین بار از داروهای ضد دیابتی معمول استفاده کردند، از جمله متفورمین و آنالوگ‌های انسولین وتوانایی آن‌ها را برای افزایش تکثیر یا افزایش مهاجرت سلول‌های سرطانی در آزمایشگاه بررسی کردند. محققان نشان دادند که مهارکننده‌های DPP-4  از مهاجرت و تهاجم سلول‌ها جلوگیری می‌کند اما بر روی تکثیر سلول‌های سرطانی ملانوم، کبد، کولون، پستان، ریه و تخمدان تاثیرگذار نیست.

در موش‌ها، این داروها موجب انتشار بیشتر سلول‌های تومور کبدی و کولون و همچنین افزایش میکرومتاستاز در مقایسه با حیوانات با همان تومورهایی بود که هیچ داروهای ضددردی دریافت نکردند. آزمایش‌های بیشتر در آزمایشگاه نشان داد که اثرات مهار‌کننده DPP-4  بر روی انتقال تومور سلول با توانایی ترکیبات برای کاهش استرس‌اکسیداتیو سلول‌های سرطانی همراه است: داروها منجر به کاهش گونه‌های فعال اکسیژن (ROS) ، افزایش گلوتاتیون و افزایش آنتی‌اکسیدان آندوژنز می‌شود. محققان نشان می‌دهند که مهارکننده سنتز گلوتاتیون در سلول‌های سرطانی علاوه بر مهارکردن DPP-4 مانع از انتقال سلول‌های تومور می‌شود.

برای درک این‌که چگونه این ترکیبات بر روی مسیرهای استرس اکسیداتیو سلولی اثر می‌گذارند، محققان فاکتور رونویسی (NRF2) را که از طریق بازدارنده DPP-4 فعال می‌شوند، هم در کشت سلولی و هم در موش بررسی کردند.. پنج مهار‌کننده متفاوت DPP-4  همه در NRF2 فعال شده‌اند. هنگامی که محققان NRF2 را در پروتئین بازدارنده DPP-4 و سلول‌های سرطانی کبد از بین بردند، سلول‌ها کاهش مهاجرت سلول‌های تومور و بیان پروتئین‌های مرتبط با متاستاز را نشان دادند.

محققان اثر مشابهی را در in vivo مشاهده کردند. موش‌هایی که با سلول‌های نابودکننده NRF2 تلقیح شده بودند، متاستازهای ناشی از مهارکننده DPP-4 کمتری داشتند. محققان گزارش دادند که NRF2 هم‌چنین متاستازهای مستقل از هرگونه درمان دارویی دیابت را تحت تاثیر قرار داده است. فعال‌سازی فاکتور رونویسی باعث بیان پروتئین‌های متاستاز و مهاجرت سلولی در کشت شده و فعال‌سازی فارماکولوژیک NRF2 در موش، باعث افزایش میکرومتاستاز شد.

یکی دیگر از فعال کننده NRF2 شناخته شده، با نام ALA که برای درمان نوروپاتی دیابتی استفاده می‌شود، و اثرات مشابهی را به عنوان مهارکننده DPP-4 دارد، مورد مطالعه قرار گرفت. تجزیه و تحلیل داده‌های بیان اولیه تومور و متاستاتیک، نشان داد که در نمونه‌های با متاستاتیک بیشتر، احتمال افزایش بیان NRF2 را با متاستاز گره لنفاوی مرتبط می‌کند. مطالعات قبلی نشان داده است که NRF2 توسط آنکوژن‌ها فعال می‌شود، که تومورها را قادر می‌سازد تا ROS را خنثی کنند که مانع رشد آن‌ها می‌شود. شافر اشاره کرد که آیا سایر داروها با فعالیت آنتی‌اکسیدانی با یک مکانیزم مشابه کار می‌کنند یا اینکه سلول‌های سرطانی، خود نیز از مکانیسم‌های دیگر برای حفظ آنتی‌اکسیدان استفاده می‌کنند.

گام بعدی این است که مطالعه متاستاز تومور در موش‌های دیابتی داشته باشیم، که به اندازه کافی منعکس‌کننده کاربرد بالینی فعلی داروهای ضدویروسی خواهد بود.

