نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان قهوه، موثرتر از ویتامین C

بر اساس مطالعه انجام شده توسط محققان دانشگاه گرانادا، دانه‌های قهوه دارای فعالیت آنتی‌اکسیدانی 500 برابر بیشتر نسبت به ویتامین C هستند و به عنوان آنتی‌بیوتیک و ضد میکروبی قوی عمل می‌کنند. دانه‌های قهوه به عنوان آنتی‌اکسیدان قدرتمند و تقویت‌کننده ایمنی شناخته شده است.
تحقیقات جدید نشان داد که فلفل و ترکیبات فنلی دارای خواص آنتی‌اکسیدانی و ضد میکروبی بسیار زیاد هستند. اما قهوه 500 برابر قدرت آنتی اکسیدانی بیشتری نسبت به ویتامین C دارد. دانه‌های قهوه هم‌چنین حاوی مقادیر بالایی از ملانوئیدین‌ها هستند که به قهوه رنگ قهوه ای می‌دهند. ملانوئیدین‌ها ضدمیکروب قوی هستند. خواص بیولوژیکی این ملانوئیدین‌ها می‌تواند برای طیف وسیعی از کاربردهای علمی مانند جلوگیری از پاتوژن‌های مضر در محصولات غذایی استفاده شود.
استخراج آنتی‌اکسیدان قهوه و کاربرد آن در صنعت غذایی می‌تواند در کاهش آسیب‌های حاصل از استرس اکسیداتیو مفید باشد که در این راستا ملانوئیدین به عنوان ضدمیکروب قوی نقش اساسی را ایفا می‌کند. هم‌چنین قهوه دارای کافئین بوده که در رفع خستگی بسیار موثر است. خستگی آدرنال به مجموعه‌ای از نشانه‌ها گفته می‌شود که در اثر استرس اکسیداتیو به وجود آمده و در دراز مدت سلامت فرد را تهدید می‌کند.

هورمون‌های تولید شده توسط غده فوق کلیه به ویژه هورمون استرس کورتیزول، نقش مهمی در تنظیم سیستم ایمنی بدن ایفا می‌کند. اگر سطوح کورتیزول خیلی پایین یا زیاد باشد، می‌تواند به عفونت ، التهاب مزمن، بیماری‌های خود ایمنی یا آلرژی‌ها منجر شود.

افرادی که از خستگی بیش از حد آدرنال رنج می‌برند ممکن است نیاز به قهوه داشته باشند، مطالعات نشان می‌دهند مصرف قهوه و کافئین، غده فوق کلیه را تحت تأثیر قرار داده و باعث رفع خستگی شده و در دراز مدت می‌تواند بر جلوگیری از بروز بیماری‌های حاصل از استرس اکسیداتیو تاثیرگذار باشد.

منابع:

Svilaas, A., Sakhi, A.K., Andersen, L.F., Svilaas, T., Ström, E.C., Jacobs, D.R., Ose, L. and Blomhoff, R., 2004. Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. The Journal of nutrition, 134(3), pp.562-567.

Nicoli, M.C., Anese, M., Manzocco, L. and Lerici, C.R., 1997. Antioxidant properties of coffee brews in relation to the roasting degree. LWT-Food science and Technology30(3), pp.292-297.

Borrelli, R.C., Visconti, A., Mennella, C., Anese, M. and Fogliano, V., 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry50(22), pp.6527-6533.

نوشته شده در دیدگاه‌تان را بنویسید

گلوتاتیون، آنتی‌اکسیدان اصلی بدن

محققان بهداشتی به زودی اهمیت بیولوژیکی آنتی‌اکسیدان‌ها را به رسمیت می‌شناسند. با توجه به توانایی آن‌ها جهت جلوگیری از اکسیداسیون و پراکسیداسیون، این مواد مهم که در اکثر مواد غذایی یافت می‌شوند، مزایای سلامتی فراوانی را ارائه می‌دهند. آنتی‌اکسیدان‌ها از آسیب‌های سلولی و بیماری‌های تحلیل عصبی محافظت می‌کنند، چین و چروک‌ها را کم می‌کنند و میزان بروز آفتاب سوختگی را کاهش می‌دهند.

درحالی که اکثر افراد با آنتی‌اکسیدان‌های رایج مانند ویتامین‌های C و E آشنا هستند، یک آنتی‌اکسیدان وجود دارد که نسبتا ناشناخته است به نام گلوتاتیون. اما گلوتاتيون، عليرغم ناشناخته بودن آن، احتمالا مهم‌ترين آنتي‌اكسيدان است.

همانند دیگر آنتی‌اکسیدان‌ها، نقش اصلی گلوتاتیون محافظت از سلول‌ها از آسیب اکسیداتیو و پراکسیداسیون، شامل رادیکال‌های آزاد (اتم‌ها، یون‌ها یا مولکول‌های ناپایدار که می‌توانند بدون هیچ گونه مانع، باعث آسیب جدی به DNA و غشاهای سلولی شوند) است. در زمان کمبود شدید گلوتاتیون، فرد از مشکلات قلبی‌عروقی و التهابی، سرطان، خستگی عضلانی، اختلال عملکرد کبد و بیماری‌های مرتبط با سن مانند پارکینسون و آلزایمر رنج می‌برد.

اما برخلاف آنتی‌اکسیدان‌های دیگر، گلوتاتیون درون سلولی است. این بدان معنی است که “در داخل سلول‌ها” وجود دارد و به میزان قابل توجهی تجزیه عفونت، سرطان، استرس اکسیداتیو و رادیکال‌های آزاد را کاهش می‌دهد. به همین دلیل، گلوتاتیون اغلب به نام “آنتی‌اکسیدان اصلی” شناخته می‌شود.
گلوتاتیون به طور طبیعی در بدن ما تولید می‌شود و در تمام سلول‌های بدن یافت می‌شود. متاسفانه، رژیم‌های غذایی ضعیف، سموم، آلودگی، استرس، داروها، پیری و بسیاری دیگر از عوامل داخلی و خارجی به کاهش سطح گلوتاتیون کمک می‌کنند. علاوه بر این، زمانی که بار سمی بدن زیاد می‌شود، توانایی بدن برای بازیافت گلوتاتیون موجود، به خطر می‌افتد.
برای کمک به درمان این مسئله، بسیاری از ما به مکمل‌های گلوتاتیون به منظور افزایش تولید این آنتی‌اکسیدان ضروری نیازمندیم. با این حال، بیشتر مکمل‌های گلوتاتیون دارای قابلیت بیولوژیک ضعیف هستند و در موارد شدید حتی می‌توانند بر تولید گلوتاتیون طبیعی بدن ما تاثیر بگذارند. بنابراین، اگر به دنبال افزایش سطح گلوتاتیون هستید، ایده خوبی است که تمام غذاهای افزایش دهنده تولید گلوتاتیون مانند زردچوبه، سیر، کلم بروکلی، مارچوبه، آووکادو، گردو، گوشت قرمز، تخم مرغ و شیر را در رژیم غذایی خود بگنجانید.

 

منابع:

Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science, pp.588-590.

