نوشته شده در دیدگاه‌تان را بنویسید

سوپراکسید دیسموتاز در تحقیقات زخم

ترمیم زخم متشکل از پروسه‌ها و واکنش‌های بسیار زیادی است. به‌صورت کلاسیک ترمیم زخم به ۴ فاز تقسیم می‌شود:

۱. فاز هوموستاز

۲. فاز التهابی

۳. فاز پرولیفراسیون

۴. فاز بلوغ و Remodeling

با وجود این دسته‌بندی، این فازها کاملا جدا از هم نیستند و بعضا همپوشانی در آن‌ها دیده می‌شود. بلافاصله بعد از هر آسیب، پلاکت‌ها شروع به تجمع کرده، پلاک‌ها را تشکیل می‌دهند و در عروق آسیب‌دیده مانع از خون‌ریزی می‌شوند. همزمان، پروسه‌های التهابی شروع می‌شوند و طیفی از سلول‌های التهابی به محل ضایعه جذب می‌شوند.

درحالی که این سلول‌های ایمنی سایتوکاین‌های پیش‌التهابی ترشح می‌کنند، سلول‌های التهابی (به‌ویژه نوتروفیل‌ها) مقادیر زیادی گونه‌های فعال اکسیژن (ROS) تولید می‌کنند. این مواد برای حفاظت بدن در مقابل یک عفونت ضروری هستند اما در صورت تولید بیش از حد می‌توانند به بافت‌های اطراف صدمه بزنند. در پروسه عادی ترمیم زخم، سایتوکاین‌های التهابی و سلول‌های ایمنی طی چند روز پس از آسیب کاهش می‌یابند. درست در این زمان، کراتنوسیت‌ها، فیبروبلاست‌ها و سلول‌های اندوتلیال شروع به ترشح فاکتورهای رشد متعدد می‌کنند.

 

 

در فاز پرولیفراتیو، به‌همراه بازسازی اپیتلیال و رگ‌زایی (آنژیوژنز)، سنتز کلاژن و ترکیب ماتریکس انجام گرفته و باعث تولید بافت گرانوله می‌شود. سلول‌های اپیتلیال به‌صورت افقی حرکت می‌کنند تا به همتایان خود از طرف مقابل برسند. فیبروبلاست‌ها از لبه‌های زخم فراخوانده می‌شوند تقسیم شده و باعث تحریک کراتینوسیت‌ها به مهاجرت و تقسیم می‌شوند. رگ‌زایی جدید (Neovascularization) اتفاق می‌افتد و شروع به تغذیه و اکسیژن‌رسانی بافت در حال اتصال می‌کند. سپس فیبروبلاست‌های تقسیم شده پروتئین‌های ماتریکس از جمله کلاژن را برای ساخت ماتریکس خارج سلولی (ECM) ترشح می‌کنند، که در مجموع باعث ساخت بافت پیوندی می‌شود.

هدف در این مطلب تشریح نحوه ترمیم زخم نیست و صرفا جهت مقدمه و آماده‌سازی موضوع مطالب ذکر شد. اکنون به نقش مهم آنزیم آنتی اکسیدانتی سوپراکسید دیسموتاز در این مورد می‌پردازیم.

سوپراکسید دیسموتاز و نقش آن در ترمیم زخم

آنیون‌های سوپراکسید ROSهای اولیه‌ای هستند که از اکسیژن مولکولی به‌وجود می‌آیند. اگر نیتریک اکساید (NO) که در اثر فعالیت آنزیم نیتریک اکساید سنتاز تولید می‌شود، در محیط موجود باشد، آنیون‌های سوپراکسید با آن واکنش داده و پراُکسی نیتریت‌ها را تولید می‌کنند. پراکسی نیتریت ماده‌ای برای از بین بردن باکتری و حفظ محیط زخم از عفونت‌ است، اما در عین حال ماده‌ای سمی و بسیار اکسید‌کننده نیز هست. برای جلوگیری از واکنش‌های آسیب‌رسان، آنیون‌های سوپراکسید اضافی تولید شده توسط آنزیم سوپراکسید دیسموتاز یا SOD به‌سرعت به H2O­2 تبدیل می‌شوند. خانواده آنزیم سوپراکسید دیسموتاز ۳ عضو دارد: SOD1 که در سیتوپلاسم و فضای بین‌غشایی میتوکندری موجود است. SOD2 که در ماتریکس میتوکندری وجود دارد و SOD3 که در فضای خارج سلولی موجود است و اولین خط دفاعی در مقابل استرس اکسیداتیو در فضای خارج سلول را تشکیل می‌دهد.

 

 

از آن‌جایی که پوست به‌نسبت سایر بافت‌ها بیشتر در معرض سمیت ناشی از اکسیژن قرار می‌گیرد، سوپراکسید دیسموتاز نیز در تحقیقات زخم بسیار مورد پرس‌وجو قرار گرفته است. آنزیم‌های SOD1 و SOD2 در سطح RNA در زخم‌ها به مقدار بسیار زیادی تشخیص داده شده‌اند. با این وجود فعالیت SOD در هنگام ترمیم زخم در رت‌ها کاهش می‌یابد. اما ممکن است این سوال پیش آید که آیا فعالیت SOD برای ترمیم زخم لازم است؟ پاسخ این سوال در موش‌های فاقد ژن کد کننده SOD1 کمی پیچیده است. در موش‌های ۲۰ هفته‌ای، نبود SOD1 باعث تاخیر در ترمیم می‌شود اما در موش‌های جوان‌تر (۵-۶ هفته) تفاوتی در زمان ترمیم در گروه فاقد SOD1 گزارش نشده است. شاید این نتایج اهمیت وجود SOD را در ترمیم زخم در پیری بیشتر بارز کند. چرا که گزارش شده است نبود SOD1 در فیبروبلاست‌های انسان باعث پیری سلول می‌شود. همچنین برای نگهداری سلول‌های فیبروبلاست جنینی موش (MEFs) نیز وجود SOD1 ضروری است. از این رو موش‌های فاقد SOD1‌ در سم‌زدایی و خنثی کردن آنیون‌های سوپراکسید تولید شده در متابولیسم سلولی، ناتوان هستند. علاوه بر این بافت آسیب‌دیده زخم در معرض اکسیژن اتمسفریک قرار می‌گیرد و این مورد با تاثیر بر چرخه ردوکس سلولی بر روند ترمیم تاثیر خواهد گذاشت.

در نهایت، اهمیت آنزیم‌های کنترل کننده اکسیدان‌ها بر کسی پوشیده نیست و شما می‌توانید در تحقیقات خود نیز برای سنجش سوپراکسید دیسموتاز اقدام کنید

 

 

 

منابع:

-Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014, 346, 941–945.

-Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112.

-Steiling, H.; Munz, B.; Werner, S.; Brauchle, M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 1999, 247, 484–494.

-Shukla, A.; Rasik, A.M.; Patnaik, G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 1997, 26, 93–101.

-Iuchi, Y.; Roy, D.; Okada, F.; Kibe, N.; Tsunoda, S.; Suzuki, S.; Takahashi, M.; Yokoyama, H.; Yoshitake, J.; Kondo, S.; et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 2010, 341, 181–194.