برگئو تأکید کرد: “آنتی اکسیدان‌ها و داروهایی که NRF2 را فعال می‌کنند باعث ایجاد سرطان نمی‌شوند.” “در عوض، آن‌ها به سلول‌های سالم کمک می‌کنند سالم بمانند و به سلول‌های سرطانی کمک می کنند تا در بدن گسترش پیدا کنند.

 

منابع:

Caglayan, A., Katlan, D.C., Tuncer, Z.S. and Yüce, K., 2019. Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. Journal of Trace Elements in Medicine and Biology52, pp.254-262.

Shrivastava, A., Aggarwal, L.M., Mishra, S.P., Khanna, H.D., Shahi, U.P. and Pradhan, S., 2019. Free radicals and antioxidants in normal versus cancerous cells—An overview.

 

نوشته شده در

گلوتاتیون در درمان سرطان

یکی از بزرگترین مشکلات در درمان فعلی سرطان این است که عوامل مؤثر در از بین بردن سلول‌های تومور ، در عین حال برای بقیه سلول‌ها و بافت‌های سالم بیمار بسیار سمی هستند.

برای حل این مشکل ، دانشگاه کشور باسک (UPV / EHU) به دنبال درمان‌های خاص‌تر و بررسی تفاوت‌های بین سلول‌های توموری و سلول‌های سالم است.

یک تیم تحقیقاتی از دانشکده پزشکی در تلاشند تا عوامل دارویی را افزایش دهند که باعث افزایش مزیت درمانی ترکیبات شیمی درمانی ، ایمنی و رادیوتراپی در معالجه بیماری‌های سرطانی می‌شود.

هدف تیم تحقیقاتی شناسایی ترکیباتی است که در مسیرهای متابولیک و فرآیندهای مختلفی بسته به اینکه آیا یک بافت بیمار یا یک بافت سالم درگیر است ، شناسایی شود. از این طریق میتوان اقدامات انتخابی را انجام داد ، افزایش حساسیت به درمان برای بافت‌های بیمار بدون آسیب رساندن به سلول‌ها یا بافت‌های سالم در همان زمان.

محققان با این هدف کلی ، مواد بیولوژیک مختلف را در تعدادی از ماژول‌های مختلف توموری مانند ملانوما ، سارکوم و سرطان روده بزرگ آزمایش کردند. از یک سو ، آن‌ها عوامل مؤثر در سطح گلوتاتیون (GSH) را مورد مطالعه قرار دادند. گلوتاتیون عنصر اصلی در فرآیندهای بیولوژیکی سلول‌ها ، سالم و توموری است. سلول‌های تومور با سطح GSH بالا از رشد و ظرفیت متاستاتیک بیشتر و حساسیت کمتری نسبت به عوامل ضد توموری برخوردار هستند. از طرف دیگر ، یکی از ویژگی‌های سلول‌های توموری این است که سطح تمایز طبیعی خود را از دست می‌دهند و به جای انجام یک عملکرد مشخص ، شروع به تکثیر و تولید تعداد بیشتری سلول‌های توموری می‌کنند. به همین دلیل است که محققان هم‌چنین از عواملی استفاده کرده‌اند که باعث ایجاد تمایز می‌شوند ، مانند رتینوئیدها.

هر دو گروه تعدیل کننده با عوامل کلاسیک مورد استفاده در درمان‌های ضد توموری همراه بوده و مزایای ناشی از آن را دیده‌اند. آن‌ها نشان داده‌اند که عامل تعدیل‌کننده سطح GSH – oxothiazolidine-carboxylate   اثر ضدتورمی در سلول‌های ضدتورم را افزایش می‌دهد و در عین حال از بافت سالم محافظت می‌کند. در این روش می‌توان مزایای درمانی را افزایش داد. با این وجود ، هنگامی که عامل تعدیل کننده سطح GSH دیگری با عوامل ضد تومور ، به عنوان مثال ، buthionine-sulphoxamide  (BSO  ترکیب شود ، محققان مشاهده کردند که تأثیر داروی استاندارد افزایش یافته است اما افزایش آسیب به بافت سالم نیز رخ داده است.