Anderson, M.E., 1985. [70] Determination of glutathione and glutathione disulfide in biological samples. Methods in enzymology113, pp.548-555.

Flohé, L. and Günzler, W.A., 1984. [12] Assays of glutathione peroxidase. Methods in enzymology105, pp.114-120.

نوشته شده در دیدگاه‌تان را بنویسید

نیتریک اکساید در بیماری‌های قلبی‌عروقی

نیتریک اکساید (NO) یک پیام‌رسان رادیکال آزاد است که نقش مهمی در حفاظت مقابل بروز و پیشرفت بیماری‌های قلبی‌عروقی دارد. بیماری قلبی‌عروقی با تعدادی از اختلالات مختلف شامل هیپوکلسترولمی، فشار خون بالا و دیابت همراه است.

نیتریک اکساید دارای طیف وسیعی از خواص بیولوژیک است که باعث حفظ هوموستاز عروقی می‌شود که با لیست رو به رشدی از عوامل مختلف، از جمله مواردی که به طور معمول به عنوان عوامل خطر برای آترواسکلروز مانند فشار خون بالا و هیپوکلسترولمی همراه است، کاهش انتشار نیتریک اکساید به دیواره شریانی منجر به اختلال سنتز یا تخریب اکسیدکننده بیش از حد می‌گردد.کاهش اکسید نیتروژن ممکن است موجب انقباض عروق کرونر در طی ورزش یا استرس ذهنی شود و باعث تحریک ایسکمی قلب در بیماران مبتلا به بیماری عروق کرونر شود.

علاوه بر این، کاهش نیتریک اکساید ممکن است التهاب عروقی را تسهیل کند که می‌تواند منجر به اکسیداسیون لیپوپروتئین‌ها و تشکیل سلول‌های فوم و آترواسکلروز شود. درمان‌های متعددی برای ارزیابی احتمال معکوس کردن اختلال اندوتلیال با افزایش انتشار نیتریک اکساید از اندوتلیوم، از طریق تحریک سنتز اکسید نیتریک یا حفاظت از اکسید نیتریک از غیر فعال شدن اکسیداتیو و تبدیل به مولکول‌های سمی، مورد بررسی قرار گرفته است.

بیماری‌های قلبی‌عروقی زمینه‌ای برای اکثر بیماری‌ها مانند آترواسکلروز است که به نوبه خود با اختلالات عملکردی اندوتلیال مرتبط است. نقش محافظتی قلبی NO شامل تنظیم فشار خون، مهار تجمع پلاکت‌ها و چسبندگی لکوسیتی و پیشگیری از تکثیر سلول‌های عضلانی صاف است. به نظر می‌رسد که کاهش قابلیت زیستی NO یکی از عوامل اصلی بیماری‌های قلبی و عروقی است.

در شرایط پاتولوژیک، تولید بیش از حد اکسید نیتروژن توسط NOS القا شده صورت گرفته که داروهای ضدافسردگی مانند سیکلوسپورین A مهار بیان NOS را از طریق واسطه‌های پیچیده داخل سلولی انجام می‌دهد. اختلال در فعالیت NOS در دیواره شریان همراه با توسعه آترواسکلروز، اسپاسم و ترومبوز، ممکن است به بهبود انواع بیماری‌ها مانند پرفشاری خون و بیماری‌های عروقی و دیابتی کمک کند. هم‌چنین معکوس کردن نقص تولید نیتریک اکساید با عوامل درمانی از جمله مهارکننده آنزیم تبدیل آنژیوتانسین، منجر به حفاظت در مقابل بروز بیماری‌های قلبی عروقی می‌شود.

 

منابع:

Cannon, R.O., 1998. Role of nitric oxide in cardiovascular disease: focus on the endothelium. Clinical chemistry44(8), pp.1809-1819.

Naseem, K.M., 2005. The role of nitric oxide in cardiovascular diseases. Molecular aspects of medicine26(1), pp.33-65.

Napoli, C. and Ignarro, L.J., 2009. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Archives of pharmacal research, 32(8), pp.1103-1108.

Dusting, G.J., 1995. Nitric oxide in cardiovascular disorders. Journal of vascular research32(3), pp.143-161.

 

نوشته شده در دیدگاه‌تان را بنویسید

اپیتوپ مالون‌دی‌آلدهید، عامل موثر در التهاب کبدی

بیماری‌های مرتبط با رژیم غذایی مانند بیماری کبد چرب غیر الکلی (NAFLD)، دارای یک عنصر التهابی عمده هستند. با این حال، مسیرهای مولکولی مرتبط با رژیم غذایی که منجر به التهاب می‌شوند، ناشناخته است. در یک مطالعه جدید، دانشمندان مرکز تحقیقاتی CeMM دانشکده مولکولی آکادمی علوم اتریش و دانشگاه پزشکی وین، پروسه‌های التهابی مهمی را در بیماری NAFLD شناسایی کردند. علاوه بر این، مطالعه منتشر شده در Hepatology نشان می‌دهد که مالون‌دی‌آلدهید (MDA) بیومارکر استرس اکسیداتیو، نقش مهمی در بروز NAFLD دارد و می‌تواند توسط آنتی‌بادی‌های طبیعی خنثی شود که به عنوان یک رویکرد جدید در درمان بالقوه این بیماری شایع معرفی می‌شود.

ترکیبی از رژیم غذایی غلط و فقدان ورزش می‌تواند به مشکلات جدی سلامتی منجر شود: در سراسر جهان، موارد چاقی، فشار خون بالا یا مقاومت به انسولین در سطح هشداردهنده قرار دارند. در نتیجه، خطر ابتلا به بیماری‌های مرتبط با التهاب مانند دیابت نوع 2، NAFLD و بیماری‌های قلبی عروقی بر این اساس افزایش یافته است. با این حال، مسیرهای دقیق که عادات غذایی را با التهاب ناشی از آن پیوند دهند تاکنون به خوبی شناخته نشده است.

محققان تنها توانسته‌اند پروسه‌های زیست شناختی را که منجر به التهاب مزمن حاصل از رژیم غذایی غلط در موش‌ها بروز می‌کند را شناسایی کنند علاوه بر این، دانشمندان MDA را یک عامل کلیدی در التهاب کبدی می‌دانند که می‌تواند با آنتی‌بادی‌های طبیعی خنثی شود.

مالون‌دی‌آلدهید مولکول بسیار واکنشی، محصولی از تجزیه چربی و بیومارکر استرس اکسیداتیو است که بر روی سطح سلول‌های مرده در کبد تجمع می‌یابد. این مولکول به طور شیمیایی به پروتئین‌های غشایی و یا فسفولیپید‌ها متصل می‌شود و به این ترتیب اپیتوپ‌های MDA را تشکیل می‌دهد. گروه تحقیقاتی نشان داد که این اپیتوپ‌های MDA باعث ایجاد ترشح سیتوکین و همچنین استخراج لکوسیت‌ها می‌شود و در نتیجه باعث التهاب می‌گردد.