-Tsunoda, S.; Kibe, N.; Kurahashi, T.; Fujii, J. Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch. Biochem. Biophys. 2013, 537, 5–11.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در دیدگاه‌تان را بنویسید

ارتباط TAC و بیومارکر MDA در مطالعات بالینی

زمانی که آنتی‌اکسیدان‌ها در بدن ضعیف می‌شوند و یا کاهش می‌یابند، سلول‌های بدن و بافت‌ها مستعد ابتلا به اختلالات عملکرد و بیماری می‌شوند بنابراین حفظ سطوح آنتی‌اکسیدانی کافی برای جلوگیری و یا حتی کنترل بسیاری از بیماری‌ها ضروری است.
استفاده از ظرفیت آنتی‌اکسیدانی تام (TAC) ، در بیوشیمی، پزشکی، علوم تغذیه و در بسیاری از بیماری‌های مختلف پاتوفیزیولوژی (بیماری‌های قلبی و عروقی، دیابت، بیماری‌های عصبی، روانپزشکی، اختلالات کلیوی و بیماری‌های ریوی) می‌تواند به عنوان یک بیومارکر قابل اعتماد تشخیصی و پیش آگهی مورد مطالعه قرار بگیرد، اگرچه چندین توصیه برای سنجش آن باید مورد توجه باشد. مطالعه بیومارکرهای آنتی‌اکسیدانی دیگر نیز مانند عناصر پاسخ آنتی‌اکسیدانی ژنتیکی (ARE) و یا ویتامین‌های آنتی‌اکسیدانی و دیگر بیومارکرهای ارزشمند اکسیداتیو / نیتروژنیک نیز می‌تواند برای ارزیابی مداخلات تغذیه‌ای با غذاهای غنی از TAC در مورد خطر و پیشگیری از بیماری، از جمله استراتژی های ضد پیری مفید باشد.

رادیکال‌های آزاد زمانی که بیش از حد تولید می‌شوند و یا در اثر کمبود آنتی‌اکسیدان‌ها سطح بالایی در سلول دارند، می‌توانند ساختار و عملکرد پروتئین را تغییر دهند و باعث پراکسیداسیون لیپیدها شده و باعث آسیب DNA گردد. تجزیه پراکسید‌های لیپید محصولات متنوعی را تولید می‌کند. از جمله آن، مالون‌دی‌آلدهید (MDA) یک محصول پراکسیداسیون لیپیدی است که به خوبی مطالعه و بررسی شده است. سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی در نتیجه حضور رادیکال‌های آزاد عمل می‌کند.

پراکسیداسیون لیپید ناشی از ROS در تغییرات بدخیم دخیل بوده و اهداف اولیه پراکسیداسیون توسط ROS اسید چرب غیر اشباع شده در چربی‌های غشایی است. علاوه بر این، تجزیه این لیپیدهای پراکسیداسیون، انواع محصولات نهایی مانند MDA را تولید می‌کند. MDA به عنوان بیومارکر موتاژنیک و سرطان زایی مورد توجه قرار گرفته است. همچنین می توان از آن به عنوان بیومارکر تشخیص بیان ژن‌های مربوط به پیشرفت تومور استفاده کرد. بنابراین، سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی حاصل از رادیکال‌های آزاد عمل می‌کند. افزایش سطح MDA در بیماران OSCC ( سرطان سلول‌های سنگفرشی دهان) نسبت به گروه شاهد مشاهده شده است. این افزایش در MDA ممکن است به علت شکل‌گیری رادیکال های آزاد بیش از حد و تجزیه اسیدهای چرب اشباع‌نشده موجود در غشاء باشد و یا ممکن است به علت اصلاح ناکافی رادیکال‌های آزاد توسط سیستم آنتی‌اکسیدانی ضعیف سلولی باشد. افزایش سطح MDA و کاهش میزان TAC موجود در سرم و بافت بیماران OSCC در مطالعات به خوبی بررسی و اثبات شده است.

اثرات آنتی‌اکسیدانی NO-MDA با یکدیگر مرتبط هستند؛ NO باعث پراکسیداسیون لیپید می‌شود که به نوبه خود MDA را تولید می‌کند. فعالیت های MDA و NO در سرطان زایی بستگی به وضعیت آنتی‌اکسیدانی کل دارد. بدین ترتیب که این مکانیزم‌ها به طور متقابل در ارتباط هستند، نیاز به مطالعه آن‌ها با هم وجود دارد.
مطالعات نشان می‌دهد میزان استرس اکسیداتیو و نیتروژنیک در بیماران سرطانی دهان افزایش یافته و بیانگر سطح بالایی از NO و MDA و کاهش TAC به عنوان دفاع آنتی‌اکسیدانی اثبات شده است. افزایش سطح NO سرم و بافت منجر به پراکسیداسیون لیپیدها و در نتیجه باعث افزایش سطح سرمی و بافتی MDA می‌گردد. ارتباط مثبت NO-MDA نشان می‌دهد که DNA آسیب دیده در اثر اکسیداسیون، یک پدیده حیاتی برای سرطان زایی است که به دلیل تعامل ROS و RNS ( گونه‌های فعال نیتروژن) همراه با TAC رخ می‌دهد.

هم چنین در بیماران مزمن کلیوی، سطح MDA و گلوتاتیون اکسیدشده (GSSG) افزایش و غلظت GSH و GPx کاهش یافته که بررسی‌ها در این بیماران سطح پایینی از TAC را نشان می‌دهد. بیماران مبتلا به صرع دارای گلوتاتیون ردوکتاز اریتروسیتوز و سطح ویتامین‌های A و C پایین نسبت به گروه شاهد هستند و سطوح بالاتری از اریتروسیت MDA، سرولوپلاسمی و همولیز را نسبت به افراد کنترل نشان دادند که در این بیماران نیز TAC کاهش یافته است.
Pleural effusion لنفوسیت‌ها در بیماران مبتلا به سرطان، کاهش سطح TAC و درجه بالاتری از آسیب اکسیداتیو DNA را نشان می‌دهد. کودکان مبتلا به سرطان استخوان، لنفوم Burkitt و لوسمی حاد ميلوئژن، سطح پلاسماي MDA بالاتري داشته و در زنان مبتلا به سرطان سینه ، بیماران مبتلا به فیبروآدنوم و آدنوکارسینوم پستان سطح پلاسما و اریتروسیت MDA افزایش یافته و غلظت GSH و ویتامین های C و E کاهش می‌یابد.

در نتیجه می‌توان به این نکته اشاره کرد که با افزایش سطح رادیکال‌های آزاد در سلول مانند NO و فعالیت اکسیداسیونی آن، سطح MDA به عنوان یک بیومارکر افزایش می‌یابد و سطح TAC که دفاع آنتی اکسیدانی در مقابل استرس اکسیداتیو محسوب می‌شود، در مقایسه با گروه شاهد کاهش معناداری را از خود نشان می‌دهد.  سنجش میزان TAC سلولی می‌تواند به تشخیص و پیش‌آگاهی بیماری و میزان استرس اکسیداتیو سلولی در نتیجه حضور رادیکال‌های آزاد منجر شود.