همچنین ، با هدف بازگشت سلول‌ها به حالت متفاوت‌تر ، نزدیک‌تر به رفتار سلول سالم ، این تیم تحقیقاتی در مورد استفاده از رتینوئیدها به همراه ترکیبات استاندارد تحقیق می‌کنند. پاسخ سلول‌های توموری به رتینوئیدها به میزان تمایز این سلول‌ها بستگی دارد. به طور کلی سلول‌های توموری بسیار متمایز نسبت به سلول‌های نسبتاً متفاوت نسبت به رتینوئیدها حساس هستند. این دومی ، در پاسخ به رتینوئیدها ، ممکن است مکانیسم‌های دفاعی را افزایش دهد که سطح GSH را افزایش می‌دهد و از این طریق ، ظرفیت متاستاتیک را افزایش می‌دهد.

این یک نکته جالب است ، با توجه به این‌که تا به امروز این ظرفیت متفاوت که می‌تواند رده سلولی مختلفی در یک نوع تومور مشابه داشته باشد شرح داده نشده است. آنچه محققان UPV-EHU انجام داده‌اند پیوند دادن هر دو خط مدولاسیون GSH و تمایز است. آن‌ها پیوندی بین این دو پیدا کرده اند، القای تمایز با رتینوئیدها هم‌چنین سطح GSH سلول‌های توموری را تعدیل می‌کند.

محققان در حال تجزیه و تحلیل مدل غلظت و تجویز داروهای مورد استفاده هستند ، با توجه به اینکه در مدولاسیون بیولوژیکی ، هر دو عنصر برای موفقیت در درمان اساسی هستند. غلظت ماده مشخص نیست، زیرا خیلی کم یا زیاد ممکن است اثرات متضاد یا نامطلوب ایجاد کند.

به دنبال آزمایشات آزمایشگاهی و in vivo توسط محققان آزمایشگاههای UPV / EHU ، یکی از اهداف تیم تحقیق انتقال اطلاعات به دست آمده به سیستم‌های با مدیریت راحت‌تر برای تحقیق و آزمایش‌های بالینی است.

 

منابع:

Baulies, A., Montero, J., Matías, N., Insausti, N., Terrones, O., Basañez, G., Vallejo, C., de La Rosa, L.C., Martinez, L., Robles, D. and Morales, A., 2018. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox biology, 14, pp.164-177.

Bansal, A. and Simon, M.C., 2018. Glutathione metabolism in cancer progression and treatment resistance. The Journal of cell biology217(7), pp.2291-2298.

نوشته شده در

استفاده از پروتئین های Bromodomain در درمان فیبروز کبدی

برای بیماری فیبروز کبدی پاتوفیزیولوژی‌های مختلفی بیان شده که در اثر عوامل مختلف باعث نارسایی می‌شود. از این عوامل می‌توان به بیماری‌های ویروسی، خودایمن، متابولیک و سموم اشاره نمود. در بیشتر موارد آسیب‌های حاد، با از بین رفتن عامل، عملکرد کبد دوباره به حالت نرمال برمی‌گردد ولی در بیماری‌های مزمن در نهایت به سیروز و یا نارسایی کبدی منتهی می‌شود که روند تشخیص و تخمین دقیق میزان فیبروز کبد در ارزیابی پیش آگهی بیماری می‌تواند مفید واقع شود. امروزه به دلیل گسترش جهانی این بیماری، محققان روش‌های مختلف درمانی را پیشنهاد می‌دهند که یکی از این درمان‌ها که توسط Ding و همکارانش در سال 2015 پیشنهاد داده شده، استفاده از (Bromodomain protein 4 (BRD4 که از خانواده Bromodomainها می‌باشد که نقش اساسی در بیماری های قلبی عروقی و دیابت می توانند داشته باشد. این پروتئین نقس اساسی را در بیان ژنهای پروفیبروتیک ایفا می‌کند.

برای مشخص کردن اثرات این پروتئین بر روی بیماری فیبروز کبدی، از تکنیک‌های RT-PCR، IHC، TUNEL در مدل تجربی (ایجاد شده با CCL4) و کشت سلول (رده سلولی LX-2 cells) استفاده شده که نتایج نشان می‌دهند BRD4 می‌تواند یک هدف درمانی خوب در بیماران با فیبروز کبدی باشد.

 

post-1

منبع:

Ding N, Hah N, Ruth TY, Sherman MH, Benner C, Leblanc M, He M, Liddle C, Downes M, Evans RM. BRD4 is a novel therapeutic target for liver fibrosis. Proceedings of the National Academy of Sciences. 2015 Dec 22;112(51):15713-8.