محققان نقش مهم این اپیتوپ‌های MDA را در التهاب کبدی ناشی از رژیم غذایی بررسی کرده‌اند. با تزریق داخل وریدی از یک آنتی بادی MDA خاص که به طور انتخابی به اپیتوپ‌های MDA متصل می‌شود، می‌توان التهاب را در موش‌ها بهبود بخشید. این مطالعه نشان می‌دهد که با بررسی توالی RNA و تجزیه و تحلیل بیوانفورماتیک داده‌های مربوط به ترجمه، مکانیزم‌های کلیدی در برخی از بیماری‌های شایع را می‌توان بررسی کرد که این یافته‌ها در مدل‌های موش تایید می‌کند که استفاده از آنتی‌بادی‌های خاص برای اپیتوپ‌های MDA یک رویکرد جدید امیدوار کننده برای توسعه استراتژی‌های درمانی می‌باشد.

 

 

منبع:

Busch, C.J.L., Hendrikx, T., Weismann, D., Jäckel, S., Walenbergh, S., Rendeiro, A.F., Weißer, J., Puhm, F., Hladik, A., Göderle, L. and Papac‐Milicevic, N., 2017. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology65(4), pp.1181-1195.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکر استرس اکسیداتیو، پروب فلورسنت مالون‌دی‌آلدهید در سلول‌های زنده

مالون‌دی‌آلدهید (MDA) بیومارکر مهمی در استرس اکسیداتیو محسوب می‌شود. تغییرات سطح MDA در سیستم‌های بیولوژیکی اغلب نشان‌دهنده تغییرات پاتولوژیک است که با انواع بیماری‌ها مرتبط است. اگرچه برای تشخیص MDA روش‌های مختلفی وجود دارد، این بیومارکر در سلول‌های زنده هنوز مورد بررسی قرار نگرفته است. در مطالعه‌ای، پروب فلورسنت روشن MDAP-1 را با مکانیسم انتقال پیوند الکترونی همراه کرده‌اند که برای اولین‌بار حساسیت MDA را تحت شرایط فیزیولوژیکی با حساسیت بالا نشان می‌دهد. ارزیابی‌های بیولوژیکی بیشتر نشان می‌دهد که MDAP-1 قادر به شناسایی MDA درونی و خارجی در سلول‌های زنده است که این موضوع می‌تواند برای ردیابی MDA تحت استرس اکسیداتیو کاربرد داشته باشد. این نتایج جهت مطالعات مربوط به رویدادهای بیولوژیک مرتبط با MDA و کشف مکانیزم آسیب شناختی در آینده مفید خواهد بود.
یک محصول جانبی پراکسیداسیون اسیدچرب اشباع نشده ناشی از ROS، مالون‌دی‌آلدهید (MDA) است که به عنوان یک بیومارکر استرس اکسیداتیو بررسی می‌شود. واکنش پذیری بالای MDA باعث سمی شدن آن شده که می‌تواند به راحتی با بیومولکول‌هایی مانند پروتئین‌ها و اسیدهای‌نوکئیک واکنش دهد. تغییرات سطح MDA در اندام‌های زنده اغلب نشان‌دهنده تغییرات پاتولوژیک و بروز بیماری‌های مختلف مانند لوسمی، دیابت، سرطان، بیماری قلبی عروقی، سندرم دائمی ماکولا، آسم، آترواسکلروز و بیماری‌های کبدی است بنابراين تشخيص MDA بسیار بااهمیت بوده تا مانع از پیشرفت بیماری و بررسی مکانیسم‌های پاتولوژیک گردد.

درحال حاضر روش‌های تشخیص MDA عبارتند از: تست تيوباربيتوريک اسيد TBA که به طور گسترده مورد استفاده قرار مي‌گيرد، تکنيک‌هاي تازه توسعه يافته عبارتند از کروماتوگرافي مايع، الکتروفورز، کروماتوگرافي گازي و طیف سنجی. با این حال، تقریبا تمام این روش‌ها با مشتقات شیمیایی نسبتا مضر و تحت شرایط سخت مانند اسیدیته قوی و یا درجه حرارت بالا انجام می‌گیرند، بنابراین فقط در نمونه های مایع بدن مانند سرم و ادرار قابل استفاده هستند. به همین دلیل نیاز بسیار شدید برای توسعه فلورسنت مولکول‌های کوچک، قابل نفوذ و بسیار انتخابی وجود دارد.

محققان اولین پروب فلورسنت MDA را که تحت شرایط فیزیولوژیکی کار می‌کند، گزارش کرده‌اند که برای بررسی MDA در سلول‌های زنده مناسب است. به طور خلاصه، یک پروب فلورسنت روشن (MDAP-1) برای MDA بر اساس مکانیسم پیوند الکترونی پیشنهاد شده است. MDAP-1 قادر به تشخیص MDA خارجی و درون سلولی در سلول‌های زنده است. هم‌چنین در تحقیق MDA تحت استرس اکسیداتیو قابل استفاده است. به طور کامل این اولین پروب فلورسنت برای MDA است که در شرایط فیزیولوژیکی کار می‌کند که می‌تواند برای مطالعات مربوط به رویدادهای بیولوژیک MDA مفید باشد

 

منبع:

Chen, J., Zeng, L., Xia, T., Li, S., Yan, T., Wu, S., Qiu, G. and Liu, Z., 2015. Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Analytical chemistry87(16), pp.8052-8056.

نوشته شده در دیدگاه‌تان را بنویسید

Astaxanthin استرس اکسیداتیو را کاهش و پاسخ ایمنی را افزایش می‌دهد

astaxanthin ساختارهای سلولی خاصی در دریا هستند که به رنگ صورتی مشاهده شده و در رژیم غذایی موجودات دریایی وجود دارند ، این ماده به کاهش استرس اکسیداتیو، افزایش پاسخ ایمنی، مهار التهاب کمک کرده و حتی مانع رشد و گسترش سلول‌های سرطانی می‌شود.
مطالعات نشان می‌دهد این ماده می‌تواند به عنوان یک نوع کرم ضد آفتاب طبیعی در محافظت از پوست و بدن در برابر استرس اکسیداتیو ناشی از اشعه ماوراء بنفش عمل کند اما این کاروتنوئید شگفت‌انگیز عملکردهای بیشتری در جهت سلامتی بدن داراست. محققان دانشکده علوم غذایی دانشگاه واشنگتن، اثرات Astaxanthin را بر روی یک گروه از زنان شرکت‌کننده بررسی کردند که همگی آن‌ها 2 تا 8 میلی‌گرم Astaxanthin به مدت هشت هفته دریافت کردند. در پایان هشت هفته، بر روی همگی زنان آزمایش توبرکولین انجام شد.
نتایج نشان دادند که مکمل Astaxanthin می‌تواند به جلوگیری از آسیب DNA در بدن کمک کند، به ویژه هنگامی‌که در دوزهای بالاتر مصرف شود. رژیم غذایی دارای Astaxanthin با كاهش غلظت پروتئین C-reactive در پلاسما همراه است، كه سطح بالای آن به طور معمول نشان‌دهنده آترواسكلروز یا ضخیم شدن دیواره شریانی است.