 

منابع:

 

Alipour, M., Mohammadi, M., Zarghami, N. and Ahmadiasl, N., 2006. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits. Journal of sports science & medicine5(4), p.682

Sies, H., 2007. Total antioxidant capacity: appraisal of a concept. The Journal of nutrition137(6), pp.1493-1495

Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M.L. and Benedito, J.L., 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary science80(2), pp.133-139

Samouilidou, E. and Grapsa, E., 2003. Effect of dialysis on plasma total antioxidant capacity and lipid peroxidation products in patients with end-stage renal failure. Blood purification21(3), pp.209-212

Korde, S.D., Basak, A., Chaudhary, M., Goyal, M. and Vagga, A., 2011. Enhanced nitrosative and oxidative stress with decreased total antioxidant capacity in patients with oral precancer and oral squamous cell carcinoma. Oncology80(5-6), pp.382-389.

 

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری مزمن ریه COPD

بیماری مزمن انسداد ریوی (COPD) یک بیماری تنفسی مزمن با علائم سیستمیک است که به طور معنی‌داری بر کیفیت زندگی بیماران تاثیرگذار است. این بیماری با انسداد جریان هوا همراه با التهاب ریه و تخریب بافت ریوی همراه بوده و عموما یک بیماری در طی پروسه پیری است. نشانگرهای استرس اکسیداتیو در بیماری مزمن انسداد ریوی (COPD) و گونه‌های فعال اکسیژن (ROS) می‌توانند مولکول‌های بیولوژیکی، مسیرهای سیگنالینگ و عملکرد مولکولی آنتی‌اکسیدان را تغییر دهند که بسیاری از آن‌ها در پاتوژنز COPD دخالت دارند.

شواهد نشان می‌دهد که عملکرد چندین سلول کلیدی در بیماران COPD در طی بیماری تغییر می‌کند و سطوح بیان مولکول‌های مهم اکسیدان و آنتی‌اکسیدان ممکن است غيرطبيعی باشد. آزمایشات درمانی در جهت تلاش برای بازگرداندن تعادل به این مولکول‌ها بر تمام جنبه های بیماری تأثیر نگذاشته این درحالیست که تاثیر ROS در COPD با مدل های فعلی و مسیرهای مربوط به آسیب بافت اثبات شده است.

روش‌های مختلفی برای ارزیابی حضور استرس اکسیداتیو در ریه بیماران مبتلا به COPD مورد استفاده قرار گرفته است و شواهد واضحی از افزایش بار اکسیداتیو در COPD در مقایسه با گروه‌های کنترل غیر سیگاری وجود دارد.

بررسی مایع تنفس ریه (EBC) یک روش موثر برای شناسایی محصولات استرس اکسیداتیو موجود در ریه است. مطالعات متعدد نشان داده است که H2O2 به میزان قابل توجهی در تراکم انسداد تنفس COPD در مقایسه با کنترل‌های سالم افزایش می‌یابد. با افزایش سطح H2O2 اسید آراشیدونیک که اسید چرب اشباع نشده در غشای سلولی است، افزایش چشمگیری یافته و می‌تواند توسط رادیکال‌های آزاد در in vivo پراکسیده شود تا ایزوپروستان‌ها را تشکیل دهد که در EBC اندازه گیری می‌شوند و در بیماری COPD قابل مشاهده است. همچنین میزان تولید پروتئین اسیدچرب، مالون دی آلدهید (MDA) نیز در EBC بیماران مبتلا به COPD افزایش یافته است. سطوح سرمی MDA و GPx (تعیین شده توسط فعالیت) با شدت COPD ارتباط دارد، با افزایش MDA سرم و کاهش GPx شدت بیماری COPD افزایش می‌یابد.

با استفاده از رنگ‌آمیزی ایمونوهیستولوژیکی، می‌توان برخی از محصولات استرس اکسیداتیو مانند 4HNE، محصول نهایی پراکسیداسیون لیپید که به آسانی با چندین پروتئین واکنش می‌دهد را در اجزای مجزای سلولی ریه مشخص کرد. این رنگ‌آمیزی بیان‌گر افزایش نشانگرهای استرس اکسیداتیو نیتروژن، نیتروتیروسین و اکسید نیتریک القا شده (iNOS) در COPD است.

تحقیقات نشان داده است که مولکول‌های ضدالتهابی یا آنتی‌اکسیدان‌های مختلف توانایی کاهش التهاب و شدت علائم COPD در مدل موش را دارند. موش های ترانس‌ژنیک بیان‌کننده تریروتوكسین (TRX) كه مولكول آنتی‌اكسیدان است، كاهش بسیاری در شدت COPD نشان می‌دهد که می‌تواند یک روش درمانی باشد. در مدل‌های موش، تحت تاثیر قرار گرفتن در معرض ROS منجر به ابتلا به COPD و پیشرفت این بیماری می‌شود و شناسایی مکانیسم‌ آن می‌تواند یک روش درمانی مفید محسوب شود.

استرس اکسیداتیو از طریق H2O2 ناشی از اختلال عملکرد میتوکندری اختلال در COPD را  شدیدتر می‌کند. درمان آنتی‌اکسیدانی هدفمند میتوکندری باعث مهار و کاهش علایم بیماری COPD می‌گردد. علاوه بر این، شواهدی از اختلال عملکرد میتوکندری در ماکروفاژ بیمارهای مبتلا به COPD در طی فاگوسیتوز یافت شده و مطالعات دیگر از اختلال عملکرد میتوکندری طی استرس اکسیداتیو گزارش می‌دهد.

دلایل نظری قابل ملاحظه ای وجود دارد که چرا آزاد شدن ROS باعث ایجاد یا پیشرفت COPD می شود. افزایش میزان اکسیدان‌ها از 4700 ترکیب شیمیایی و بیش از 1015 اکسیدان / رادیکال‌های آزاد موجود در سیگار حاصل می‌شود با این حال، این محرک به تنهایی نمی‌تواند کافی یا ضروری باشد تا COPD در سیگاری‌ها ایجاد شود، و این نشان می‌دهد که باید فاکتورهای دیگری به صورت تعاونی با این عوامل در جهت بروز بیماری همکاری کنند.

بسیاری از محصولات استرس اکسیداتیو در COPD در مقایسه با کنترل افزایش می‌یابد، در حالی که سطح آنزیم‌های مربوط به حذف ROS در برخی مطالعات کاهش یافته است. مطالعات سلولی نشان می‌دهد که آزادی ROS از واسطه‌های اصلی واکنش التهابی در COPD، از جمله نوتروفیل‌ها، ماکروفاژهای هوا و مونوسیت‌ها، افزایش یافته است. اگر چه مدل حیوانی COPD وجود ندارد که تمام جنبه‌های بالینی بیماری بررسی شود، مدل‌های دیگر نشان‌دهنده افزایش بار اکسیداتیو در اثر قرار گرفتن در معرض دود سیگار و آسیب بافتی بعد از آن، از جمله ایجاد آمفیزم است که می‌تواند با هدف‌گیری مسیرهای اکسیداسیون، کاهش یابد.