علاوه براین محققان متوجه شدند که Astaxanthin می‌تواند به طور طبیعی از تولید بیش از حد لنفوسیت‌ها جلوگیری کند. این شرایط یک بیماری شناخته شده به عنوان لنفوپرولیفراسیون است که منجر به افزایش فعالیت سیتوتوکسیک سلول‌های قاتل طبیعی در بدن شده که جزء کلیدی ایمنی ذاتی است. رژیم غذایی Astaxanthin بیومارکرهای آسیب DNA را کاهش می‌دهد و پاسخ ایمنی را در زنان جوان سالم افزایش می‌دهد. Astaxanthin هم‌چنین یک آنتی‌اکسیدان قوی است که می‌تواند از ایجاد زخم جلوگیری کند.

یک مطالعه در نشریه اروپایی فارماکولوژی نشان داد مصرف Astaxanthin برای سلامت دستگاه گوارش نیز مفید است. از آن‌جایی که Astaxanthin یک آنتی‌اکسیدان شناخته شده است که رادیکال‌های آزاد مضر را از بدن دفع می‌کند، محققان بخش Biotechnology Cell موسسه تحقیقات تکنولوژی مواد غذایی مرکزی هند به مطالعه این مساله پرداختند که آیا Astaxanthin ممکن است به جلوگیری از زخم کمک کند یا خیر؟
پس از تجویز مقدار متفاوت از Astaxanthin برای آزمایش موش، آن‌ها دریافتند که این مواد مغذی قدرتمند حفاظت قوی برای موسین معده فراهم می‌کند که به نظر می‌رسد برای محافظت از دستگاه گوارش از آسیب اسید، میکروارگانیسم‌های بیماری‌زا و سایر مواد مهاجم دیگر بسیار مفید است. Astaxanthin هم‌چنین به میزان قابل توجهی منجر به تولید آنزیم آنتی‌اکسیدانی در روده، از جمله آنتی‌اکسیدان اصلی گلوتاتیون پروکسیداز می‌شود.
افزایش توانایی آنتی‌اکسیدانی مانند تخریب رادیکال آزاد نشان می دهد که Astaxanthin ممکن است از آسیب‌های مخاطی معده از طریق مکانیزم آنتی‌اکسیدانی محافظت کند. این فرم Astaxanthin به مراتب بهتر از ضدزخم و داروی PPI مانند امپرازول در محافظت از دستگاه گوارش در برابر آسیب‌ها می‌باشد.

منبع:

Park, J.S., Chyun, J.H., Kim, Y.K., Line, L.L. and Chew, B.P., 2010. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition & metabolism, 7(1), p.18.

نوشته شده در دیدگاه‌تان را بنویسید

آیا شما سطح استرس اکسیداتیو و بیومارکرهای آنتی‌اکسیدانتی خود را آزمایش کرده‌اید؟

استرس اکسیداتیو یک نیروی ثابت در زندگی روزمره ماست. هنگامی‌که بدن ما قادر به مقابله با استرس‌های اکسیداتیو باشد، قوی‌تر و سالم‌تر به عمر خود ادامه می‌دهد. افزایش استرس اکسیداتیو عامل اصلی بروز بیماری‌های دژنراتیو مانند سرطان، بیماری قلبی، سندروم خستگی مزمن و بیماری‌های نوروژنیک است. این بیماری‌ها زمانی رخ می‌دهد که دفاع آنتی‌اکسیدانی بدن برای خنثی‌کردن ترکیبات رادیکال آزاد به نام گونه‌های فعال اکسیژن  (ROS) عمل نمی‌کند.

این رادیکال‌های آزاد، مولکول‌های ناپایدار مولکولی هستند که در طی فعالیت‌های متابولیسم پایه‌ای مثل فعالیت‌های ایمنی بدن، تولید انرژی در میتوکندری و سم‌زدایی در کبد تولید می‌شوند. برای محافظت در برابر اثرات مضر این رادیکال‌های آزاد، سلول‌ها از آنتی‌اکسیدان‌ها استفاده می‌کنند. آنتی‌اکسیدان‌ها اکثرا از رژیم‌های غذایی مانند بیوفلاوونوییدهای مرکبات، پروانتوسیانین‌های موجود در انواع توت، پلی‌فنول‌های موجود در چای سبز، شکلات ، قهوه و کاروتنوئید موجود در زرده تخم‌مرغ، ماهی قزل‌آلا و هویج تامین می‌شوند.

این آنتی‌اکسیدان‌ها یک اثر ضدالتهابی قوی در بدن و محافظت از سلول‌ها، بافت‌ها و اندام‌ها از عوامل استرس‌زای التهابی و اکسیداتیو دارند که نقش مهمی دردوره سالمندی، کیفیت زندگی و پیشگیری از بیماری‌های مزمن دارد. نیازهای آنتی‌اکسیدانی می‌تواند بین افراد متفاوت باشد و بنابراین آزمایش‌های بالینی برای ارزیابی سطح فردی استرس اکسیداتیو و ترکیبات آنتی‌اکسیدانی توسعه داده شده است. این تست به پزشک اجازه می‌دهد تا کمبودهای کلیدی را مشخص کند تا توانایی بدن برای انطباق و ابتلا به بیماری را محدود نماید.

اندازه‌گیری کلیدی باید شامل آنتی‌اکسیدان‌های اصلی و متابولیت‌های بیوشیمیایی باشد که شامل نسبت گلوتاتیون، سیستئین، سیستئین / سیستین، نسبت سولفات و سیتستین / سولفات و ظرفیت آنتی‌اکسیدانی کل است. این آزمایش هم‌چنین باید در آنزیم‌های مهم آنتی‌اکسیدانی مانند سوپراکسید دیسموتاز و گلوتاتیون پراکسیداز مشاهده شود. در نهایت، آزمون باید سطوح آسیب سلولی مانند لیپید پراکسیدازها را تحلیل کند.

بدن هم‌چنین آنتی‌اکسیدان‌هایی مانند سوپراکسید دیسموتاز، گلوتاتیون پراکسیداز و کاتالاز تولید می‌کند که در داخل سلول تولید می‌شوند و به محافظت از غشای بیرونی سلول، DNA  و تولید انرژی در میتوکندری کمک می‌کنند.

رادیکال‌های آزاد و استرس اکسیداتیو بخشی ضروری از زندگی هستند و باعث رشد و انطباق در سراسر بدن می‌شوند. فردی با حفاظت آنتی‌اکسیدانی بهینه شده با موفقیت به کاهش استرس اکسیداتیو طبیعی در بدن می‌پردازد. فردی که دارای حفاظت آنتی‌اکسیدانی ضعیف است قادر نخواهد بود با استرس اکسیداتیو مقابله کند و در طول زمان مشکلات جدی سلامتی را متحمل خواهد شد. افزایش شدید سطح استرس اکسیداتیو، یک فرآیند کشنده است که می‌تواند به طور مداوم  قبل از علائم علمی رخ دهد. ارزیابی توانایی بدن برای تولید و استفاده از آنتی‌اکسیدان‌ها می‌تواند به صورت جامع انجام شود که شامل بیومارکرهای زیستی  ذخایر آنتی‌اکسیدانی، عملکرد آنزیمی و آسیب سلولی است.

 

منابع:

Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J., 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences97(6), pp.2940-2945.

Sorolla, M.A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J. and Cabiscol, E., 2008. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine45(5), pp.667-678.