ارائه درمان بالینی برای COPD با توجه به تغییر در پروتئین‌ها، آنزیم‌ها، مولکول‌ها و سلول‌های دخیل در این بیماری چالش مهم بوده و در حال حاضر مشخص نیست که آیا تغییرات نسبت اکسیدان‌ها به آنتی‌اکسیدان‌ها به صورت ثابت رخ می‌دهد که درک این موضوع برای تعیین درمان‌هایی که بیشتر از آنتی‌آکسیدان‌ها استفاده می‌کنند، حیاتی است. واضح است که تحقیقات پایه و تحلیلی بیشتر برای شناسایی بیماران حساس به آسیب های مرتبط با ROS ضروری است و باید مشخص شود آیا ROS هدف موثر برای تغییر در COPD است یا خیر؟

 

منبع:

McGuinness, A.J.A. and Sapey, E., 2017. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of clinical medicine6(2), p.21.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای محرومیت از خواب در انسان و موش صحرایی

خواب یک فرآیند بیولوژیکی ضروری است با این حال، مطالعات مکانیزم‌های مولکولی مبتنی بر اثرات کم‌خوابی هنوز در اولین مراحل آن است. خطر ابتلا به بسیاری از اختلالات متابولیک، از جمله افزایش وزن، دیابت، چاقی و بیماری‌های قلبی‌عروقی به علت کم‌ خوابی، اساس تحقیقات پایه در این زمینه می‌باشد.
در یک مطالعه که در مجله “آکادمی ملی علوم” منتشر شده است، آمیتا سگل، استاد علوم اعصاب در دانشکده پزشکی Perelman در دانشگاه پنسیلوانیا و محقق موسسه پزشکی Howard Hughes همراه با پیتر میرلو ، از دانشگاه گرونینگن هلند، مولکول‌های رایج درگیر در متابولیسم پاسخ به کم‌خوابی در آنالیز خون موش و انسان را یافته‌اند. یافته‌های آن‌ها نشان می‌دهد که تغییر کلی در چگونگی متابولیسم لیپیدها حاصل از استرس اکسیداتیو ناشی از کاهش خواب در هر دو گونه مشاهده می‌شود.
استرس اکسیداتیو و متابولیسم لیپید عامل مهمی در بیماری‌های متابولیکی هستند، اگرچه برای ایجاد یک ارتباط بین نشانگرهای موجود و بیماری‌های خاص، باید مطالعات بیشتری صورت بگیرد.
سگل می‌گوید: “یک احتمال این است که خواب باعث رفع متابولیت‌ها می‌شود و بنابراین به عنوان یک فرآیند ترمیم در سطح متابولیک عمل می‌کند.” متابولیت‌ها مواد واسطه شیمیایی یا محصولات متابولیسم هستند، بنابراین درحالی‌که از طریق تجزیه چربی‌ها، کربوهیدرات‌ها و پروتئین تولید می‌شوند، عملکرد آن‌ها محدود به این فرآیندها نیست. آن‌ها هم‌چنین در سیگنالینگ، تنظیم فعالیت آنزیمی و رشد نیز نقش دارند.
این تیم در طی پنج روز موش و انسان را در شرایط محدودیت خواب مزمن قرار دادند. در هر دو مطالعه، سطوح متابولیتی در خون موش و انسان، پس از خواب مناسب و کافی و بعد از محدودیت خواب مورد بررسی قرار گرفت. سپس متابولیت‌های خون موش‌ها و انسان‌های با محدودیت خواب شناسایی شده که 38 متابولیت منحصر به فرد را معرفی می‌کند که نیمی از آن‌ها لیپید هستند. اکثریت متابولیت‌ها در افراد کم‌خواب ترکیبات لیپید یا اسید چرب را دارند.
هفت نوع فسفولیپید به نام plasmalogens که با استرس اکسیداتیو در ارتباط هستند در موش‌های با محدودیت خواب یافت شدند. به طور کلی، سطوح بالاتر این فسفولیپیدها و نقش اساسی آن‌ها در متابولیسم لیپیدی موش‌ها و انسان‌های دارای محدودیت خواب مشخص شده‌است. هم‌چنین برخی از انتقال‌دهنده‌های عصبی و متابولیت های روده (احتمالا از میکروب‌های روده) نیز به علت محدودیت خواب تغییر کرده‌اند.

هنگامی که محققین متابولیت‌های تغییر یافته در موش و انسان را در مقایسه با شروع اولیه قبل از محدودیت خواب مقایسه کردند، متوجه شدند که دو متابولیت oxalic acid و diacylglycerol 36:3 در شرایط محدودیت خواب محو شده و بعد از بهبودی در هر دو گونه‌ دوباره مشاهده شدند. oxalic acid یک محصول زائد است که از فرآورده‌های غذایی در رژیم‌هایی مانند گیاهان، به طور عمده از تجزیه ویتامین C و برخی اسیدآمینه‌ها تولید می‌شود. Diacylglycerol یک مولکول پیش‌رونده در تولید تری‌گلیسیرید است و مولکولی است که اکثر چربی‌ها به این شکل در بدن ذخیره می‌شود و همچنین در سیگنالینگ سلولی عمل می‌کند. محققان معتقدند که این دو مولکول می‌توانند به عنوان نشانگرهای زیستی بالقوه از آن‌جایی که در هر دو گونه موجودند، به کار روند.

این بیومارکرهای بین گونه‌ای به دو دلیل مورد توجه هستند. اول این‌که نیاز به بیومارکر کمی در بررسی محدودیت خواب و کیفیت خواب وجود دارد و این رویکرد نشان می‌دهد که متابولیت‌ها در این زمینه مفید هستند. دوم این‌که متابولیت‌های مشابهی را در انسان‌ها و موش‌ها معرفی می‌کند و به همین طریق اثرات متابولیکی خواب در موش صحرایی که ممکن است دارای کاربرد بالینی و درمانی باشد مورد بررسی قرار می‌گیرد.
به طور کلی، این مطالعه یک ارتباط بالقوه بین آسیب‌شناسی شناخته شده محدودیت خواب و اختلال عملکرد متابولیکی ایجاد می‌کند و بیان‌گر این است که یکی از عملکردهای خواب ترمیم و پاک‌سازی متابولیت‌ها در مغز و بازگرداندن تعادل آنتی‌اکسیدانی در بافت‌های محیطی است و از سوی دیگر از دست دادن خواب، باعث ایجاد حالت اکسیداتیو در متابولیت‌ها می‌گردد.