Kasai, H., 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research/Reviews in Mutation Research387(3), pp.147-163.

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری SLOS

سندروم Smith Lemli Opitz)  SLOS) یک بیماری نادر است و زمانی اتفاق می‌افتد که بیماران از هردو والد نقص ژنتیکی Dhcr7، که آخرین آنزیم را در مسیر بیوسنتز کلسترول (۷دهیدروکلسترول‌ردوکتاز) رمزگذاری می‌کند، ارث می‌برند. SLOS یک اختلال ژنتیکی آتوزوم مغلوب است و طیف  گسترده‌ای از بیماران SLOS دارای رفتارهای اختلالی طیف اوتیسم نیز (ASD) هستند.  این سندروم با خصوصیات مشخص چهره، اندازه سر کوچک (میکروسفالی)، ناتوانی ذهنی یا مشکلات یادگیری و مشکلات رفتاری مشخص می‌شود. ضایعات قلب، ریه‌ها، کلیه‌ها، دستگاه گوارش و تناسلی نیز ممکن است در این بیماری مشاهده شود.

طبق مطالعات می‌توان علائم آسیب اکسیداتیو را در SLOS مشاهده کرد بنابراین درمان‌ آنتی‌اکسیدانی در برخی از جمعیت‌ موش‌های دارای این نقص انجام شده است. برای نشان دادن عدم تعادل اکسیداتیو در SLOS  بیومارکرهای  پراکسیداسیون لیپید مورد ارزیابی قرار گرفت.مالون‌دی‌آلدهید MDA به طور معنی‌داری در موش‌های جهش‌یافته نسبت به گروه‌های کنترلی تغییر یافته بود. MDA  از اکسیداسیون اسید آراشیدونیک حاصل می‌شود. سطوح پایین MDA در موش‌های سالم کنترلی در طی استرس اکسیداتیو افزایش یافته و هم‌چنین میزان کمتری در موش‌های موتانت هترو نسبت به گروه کنترلی مشاهده می‌شود.

این الگو از اثرات، با اندازه‌گیری ایزوپروستان‌ها و نوروپروستان‌ها نیز تأیید شدند. ایزوپروستان‌ها نیز از اسید آراشیدونیک مشتق شده‌اند و بیومارکر خاص و پایدار آسیب اکسیداتیو محسوب می‌شوند.  تمامی مطالعات نتایج مشابهی نشان دادند. در این موش‌ها تفاوت بین ايزوپروستان‌ها وجود نداشت، اما افزایش قابل ملاحظه‌ای در میزان  نوروپروستان‌ها مشاهده شد. داده‌ها تغییرات در میزان استرس اکسیداتیو و ارتباط آن‌ها با میزان این بیومارکرها را تایید می‌کنند.  با این حال، مطالعات بیشتری باید بر روی مکانیزم آسیب اکسیداتیو بر روی SLOS مربوط به محصولات اکسید شده انجام گیرد.

داده‌ها نشان‌دهنده ارتباط بین استرس اکسیداتیو و میزان بیومارکر در SLOS است و مطالعات بیشتری باید برروی محیط اکسیداتیو و تاثیر آن بر عملکرد عصبی انجام بگیرد. اما این مساله اثبات شده‌است که آسیب اکسیداتیو در دوره‌ها و شرایط خاصی در بدن رخ می‌دهد و کاهش این آسیب‌ها می‌تواند بر سلامت عملکرد و رفتار عصبی تاثیرگذار باشد،  این مطالعات باید به صورت بالینی نیز آزمایش شود که در صورت تایید جهت جلوگیری از آسیب و کم کردن اثرات بیماری و هم‌چنین بهبود کیفیت زندگی بیماران کاربرد خواهند داشت.

 

منبع:

Sharif, N.F., Korade, Z., Porter, N.A. and Harrison, F.E., 2017. Oxidative stress, serotonergic changes and decreased ultrasonic vocalizations in a mouse model of Smith–Lemli–Opitz syndrome. Genes, Brain and Behavior.

نوشته شده در دیدگاه‌تان را بنویسید

آیا آنتی‌اکسیدان‌های جدید می‌توانند در میزان موفقیت درمان‌های سلولی تاثیرگذار باشند؟

تحقیقات نشان می‌دهد که درمان‌های سلولی با یک ترکیب شیمیایی که بقای آن را پشتیبانی می‌کند برای درمان طیف وسیعی از بیماری‌ها مفید هستند. بررسی‌های آزمایشگاهی نشان می‌دهد که مولکول ساخته شده جدید توسط انسان – یک نوع آنتی‌اکسیدان – از سلول‌های سالم در برابر آسیب‌هایی که به هنگام بیماری و در طول درمان سلول به بیمار منتقل می‌شوند، محافظت می‌کند. چنین روش‌هایی در حال حاضر برای درمان افراد مبتلا به اختلالات خون و هم‌چنین رشد بافت پوست برای بیماران مبتلا به سوختگی شدید استفاده می‌شود.

مطالعه برروی ترکیب جدید آزمایش‌شده نشان می‌دهد که این ترکیب 10 برابر از قوی‌ترین آنتی اکسیدان موجود در طبیعت در محافظت از سلول‌ها در مقابل آسیب‌ موثرتر است. تا حدود 90 درصد سلول‌ها می‌توانند در طول پروسه پیوند، آسیب‌دیده یا کشته شوند، این می‌تواند احتمال موفقیت درمان را تحت تأثیر قرار دهد. کارشناسان می‌گویند که قبل از درمان سلول‌ها و قبل از این‌که به بیماران پیوند زده شود، می‌تواند به بهبود میزان موفقیت درمان‌های مبتنی بر سلول کمک کند.

محققان در حال تلاش برای ایجاد چنین روشی برای درمان بیماری‌هایی مانند بیماری پارکینسون و مولتیپل اسکلروز هستند. دانشمندان دانشگاه ادینبورگ سلول‌ها را در معرض یک ماده سمی قرار می‌دهند که تقلید از شوک‌هایی است که سلول‌ها هنگام پیوند آن‌ را تجربه می‌کنند. سپس آن‌ها آزمایش کردند که درمان سلول‌ها با آنتی‌اکسیدان‌ها می‌تواند آن‌ها را از آسیب محافظت کند.

محققان ترکیب جدید مصنوعی را Proxison نامیده‌اند که 90 درصد از سلول‌ها را از مرگ نجات می‌دهد. مطالعات دیگری نیز در مورد zebrafish انجام شده است، آنتی‌اکسیدان ساخته شده توسط انسان که می‌تواند سلول‌ها را از مرگ محافظت کند. برای رسیدن به نتیجه مشابه، بیش از 10 برابر غلظت قوی آنتی‌اکسیدان طبیعی مورد آزمایش قرار گرفت.

محققان علاقه‌مندند بدانند که آیا آنتی‌اکسیدان‌ها می‌توانند به افزایش شانس انواع درمان‌های سلول‌ کمک کنند یا نه؟ بسیاری از بیماران ممکن است بتوانند از این درمان‌ها بهره مند شوند اگر بقای سلولی بتواند به طور قابل توجهی بهبود یابد. آنتی‌اکسیدان جدید بر اساس ترکیب طبیعی موجود در میوه و سبزیجات طراحی شده است. این تیم تغییرات کمی را در ساختار شیمیایی ایجاد کرد تا یک آنتی‌اکسیدان فوق‌العاده تولید کند که امیدوار است به یک داروی بالقوه جدید تبدیل شود.

دكتر تیلو کونات مدير ارشد پژوهشگاه علوم پزشكي دانشگاه ادينبورگ، گفت: “ما Proxison را به عنوان يك آنتي‌اكسيدان قدرتمند تشخيص داديم كه در محافظت از سلول‌ها از استرس اكسيداتيو و آسيب‌هاي راديكال آزاد بسيار موثر است.” این مطالعه در ادینبورگ یک گام مهم در جلوگیری از کنار گذاشتن موانع درمانی با پتانسیل افزایش کارایی سلول‌های پیوند شده در بیماران است و اجازه می‌دهد تا بیماران کمتر با منابع گران قیمت درمان شوند.”

 

منابع:

Halliwell, B., 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. The lancet344(8924), pp.721-724

Drummond, N.J., Davies, N.O., Lovett, J.E., Miller, M.R., Cook, G., Becker, T., Becker, C.G., McPhail, D.B. and Kunath, T., 2017. A novel mitochondrial enriched antioxidant protects neurons against acute oxidative stress. bioRxiv, p.109439

Sidransky, E., Nalls, M.A., Aasly, J.O., Aharon-Peretz, J., Annesi, G., Barbosa, E.R., Bar-Shira, A., Berg, D., Bras, J., Brice, A. and Chen, C.M., 2009. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. New England Journal of Medicine361(17), pp.1651-1661.

نوشته شده در دیدگاه‌تان را بنویسید

آیا بیومارکرها در بیماری هانتینگتون می‌توانند مفید باشند؟

نوع خاصی از آسیب به نام “استرس اکسیداتیو” ممکن است به سلول‌های بیمار و مرگ در بیماری هانتینگتون کمک کند. گزارش‌های قبلی نشان می‌دهد که بیومارکر استرس اکسیداتیو می‌تواند به عنوان یک بیومارکر برای آزمایشات بالینی HD ( بیماری هانتینگتون) بررسی شود. اما به تازگی مطالعه‌ای منتشر شده که نشان می‌دهد که این بیومارکر مفید محسوب نمی‌شود. آیا این خبر بد است؟

هدف اکثر مطالعات بر روی بیماری هانتینگتون، ایجاد درمان موثر برای بیماران است. برای رسیدن به این هدف ، باید صنعت دارو را در این زمینه گسترش داد و برای دریافت دارو، باید آزمایش‌های بالینی صورت بگیرد تا اثر بخشی آنان مشخص گردد. اما چگونه می‌توانیم بدانیم که درمان موثر است؟

درباره برخی داروها به راحتی می‌توان اثربخشی آنان را تایید کرد زیرا به روشنی بر علایم HD تأثیر مثبتی دارند، همانند تاثیر بر حرکات فیزیکی مربوط به بیماری. اما ایده‌آل محققین رسیدن به دارویی است که درواقع باعث جلوگیری، کند شدن و یا توقف ساخت سلول‌های مغزی شود که باعث ایجاد HD می‌گردد. این مساله در بیماری هانتینگتون و سایر بیماری‌های مغزی بسیار سخت است، زیرا نمی‌توان به طور مستقیم مغز را بررسی و عملکرد دارو را سنجید. بیومارکر چیزی است که می‌تواند در مغز سنجیده شود و اطلاعاتی درباره اتفاقاتی که در مغز می‌افتد در اختیار قرار دهد.

بیومارکرها واقعا مهم هستند، زیرا آنها توانایی پیشرفت به سوی درمان‌های موثر را دارند. محققان نیاز به سنجش‌های قابل اعتماد و ساده دارند و این‌که بدانند در مغز بیماران هانتینگتون چه اتفاقی می‌افتد، بدون این‌که مجبور شوند جمجمه‌ها را باز کنند. هم‌چنین یک بیومارکر خوب می‌تواند در تعیین این‌که آیا یک داروی جدید دارای اثر مفید بر HD بوده یا نه مورد استفاده قرار بگیرد

 

استرس اکسیداتیو در HD

یکی از مواد تولیدشده توسط تمام سلولهای بدن، از جمله مغز، یک ماده شیمیایی به نام 8OhdG است. نام شیمیایی آن 8‌هیدروکسی دزوکسی گوانوزین بوده و تشخیص آن بسیار ساده است. سلول‌های ما به طور مداوم در معرض انواع استرس هستند. یکی از مهم‌ترین انواع استرس‌ها، استرس اکسیداتیو نامیده می‌شود. اساسا ما به اکسیژن نیاز داریم تا نیاز به انرژی را تامین کنیم، اما اکسیژن مولکول مضر نیز می‌تواند باشد و 8OhdG یک ماده شیمیایی است که وقتی اکسیژن DNA را تخریب می‌کند، تولید می‌شود.

در سال 1997، دکتر فلینت بیال از کالج پزشکی Weil Cornell، سطوح بالای 8OhdG را در مغز افرادی که در اثر بیماری هانتینگتون جان خود را از دست داده بودند،نشان داد و این مطالعه در کارهای بعدی منجر به این ایده شده است که HD با افزایش استرس اکسیداتیو همراه است.

بر اساس این ایده‌ها در مورد افزایش استرس اکسیداتیو در بیماری هانتینگتون، در سال 2006 یک گروه تحت هدایت دیانا روسس و استیو هرش در بیمارستان عمومی ماساچوست در بوستون، میزان بیومارکر 8OhdG را در خون بیماران HD که تحت تیمار دارویی بودند، بررسی کردند . نتایج بسیار جالب توجه بودند، آن‌ها دریافتند که بیماران HD دارای میزان بالاتری از 8OhdG نسبت به افراد کنترل‌شده هستند که در حقیقت، 8OhdG بیش از سه برابر که افزایش چشم‌گیری است محاسبه شد. دارویی که مورد آزمایش قرار گرفت، creatine نامیده شد که به نظر می‌رسید استرس اکسیداتیو را کاهش می‌دهد. در واقع، مصرف این دارو میزان 8OhdG را کاهش می‌دهد.

بر پایه نتایج این آزمایش نسبتا کوتاه‌مدت ، creatine بر روی حدود 650 بیمار مبتلا به HD، برای مدت طولانی‌تری تست شده است. این آزمایش جدید که CREST-E نامیده می‌شود، سطوح 8OhdG را در خون نیز اندازه‌گیری می‌کند.

8OhdG بیانگر چیست ؟

مطالعات اخیر نشان داده است که 8OhdG کاملا به همان اندازه که انتظار می‌رفت مفید نیست. به عنوان یک بیومارکر مفید، انتظار می‌رفت تغییرات سطوح آن در افراد قبل از ابتلای شدید به بیماری هانتینگتون مشاهده شود. در سال 2012 مطالعه‌ای تحت عنوان PREDICT-HD ( پیش‌بینی بیماری هانتینگنون ) بر اساس بیومارکر 8OhdG انجام شد. این مطالعه علایم افراد مبتلا به جهش HD را بررسی می‌کند، اما هنوز نشانه‌هایی از بیماری را نشان نمی‌دهند. این‌ها افرادی هستند که در آینده درمان خواهند شد و نتیجه بررسی تغییرات در این جمعیت، گامی مهم در جهت توسعه آزمایش‌های دارویی مناسب است.