منبع:

Weljie, A.M., Meerlo, P., Goel, N., Sengupta, A., Kayser, M.S., Abel, T., Birnbaum, M.J., Dinges, D.F. and Sehgal, A., 2015. Oxalic acid and diacylglycerol 36: 3 are cross-species markers of sleep debt. Proceedings of the National Academy of Sciences112(8), pp.2569-2574

نوشته شده در دیدگاه‌تان را بنویسید

اهمیت آنتی‌اکسیدان‌ها در صنعت مواد غذایی

غذاهای آنتی‌اکسیدانی و مواد تشکیل‌دهنده آن جزء مهمی از صنایع غذایی هستند. در گذشته، آنتی‌اکسیدان‌ها در درجه اول برای کنترل اکسیداسیون و تضعیف آسیب‌ها استفاده می‌شدند، اما امروزه بسیاری از آن‌ها به دلیل مزایای بهداشتی کاربرد دارند. با این حال، استرس اکسیداتیو، که شامل تولید گونه‌های فعال اکسیژن(ROS) است، زمینه‌ای برای بروز بیماری‌های مزمن و پیری است. شواهد جمع آوری شده نشان می‌دهد که ROS عملکردهای متابولیک ضروری را مختل می‌کند و حذف بسیاری از ROS ها می‌تواند مسیرهای سیگنالینگ سلول را بهبود بخشد و در واقع خطر ابتلا به بیماری مزمن را کاهش می‌دهد. ضروری است که صنایع غذایی از پیشرفت در این زمینه آگاهی یابند تا علم مربوط به مواد غذایی را به روشنی بیان کنند. این ممکن است به معنی بررسی دوباره پیامدهای سلامت و تغییر مقدار آنتی‌اکسیدانی مواد غذایی باشد.
امروزه در صنایع‌غذایی و دارویی استفاده گسترده‌ای از آنتی‌اکسیدان‌های طبیعی و مصنوعی می‌شود. آنتی‌اکسیدان‌های طبیعی مانند پلی‌فنل‌ها عمدتا از گیاهان حاصل می‌شوند، در حالی که آنتی‌اکسیدان‌های مصنوعی به طور صنعتی تولید می‌شوند و اهمیت این آنتی‌اکسیدان‌ها در حفاظت از مواد غذایی روشن است. چربی‌ها و مواد مغذی موجود در بسیاری از انواع غذاها مانند گوشت دودی، گوشت قرمز، غذاهای روزانه و غذاهای دریایی، می‌توانند فاسد شوند. فساد میکروبیولوژیک و اکسیداسیون چربی توسط رادیکال‌های آزاد که می‌تواند توسط نور، گرما یا یون‌های فلزی ایجاد شود رخ داده، سپس پراکسیدهای تشکیل‌شده در طول این واکنش‌ها، به‌نوبه خود، می‌توانند با لیپیدهای دیگر و اسیدهای چرب خاص واکنش دهند تا گونه‌های جدیدی از پراکسید را تشکیل دهند. اهمیت آنتی‌اکسیدان‌ها در این زمینه این است که ROS و رادیکال‌های آزاد را در طی واکنش جهت جلوگیری از تجزیه مواد غذایی از بین می‌برد.
عاملي که چالش اصلی در سنجش ظرفيت آنتي‌اکسيدان به حساب می‌آید بدین شرح است: در سيستم‌هاي بيولوژيک، حداقل چهار منبع عمومي آنتي‌اکسيدان‌ وجود دارد:
(1) آنزيم‌ها مانند سوپراکسيد ديسموتاز، گلوتاتيون پراکسيداز و کاتالاز
(2) مولکول‌های بزرگ (آلبومین، فریتین و پروتئین‌های دیگر)
(3) مولکول‌های کوچک ( اسید اسکوربیک، گلوتاتیون، اسید اوریک، توکوفرول، کاروتنوئیدها، (پلی) فنل )
(4) برخی از هورمون‌ها (استروژن، آنژیوتانسین، ملاتونین، و غیره)

از سوی دیگر، منابع چندگانه رادیکال و اکسیدان آزاد وجود دارد و هر دو اکسیدان و آنتی‌اکسیدان‌ها ویژگی‌های شیمیایی و فیزیکی متفاوت دارند. آنتی‌اکسیدان‌ها در بعضی موارد ممکن است با مکانیسم چندگانه در یک سیستم واحد یا با یک مکانیزم مختلف بسته به سیستم واکنش عمل کنند. علاوه بر این، آنتی‌اکسیدان‌ها ممکن است به شیوه‌ای متفاوت به منابع مختلف رادیکال و اکسیدکننده پاسخ دهند. به عنوان مثال، کاروتنوئیدها بر روی پراکسیل نسبت به فنول‌ها و سایر آنتی‌اکسیدان‌ها تاثیر کمتری داشته، با این حال، اکسیژن تنها یک رادیکال نیست و از طریق مکانیسم‌های رادیکالی واکنش نشان نمی‌دهد، بلکه واکنش بیشتر به صورت اضافه شدن از طریق پیوند و تشکیل آندوپروکسیدها صورت می‌گیرد که می‌توانند به رادیکال‌های آلوکسیل که باعث واکنش‌های زنجیره‌ای می‌شوند تبدیل شود.

از آنجایی که ویژگی‌های مکانی واکنش و مکانیسم‌های چندگانه در سنجش آنتی اکسیدانی تاثیرگذار هستند هیچ آزمایش واحدی به درستی تمام منابع رادیکال یا تمام آنتی‌اکسیدان‌ها را در یک سیستم پیچیده منعکس نمی‌کند. واضح است که مطابقت منابع رادیکال و ویژگی‌های سیستم با مکانیسم‌های واکنش آنتی‌اکسیدانی در انتخاب روش‌های مناسب آزمایش و همین‌طور در نظر گرفتن نحوه استفاده نهایی از نتایج، بسیار مهم است.

 

منابع:

Prior, R.L., Wu, X. and Schaich, K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry53(10), pp.4290-4302

Prieto, P., Pineda, M. and Aguilar, M., 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry269(2), pp.337-341

Erel, O., 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry37(4), pp.277-285

Janaszewska, A. and Bartosz, G., 2002. Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scandinavian journal of clinical and laboratory investigation62(3), pp.231-236

Koleva, I.I., Van Beek, T.A., Linssen, J.P., Groot, A.D. and Evstatieva, L.N., 2002. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical analysis13(1), pp.8-17

Finley, J.W., Kong, A.N., Hintze, K.J., Jeffery, E.H., Ji, L.L. and Lei, X.G., 2011. Antioxidants in foods: state of the science important to the food industry. Journal of Agricultural and Food Chemistry59(13), pp.6837-6846

Schillaci, C., Nepravishta, R. and Bellomaria, A., 2014. Antioxidants in food and pharmaceutical research. Albanian Journal of Pharmaceutical Sciences1(1), pp.9-15.

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری مزمن کلیه CKD

بیماری مزمن کلیه (CKD) یک عامل خطرناک مهم در جهت بروز بیماری‌های قلبی عروقی و مرگ ناشی از نارسایی قلبی است. افزایش استرس اکسیداتیو در افرادی که مبتلا به CKD هستند به عنوان یک عامل احتمالی برای برخی بیماری‌های قلبی عروقی شناخته می‌شود. درمان آنتی‌اکسیدانی می‌تواند مرگ و میر قلبی و عروقی در افراد مبتلا به CKD را کاهش دهد.

گرچه درمان آنتی‌اکسیدانی خطر ابتلا به بیماری قلبی عروقی و عوارض این بیماری‌ها را در افراد مبتلا به CKD کاهش نمی‌دهد، اما ممکن است در افرادی که تحت درمان دیالیزی هستند، تاثیر گذار باشد. با این حال، مطالعات اندک و به طور کلی کیفیت پایین تحقیقات گوناگون، اطلاعات کافی برای تایید این امکان را در اختیار قرار نمی‌دهد. شواهد موجود نشان می‌دهد که درمان آنتی‌اکسیدانی در بیماران مبتلا به CKD می‌تواند از پیشرفت بیماری تا مراحل پایانی (ESKD) جلوگیری کند؛ با این حال این یافته بر اساس تعداد بسیار کمی از آزمایشات به دست آمده است. مطالعات بیشتر با پیگیری طولانی‌تر برای تایید این مساله و بررسی اثربخشی آنتی‌اکسیدان در افراد مبتلا به CKD ضروری است.