سطح 8OhdG در خون افراد در مطالعه PREDICT-HD اندازه گیری شد. در این گروه، تغییرات بسیار کمی در سطوح 8OhdG وجود دارد. تجزیه و تحلیل پیچیده ریاضی نشان داد که ممکن است افزایش سطح 8OhdG در افرادی که دارای جهش HD هستند، افزایش یابد، اما تغییر بسیار کم خواهد بود. محققان PREDICT-HD با استفاده از دو تکنولوژی متفاوت برای اندازه‌گیری 8OhdG به نتایج متضاد رسیدند که یکی از آن‌ها بیان‌گر افزایش اندک و دیگری هیچ تغییری را نشان نداد.

مطالعات جدید در جهت بررسی اهمیت 8OhdG

این مطالعات گیج‌کننده بودند و دانستن اینکه آیا 8OhdG می‌تواند در بیماران HD به عنوان یک بیومارکر اندازه‌گیری شود یا نه را دشوار می‌کرد. به امید روشن شدن این مسئله، دانشمندان بنیاد CHDI و TRACK-HD مطالعه جدیدی را انجام دادند که به طور اختصاصی در مورد درک آنچه برای8OhdG در خون بیماران HD و حامل‌های جهش اتفاق می‌افتد، طراحی شده است. در ابتدا این دانشمندان به دقت تکنولوژی اندازه گیری این بیومارکر را بررسی کردند، زیرا بدون اندازه‌گیری دقیق، هیچ نتیجه‌ای نمی‌تواند مورد استفاده قرار بگیرد.

با درک روشنی از دقیق بودن ابزارهای سنجش، تیم به 320 نمونه خون تحت مطالعه TRACK-HD تقسیم شد. این مطالعه به دقت افرادی که دارای جهش HD هستند را بررسی می‌کند. با استفاده از هر دو روش اندازه‌گیری، این مطالعه دقیق به وضوح ثابت می‌کند که در خون افراد مبتلا به جهش HD اختلاف سطح 8OhdG وجود ندارد. سطح بیومارکر در ابتدا و با پیشرفت بیماری تغییری نکرد. این بدان معنی است که سطوح 8OhdG یک نشانگر خوب برای آزمایشات HD نیست.

این ممکن است بد به نظر برسد، در ابتدا تصور می‌شد 8OhdG ممکن است یک بیومارکر خوب برای تیمارهای دارویی HD باشد، و اکنون مشخص شده است که این‌گونه نیست. اما در واقع این اطلاعات بسیار مفید است. دانستن اینکه 8OhdG مفید نیست، محققان را قادر می‌سازد که بر روی بیومارکرهای جدیدی که می‌تواند در این بیماری مورد سنجش قرار بگیرند، تمرکز کنند.

مطالعاتی مانند PREDICT-HD و TRACK-HD مجموعه عظیمی از بیومارکرهای بالقوه احتمالی برای پیگیری در اختیار قرار داده‌اند و این بدان معنی است که محققان یک گام به یافتن بیومارکر مفید در HD نزدیک شده‌اند.


منابع:

Rosas, H.D., Lee, S.Y., Bender, A.C., Zaleta, A.K., Vangel, M., Yu, P., Fischl, B., Pappu, V., Onorato, C., Cha, J.H. and Salat, D.H., 2010. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4), pp.2995-3004.

Lerch, J.P., Carroll, J.B., Dorr, A., Spring, S., Evans, A.C., Hayden, M.R., Sled, J.G. and Henkelman, R.M., 2008. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. Neuroimage, 41(2), pp.243-251.

Biglan, K.M., Ross, C.A., Langbehn, D.R., Aylward, E.H., Stout, J.C., Queller, S., Carlozzi, N.E., Duff, K., Beglinger, L.J. and Paulsen, J.S., 2009. Motor abnormalities in premanifest persons with Huntington’s disease: The PREDICT‐HD study. Movement Disorders, 24(12), pp.1763-1772.

Georgiou-Karistianis, N., Hannan, A.J. and Egan, G.F., 2008. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain research reviews, 58(1), pp.209-225.

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری مزمن کلیه CKD

بیماری مزمن کلیه (CKD) یک عامل خطرناک مهم در جهت بروز بیماری‌های قلبی عروقی و مرگ ناشی از نارسایی قلبی است. افزایش استرس اکسیداتیو در افرادی که مبتلا به CKD هستند به عنوان یک عامل احتمالی برای برخی بیماری‌های قلبی عروقی شناخته می‌شود. درمان آنتی‌اکسیدانی می‌تواند مرگ و میر قلبی و عروقی در افراد مبتلا به CKD را کاهش دهد.

گرچه درمان آنتی‌اکسیدانی خطر ابتلا به بیماری قلبی عروقی و عوارض این بیماری‌ها را در افراد مبتلا به CKD کاهش نمی‌دهد، اما ممکن است در افرادی که تحت درمان دیالیزی هستند، تاثیر گذار باشد. با این حال، مطالعات اندک و به طور کلی کیفیت پایین تحقیقات گوناگون، اطلاعات کافی برای تایید این امکان را در اختیار قرار نمی‌دهد. شواهد موجود نشان می‌دهد که درمان آنتی‌اکسیدانی در بیماران مبتلا به CKD می‌تواند از پیشرفت بیماری تا مراحل پایانی (ESKD) جلوگیری کند؛ با این حال این یافته بر اساس تعداد بسیار کمی از آزمایشات به دست آمده است. مطالعات بیشتر با پیگیری طولانی‌تر برای تایید این مساله و بررسی اثربخشی آنتی‌اکسیدان در افراد مبتلا به CKD ضروری است.

افراد مبتلا به بیماری مزمن کلیه (CKD) دارای خطر بالای ابتلا به بیماری‌های قلبی و مرگ زودرس هستند. گرچه بیماری قلبی دارای علل زیادی است، به نظر می‌رسد آسیب ناشی از تبادل اکسیژن در سلول‌های بدن (استرس اکسیداتیو) یک مشکل اساسی است. افراد مبتلا به CKD اغلب دارای شواهدی از استرس اکسیداتیو هستند و این به طور مثبت با میزان پیشرفت بیماری کلیه ارتباط دارد. شواهد موجود، نحوه اثربخشی درمان آنتی‌اکسیدان را در بیماران مبتلا به CKD بررسی کرده و بیان می‌کند که به طور کلی درمان آنتی‌اکسیدانی در افراد مبتلا به CKD خطر ابتلا به بیماری قلبی یا مرگ را کاهش نمی‌دهد، اما این می‌تواند بسته به مرحله CKD متفاوت باشد. شواهدی وجود دارد که نشان می‌دهد افراد مبتلا به دیالیز ممکن است از درمان آنتی‌اکسیدانی بهره‌مند شوند و این درمان‌ها می‌توانند خطرات جانبی بیماری کلیوی را کاهش دهند . با این حال، این نتایج مبتنی بر شواهد بسیار محدود است و مطالعات بیشتری برای تأیید این‌که آیا درمان آنتی‌اکسیدان برای افراد مبتلا به CKD مفید است، مورد نیاز است…

 

منبع:

Jun, M., Venkataraman, V., Razavian, M., Cooper, B., Zoungas, S., Ninomiya, T., Webster, A.C. and Perkovic, V., 2012. Antioxidants for chronic kidney disease. The Cochrane Library.

نوشته شده در دیدگاه‌تان را بنویسید

اهمیت آنتی‌اکسیدان‌ها در صنعت مواد غذایی

غذاهای آنتی‌اکسیدانی و مواد تشکیل‌دهنده آن جزء مهمی از صنایع غذایی هستند. در گذشته، آنتی‌اکسیدان‌ها در درجه اول برای کنترل اکسیداسیون و تضعیف آسیب‌ها استفاده می‌شدند، اما امروزه بسیاری از آن‌ها به دلیل مزایای بهداشتی کاربرد دارند. با این حال، استرس اکسیداتیو، که شامل تولید گونه‌های فعال اکسیژن(ROS) است، زمینه‌ای برای بروز بیماری‌های مزمن و پیری است. شواهد جمع آوری شده نشان می‌دهد که ROS عملکردهای متابولیک ضروری را مختل می‌کند و حذف بسیاری از ROS ها می‌تواند مسیرهای سیگنالینگ سلول را بهبود بخشد و در واقع خطر ابتلا به بیماری مزمن را کاهش می‌دهد. ضروری است که صنایع غذایی از پیشرفت در این زمینه آگاهی یابند تا علم مربوط به مواد غذایی را به روشنی بیان کنند. این ممکن است به معنی بررسی دوباره پیامدهای سلامت و تغییر مقدار آنتی‌اکسیدانی مواد غذایی باشد.
امروزه در صنایع‌غذایی و دارویی استفاده گسترده‌ای از آنتی‌اکسیدان‌های طبیعی و مصنوعی می‌شود. آنتی‌اکسیدان‌های طبیعی مانند پلی‌فنل‌ها عمدتا از گیاهان حاصل می‌شوند، در حالی که آنتی‌اکسیدان‌های مصنوعی به طور صنعتی تولید می‌شوند و اهمیت این آنتی‌اکسیدان‌ها در حفاظت از مواد غذایی روشن است. چربی‌ها و مواد مغذی موجود در بسیاری از انواع غذاها مانند گوشت دودی، گوشت قرمز، غذاهای روزانه و غذاهای دریایی، می‌توانند فاسد شوند. فساد میکروبیولوژیک و اکسیداسیون چربی توسط رادیکال‌های آزاد که می‌تواند توسط نور، گرما یا یون‌های فلزی ایجاد شود رخ داده، سپس پراکسیدهای تشکیل‌شده در طول این واکنش‌ها، به‌نوبه خود، می‌توانند با لیپیدهای دیگر و اسیدهای چرب خاص واکنش دهند تا گونه‌های جدیدی از پراکسید را تشکیل دهند. اهمیت آنتی‌اکسیدان‌ها در این زمینه این است که ROS و رادیکال‌های آزاد را در طی واکنش جهت جلوگیری از تجزیه مواد غذایی از بین می‌برد.
عاملي که چالش اصلی در سنجش ظرفيت آنتي‌اکسيدان به حساب می‌آید بدین شرح است: در سيستم‌هاي بيولوژيک، حداقل چهار منبع عمومي آنتي‌اکسيدان‌ وجود دارد:
(1) آنزيم‌ها مانند سوپراکسيد ديسموتاز، گلوتاتيون پراکسيداز و کاتالاز
(2) مولکول‌های بزرگ (آلبومین، فریتین و پروتئین‌های دیگر)
(3) مولکول‌های کوچک ( اسید اسکوربیک، گلوتاتیون، اسید اوریک، توکوفرول، کاروتنوئیدها، (پلی) فنل )
(4) برخی از هورمون‌ها (استروژن، آنژیوتانسین، ملاتونین، و غیره)

از سوی دیگر، منابع چندگانه رادیکال و اکسیدان آزاد وجود دارد و هر دو اکسیدان و آنتی‌اکسیدان‌ها ویژگی‌های شیمیایی و فیزیکی متفاوت دارند. آنتی‌اکسیدان‌ها در بعضی موارد ممکن است با مکانیسم چندگانه در یک سیستم واحد یا با یک مکانیزم مختلف بسته به سیستم واکنش عمل کنند. علاوه بر این، آنتی‌اکسیدان‌ها ممکن است به شیوه‌ای متفاوت به منابع مختلف رادیکال و اکسیدکننده پاسخ دهند. به عنوان مثال، کاروتنوئیدها بر روی پراکسیل نسبت به فنول‌ها و سایر آنتی‌اکسیدان‌ها تاثیر کمتری داشته، با این حال، اکسیژن تنها یک رادیکال نیست و از طریق مکانیسم‌های رادیکالی واکنش نشان نمی‌دهد، بلکه واکنش بیشتر به صورت اضافه شدن از طریق پیوند و تشکیل آندوپروکسیدها صورت می‌گیرد که می‌توانند به رادیکال‌های آلوکسیل که باعث واکنش‌های زنجیره‌ای می‌شوند تبدیل شود.

از آنجایی که ویژگی‌های مکانی واکنش و مکانیسم‌های چندگانه در سنجش آنتی اکسیدانی تاثیرگذار هستند هیچ آزمایش واحدی به درستی تمام منابع رادیکال یا تمام آنتی‌اکسیدان‌ها را در یک سیستم پیچیده منعکس نمی‌کند. واضح است که مطابقت منابع رادیکال و ویژگی‌های سیستم با مکانیسم‌های واکنش آنتی‌اکسیدانی در انتخاب روش‌های مناسب آزمایش و همین‌طور در نظر گرفتن نحوه استفاده نهایی از نتایج، بسیار مهم است.

 

منابع:

Prior, R.L., Wu, X. and Schaich, K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry53(10), pp.4290-4302

Prieto, P., Pineda, M. and Aguilar, M., 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry269(2), pp.337-341

Erel, O., 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry37(4), pp.277-285

Janaszewska, A. and Bartosz, G., 2002. Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scandinavian journal of clinical and laboratory investigation62(3), pp.231-236

Koleva, I.I., Van Beek, T.A., Linssen, J.P., Groot, A.D. and Evstatieva, L.N., 2002. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical analysis13(1), pp.8-17

Finley, J.W., Kong, A.N., Hintze, K.J., Jeffery, E.H., Ji, L.L. and Lei, X.G., 2011. Antioxidants in foods: state of the science important to the food industry. Journal of Agricultural and Food Chemistry59(13), pp.6837-6846

Schillaci, C., Nepravishta, R. and Bellomaria, A., 2014. Antioxidants in food and pharmaceutical research. Albanian Journal of Pharmaceutical Sciences1(1), pp.9-15.