افراد مبتلا به بیماری مزمن کلیه (CKD) دارای خطر بالای ابتلا به بیماری‌های قلبی و مرگ زودرس هستند. گرچه بیماری قلبی دارای علل زیادی است، به نظر می‌رسد آسیب ناشی از تبادل اکسیژن در سلول‌های بدن (استرس اکسیداتیو) یک مشکل اساسی است. افراد مبتلا به CKD اغلب دارای شواهدی از استرس اکسیداتیو هستند و این به طور مثبت با میزان پیشرفت بیماری کلیه ارتباط دارد. شواهد موجود، نحوه اثربخشی درمان آنتی‌اکسیدان را در بیماران مبتلا به CKD بررسی کرده و بیان می‌کند که به طور کلی درمان آنتی‌اکسیدانی در افراد مبتلا به CKD خطر ابتلا به بیماری قلبی یا مرگ را کاهش نمی‌دهد، اما این می‌تواند بسته به مرحله CKD متفاوت باشد. شواهدی وجود دارد که نشان می‌دهد افراد مبتلا به دیالیز ممکن است از درمان آنتی‌اکسیدانی بهره‌مند شوند و این درمان‌ها می‌توانند خطرات جانبی بیماری کلیوی را کاهش دهند . با این حال، این نتایج مبتنی بر شواهد بسیار محدود است و مطالعات بیشتری برای تأیید این‌که آیا درمان آنتی‌اکسیدان برای افراد مبتلا به CKD مفید است، مورد نیاز است…

 

منبع:

Jun, M., Venkataraman, V., Razavian, M., Cooper, B., Zoungas, S., Ninomiya, T., Webster, A.C. and Perkovic, V., 2012. Antioxidants for chronic kidney disease. The Cochrane Library.

نوشته شده در دیدگاه‌تان را بنویسید

آیا شما سطح استرس اکسیداتیو و بیومارکرهای آنتی‌اکسیدانتی خود را آزمایش کرده‌اید؟

استرس اکسیداتیو یک نیروی ثابت در زندگی روزمره ماست. هنگامی‌که بدن ما قادر به مقابله با استرس‌های اکسیداتیو باشد، قوی‌تر و سالم‌تر به عمر خود ادامه می‌دهد. افزایش استرس اکسیداتیو عامل اصلی بروز بیماری‌های دژنراتیو مانند سرطان، بیماری قلبی، سندروم خستگی مزمن و بیماری‌های نوروژنیک است. این بیماری‌ها زمانی رخ می‌دهد که دفاع آنتی‌اکسیدانی بدن برای خنثی‌کردن ترکیبات رادیکال آزاد به نام گونه‌های فعال اکسیژن  (ROS) عمل نمی‌کند.

این رادیکال‌های آزاد، مولکول‌های ناپایدار مولکولی هستند که در طی فعالیت‌های متابولیسم پایه‌ای مثل فعالیت‌های ایمنی بدن، تولید انرژی در میتوکندری و سم‌زدایی در کبد تولید می‌شوند. برای محافظت در برابر اثرات مضر این رادیکال‌های آزاد، سلول‌ها از آنتی‌اکسیدان‌ها استفاده می‌کنند. آنتی‌اکسیدان‌ها اکثرا از رژیم‌های غذایی مانند بیوفلاوونوییدهای مرکبات، پروانتوسیانین‌های موجود در انواع توت، پلی‌فنول‌های موجود در چای سبز، شکلات ، قهوه و کاروتنوئید موجود در زرده تخم‌مرغ، ماهی قزل‌آلا و هویج تامین می‌شوند.

این آنتی‌اکسیدان‌ها یک اثر ضدالتهابی قوی در بدن و محافظت از سلول‌ها، بافت‌ها و اندام‌ها از عوامل استرس‌زای التهابی و اکسیداتیو دارند که نقش مهمی دردوره سالمندی، کیفیت زندگی و پیشگیری از بیماری‌های مزمن دارد. نیازهای آنتی‌اکسیدانی می‌تواند بین افراد متفاوت باشد و بنابراین آزمایش‌های بالینی برای ارزیابی سطح فردی استرس اکسیداتیو و ترکیبات آنتی‌اکسیدانی توسعه داده شده است. این تست به پزشک اجازه می‌دهد تا کمبودهای کلیدی را مشخص کند تا توانایی بدن برای انطباق و ابتلا به بیماری را محدود نماید.

اندازه‌گیری کلیدی باید شامل آنتی‌اکسیدان‌های اصلی و متابولیت‌های بیوشیمیایی باشد که شامل نسبت گلوتاتیون، سیستئین، سیستئین / سیستین، نسبت سولفات و سیتستین / سولفات و ظرفیت آنتی‌اکسیدانی کل است. این آزمایش هم‌چنین باید در آنزیم‌های مهم آنتی‌اکسیدانی مانند سوپراکسید دیسموتاز و گلوتاتیون پراکسیداز مشاهده شود. در نهایت، آزمون باید سطوح آسیب سلولی مانند لیپید پراکسیدازها را تحلیل کند.

بدن هم‌چنین آنتی‌اکسیدان‌هایی مانند سوپراکسید دیسموتاز، گلوتاتیون پراکسیداز و کاتالاز تولید می‌کند که در داخل سلول تولید می‌شوند و به محافظت از غشای بیرونی سلول، DNA  و تولید انرژی در میتوکندری کمک می‌کنند.

رادیکال‌های آزاد و استرس اکسیداتیو بخشی ضروری از زندگی هستند و باعث رشد و انطباق در سراسر بدن می‌شوند. فردی با حفاظت آنتی‌اکسیدانی بهینه شده با موفقیت به کاهش استرس اکسیداتیو طبیعی در بدن می‌پردازد. فردی که دارای حفاظت آنتی‌اکسیدانی ضعیف است قادر نخواهد بود با استرس اکسیداتیو مقابله کند و در طول زمان مشکلات جدی سلامتی را متحمل خواهد شد. افزایش شدید سطح استرس اکسیداتیو، یک فرآیند کشنده است که می‌تواند به طور مداوم  قبل از علائم علمی رخ دهد. ارزیابی توانایی بدن برای تولید و استفاده از آنتی‌اکسیدان‌ها می‌تواند به صورت جامع انجام شود که شامل بیومارکرهای زیستی  ذخایر آنتی‌اکسیدانی، عملکرد آنزیمی و آسیب سلولی است.

 

منابع:

Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J., 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences97(6), pp.2940-2945.

Sorolla, M.A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J. and Cabiscol, E., 2008. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine45(5), pp.667-678.

Kasai, H., 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research/Reviews in Mutation Research387(3), pp.147-163.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکر استرس اکسیداتیو، پروب فلورسنت مالون‌دی‌آلدهید در سلول‌های زنده

مالون‌دی‌آلدهید (MDA) بیومارکر مهمی در استرس اکسیداتیو محسوب می‌شود. تغییرات سطح MDA در سیستم‌های بیولوژیکی اغلب نشان‌دهنده تغییرات پاتولوژیک است که با انواع بیماری‌ها مرتبط است. اگرچه برای تشخیص MDA روش‌های مختلفی وجود دارد، این بیومارکر در سلول‌های زنده هنوز مورد بررسی قرار نگرفته است. در مطالعه‌ای، پروب فلورسنت روشن MDAP-1 را با مکانیسم انتقال پیوند الکترونی همراه کرده‌اند که برای اولین‌بار حساسیت MDA را تحت شرایط فیزیولوژیکی با حساسیت بالا نشان می‌دهد. ارزیابی‌های بیولوژیکی بیشتر نشان می‌دهد که MDAP-1 قادر به شناسایی MDA درونی و خارجی در سلول‌های زنده است که این موضوع می‌تواند برای ردیابی MDA تحت استرس اکسیداتیو کاربرد داشته باشد. این نتایج جهت مطالعات مربوط به رویدادهای بیولوژیک مرتبط با MDA و کشف مکانیزم آسیب شناختی در آینده مفید خواهد بود.
یک محصول جانبی پراکسیداسیون اسیدچرب اشباع نشده ناشی از ROS، مالون‌دی‌آلدهید (MDA) است که به عنوان یک بیومارکر استرس اکسیداتیو بررسی می‌شود. واکنش پذیری بالای MDA باعث سمی شدن آن شده که می‌تواند به راحتی با بیومولکول‌هایی مانند پروتئین‌ها و اسیدهای‌نوکئیک واکنش دهد. تغییرات سطح MDA در اندام‌های زنده اغلب نشان‌دهنده تغییرات پاتولوژیک و بروز بیماری‌های مختلف مانند لوسمی، دیابت، سرطان، بیماری قلبی عروقی، سندرم دائمی ماکولا، آسم، آترواسکلروز و بیماری‌های کبدی است بنابراين تشخيص MDA بسیار بااهمیت بوده تا مانع از پیشرفت بیماری و بررسی مکانیسم‌های پاتولوژیک گردد.

درحال حاضر روش‌های تشخیص MDA عبارتند از: تست تيوباربيتوريک اسيد TBA که به طور گسترده مورد استفاده قرار مي‌گيرد، تکنيک‌هاي تازه توسعه يافته عبارتند از کروماتوگرافي مايع، الکتروفورز، کروماتوگرافي گازي و طیف سنجی. با این حال، تقریبا تمام این روش‌ها با مشتقات شیمیایی نسبتا مضر و تحت شرایط سخت مانند اسیدیته قوی و یا درجه حرارت بالا انجام می‌گیرند، بنابراین فقط در نمونه های مایع بدن مانند سرم و ادرار قابل استفاده هستند. به همین دلیل نیاز بسیار شدید برای توسعه فلورسنت مولکول‌های کوچک، قابل نفوذ و بسیار انتخابی وجود دارد.

محققان اولین پروب فلورسنت MDA را که تحت شرایط فیزیولوژیکی کار می‌کند، گزارش کرده‌اند که برای بررسی MDA در سلول‌های زنده مناسب است. به طور خلاصه، یک پروب فلورسنت روشن (MDAP-1) برای MDA بر اساس مکانیسم پیوند الکترونی پیشنهاد شده است. MDAP-1 قادر به تشخیص MDA خارجی و درون سلولی در سلول‌های زنده است. هم‌چنین در تحقیق MDA تحت استرس اکسیداتیو قابل استفاده است. به طور کامل این اولین پروب فلورسنت برای MDA است که در شرایط فیزیولوژیکی کار می‌کند که می‌تواند برای مطالعات مربوط به رویدادهای بیولوژیک MDA مفید باشد

 

منبع:

Chen, J., Zeng, L., Xia, T., Li, S., Yan, T., Wu, S., Qiu, G. and Liu, Z., 2015. Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Analytical chemistry87(16), pp.8052-8056.

نوشته شده در دیدگاه‌تان را بنویسید

گلوتاتیون، آنتی‌اکسیدان اصلی بدن

محققان بهداشتی به زودی اهمیت بیولوژیکی آنتی‌اکسیدان‌ها را به رسمیت می‌شناسند. با توجه به توانایی آن‌ها جهت جلوگیری از اکسیداسیون و پراکسیداسیون، این مواد مهم که در اکثر مواد غذایی یافت می‌شوند، مزایای سلامتی فراوانی را ارائه می‌دهند. آنتی‌اکسیدان‌ها از آسیب‌های سلولی و بیماری‌های تحلیل عصبی محافظت می‌کنند، چین و چروک‌ها را کم می‌کنند و میزان بروز آفتاب سوختگی را کاهش می‌دهند.

درحالی که اکثر افراد با آنتی‌اکسیدان‌های رایج مانند ویتامین‌های C و E آشنا هستند، یک آنتی‌اکسیدان وجود دارد که نسبتا ناشناخته است به نام گلوتاتیون. اما گلوتاتيون، عليرغم ناشناخته بودن آن، احتمالا مهم‌ترين آنتي‌اكسيدان است.

همانند دیگر آنتی‌اکسیدان‌ها، نقش اصلی گلوتاتیون محافظت از سلول‌ها از آسیب اکسیداتیو و پراکسیداسیون، شامل رادیکال‌های آزاد (اتم‌ها، یون‌ها یا مولکول‌های ناپایدار که می‌توانند بدون هیچ گونه مانع، باعث آسیب جدی به DNA و غشاهای سلولی شوند) است. در زمان کمبود شدید گلوتاتیون، فرد از مشکلات قلبی‌عروقی و التهابی، سرطان، خستگی عضلانی، اختلال عملکرد کبد و بیماری‌های مرتبط با سن مانند پارکینسون و آلزایمر رنج می‌برد.

اما برخلاف آنتی‌اکسیدان‌های دیگر، گلوتاتیون درون سلولی است. این بدان معنی است که “در داخل سلول‌ها” وجود دارد و به میزان قابل توجهی تجزیه عفونت، سرطان، استرس اکسیداتیو و رادیکال‌های آزاد را کاهش می‌دهد. به همین دلیل، گلوتاتیون اغلب به نام “آنتی‌اکسیدان اصلی” شناخته می‌شود.
گلوتاتیون به طور طبیعی در بدن ما تولید می‌شود و در تمام سلول‌های بدن یافت می‌شود. متاسفانه، رژیم‌های غذایی ضعیف، سموم، آلودگی، استرس، داروها، پیری و بسیاری دیگر از عوامل داخلی و خارجی به کاهش سطح گلوتاتیون کمک می‌کنند. علاوه بر این، زمانی که بار سمی بدن زیاد می‌شود، توانایی بدن برای بازیافت گلوتاتیون موجود، به خطر می‌افتد.
برای کمک به درمان این مسئله، بسیاری از ما به مکمل‌های گلوتاتیون به منظور افزایش تولید این آنتی‌اکسیدان ضروری نیازمندیم. با این حال، بیشتر مکمل‌های گلوتاتیون دارای قابلیت بیولوژیک ضعیف هستند و در موارد شدید حتی می‌توانند بر تولید گلوتاتیون طبیعی بدن ما تاثیر بگذارند. بنابراین، اگر به دنبال افزایش سطح گلوتاتیون هستید، ایده خوبی است که تمام غذاهای افزایش دهنده تولید گلوتاتیون مانند زردچوبه، سیر، کلم بروکلی، مارچوبه، آووکادو، گردو، گوشت قرمز، تخم مرغ و شیر را در رژیم غذایی خود بگنجانید.

 

منابع:

Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science, pp.588-590.

Anderson, M.E., 1985. [70] Determination of glutathione and glutathione disulfide in biological samples. Methods in enzymology113, pp.548-555.

Flohé, L. and Günzler, W.A., 1984. [12] Assays of glutathione peroxidase. Methods in enzymology105, pp.114-120.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان قهوه، موثرتر از ویتامین C

بر اساس مطالعه انجام شده توسط محققان دانشگاه گرانادا، دانه‌های قهوه دارای فعالیت آنتی‌اکسیدانی 500 برابر بیشتر نسبت به ویتامین C هستند و به عنوان آنتی‌بیوتیک و ضد میکروبی قوی عمل می‌کنند. دانه‌های قهوه به عنوان آنتی‌اکسیدان قدرتمند و تقویت‌کننده ایمنی شناخته شده است.
تحقیقات جدید نشان داد که فلفل و ترکیبات فنلی دارای خواص آنتی‌اکسیدانی و ضد میکروبی بسیار زیاد هستند. اما قهوه 500 برابر قدرت آنتی اکسیدانی بیشتری نسبت به ویتامین C دارد. دانه‌های قهوه هم‌چنین حاوی مقادیر بالایی از ملانوئیدین‌ها هستند که به قهوه رنگ قهوه ای می‌دهند. ملانوئیدین‌ها ضدمیکروب قوی هستند. خواص بیولوژیکی این ملانوئیدین‌ها می‌تواند برای طیف وسیعی از کاربردهای علمی مانند جلوگیری از پاتوژن‌های مضر در محصولات غذایی استفاده شود.
استخراج آنتی‌اکسیدان قهوه و کاربرد آن در صنعت غذایی می‌تواند در کاهش آسیب‌های حاصل از استرس اکسیداتیو مفید باشد که در این راستا ملانوئیدین به عنوان ضدمیکروب قوی نقش اساسی را ایفا می‌کند. هم‌چنین قهوه دارای کافئین بوده که در رفع خستگی بسیار موثر است. خستگی آدرنال به مجموعه‌ای از نشانه‌ها گفته می‌شود که در اثر استرس اکسیداتیو به وجود آمده و در دراز مدت سلامت فرد را تهدید می‌کند.

هورمون‌های تولید شده توسط غده فوق کلیه به ویژه هورمون استرس کورتیزول، نقش مهمی در تنظیم سیستم ایمنی بدن ایفا می‌کند. اگر سطوح کورتیزول خیلی پایین یا زیاد باشد، می‌تواند به عفونت ، التهاب مزمن، بیماری‌های خود ایمنی یا آلرژی‌ها منجر شود.

افرادی که از خستگی بیش از حد آدرنال رنج می‌برند ممکن است نیاز به قهوه داشته باشند، مطالعات نشان می‌دهند مصرف قهوه و کافئین، غده فوق کلیه را تحت تأثیر قرار داده و باعث رفع خستگی شده و در دراز مدت می‌تواند بر جلوگیری از بروز بیماری‌های حاصل از استرس اکسیداتیو تاثیرگذار باشد.

منابع:

Svilaas, A., Sakhi, A.K., Andersen, L.F., Svilaas, T., Ström, E.C., Jacobs, D.R., Ose, L. and Blomhoff, R., 2004. Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. The Journal of nutrition, 134(3), pp.562-567.

Nicoli, M.C., Anese, M., Manzocco, L. and Lerici, C.R., 1997. Antioxidant properties of coffee brews in relation to the roasting degree. LWT-Food science and Technology30(3), pp.292-297.

Borrelli, R.C., Visconti, A., Mennella, C., Anese, M. and Fogliano, V., 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry50(22), pp.6527-6533.

نوشته شده در دیدگاه‌تان را بنویسید

عصاره دارچین، عامل کاهش استرس اکسیداتیو در سندرم متابولیک

مطالعه جدید محققان نشان داده است که مصرف روزانه عصاره دارچین می‌تواند سطح آنتی‌اکسیدانی بدن را افزایش و در نتیجه استرس اکسیداتیو را در ارتباط با سندرم متابولیک کاهش دهد.

سندروم متابولیک حدود 32 درصد از بزرگسالان را تحت تاثیر قرار داده و با چاقی، فشار خون بالا و کاهش سوخت و ساز بدن با سنجش گلوکز و انسولین مشخص می‌شود. سندرم  متابولیک با افزایش خطر ابتلا به دیابت نوع 2 و بیماری قلبی‌عروقی همراه است.

محققان 24 نفر از افراد مبتلا به اختلال دیابتی و تحت استرس اکسیداتیو را مورد مطالعه قرار دادند. بیماران به دو گروه تصادفی  تقسیم شدند: گروه اول با دوز روزانه 500 میلی‌گرم عصاره دارچین و گروه دوم به مدت 12 هفته با داروی Placebo تیمار شدند.در نتیجه این مطالعه، محققان دریافتند که در گروه عصاره دارچین در مقایسه با گروه Placebo ، سطح آنتی‌اکسیدانی پلاسما به طور قابل توجهی افزایش یافته است، سطوح گونه فعال مرتبط با استرس اکسیداتیو مانند مالون‌دی‌آلدئید (MDA) نیز در گروه دارچین پایین‌تر بود، اما در بیماران تیمار شده با Placebo تغییری مشاهده نشد.

این مطالعه نشان می‌دهد که ترکیبات فعال موجود در عصاره دارچین ممکن است در کاهش خطر ابتلا به این بیماری‌ها به وسیله محافظت از سلول‌ها از اکسیداسیون مضر کمک کنند. افراد مبتلا به اختلال عملکرد انسولین در معرض خطر بیشتری از بیماری‌های مزمن تهدید کننده زندگی هستند، از جمله دیابت و بیماری‌های قلبی.

مطالعات حیوانی قبلی، مصرف روزانه عصاره دارچین را به تنظیم فشار خون، هم‌چنین سطح پایین گلوکز خون، تری‌گلیسیرید، کلسترول تام و LDL کلسترول مرتبط کرده است. امروزه دارچین به عنوان یک تنظیم کننده قند خون در میان افراد دیابتی استفاده می‌شود. دارچین بدن را از آسیب های اکسیدانتی محافظت کرده و گیاه کامل دارویی برای افراد دیابتی به شمار می‌رود

منابع:

Roussel, A.M., Hininger, I., Benaraba, R., Ziegenfuss, T.N. and Anderson, R.A., 2009. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. Journal of the American College of Nutrition28(1), pp.16-21.

Qin, B., Panickar, K.S. and Anderson, R.A., 2010. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journal of diabetes science and technology4(3), pp.685-693.

Mang, B., Wolters, M., Schmitt, B., Kelb, K., Lichtinghagen, R., Stichtenoth, D.O. and Hahn, A., 2006. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. European journal of clinical investigation36(5), pp.340-344.