نوشته شده در دیدگاه‌تان را بنویسید

الایزا در بیماری‌های طیور (قسمت اول)

مایکوپلاسموز یک بیماری عفونی ماکیان و عامل مهم خسارت اقتصادی وسیع، از طریق ایجاد بیماری‌های دستگاه تنفس، ناهنجاری‌های حرکتی، کاهش در رشد و نیز کاهش بازدهی جوجه درآوری می‌باشد که عامل شایع آن مایکوپلاسماگالی‌سپتیکوم(MG) است. عفونت مایکوپلاسما بیشترین بیماری در گونه های پرندگان است؛ مانند CRD در جوجه‌ها، سینوزیت عفونی در بوقلمون. میزبان و حاملان طبیعی شامل قرقاول، کبک، بلدرچین، طوطی، اردک و غاز می‌باشد. این باکتری با اثر بر مرغان موجب بیماری مزمن تنفسی (CRD) می‌شود که باعث کاهش میزان تبدیل غذا (FCR)، کاهش تولید تخم مرغ و همچنین افزایش هزینه تولید می‌گردد. ورم ملتحمه، ترشحات کف‌مانند از بینی و چشم نیز در تعداد زیادی از پرندگان آلوده مشاهده گردید. این بیماری بیشتر در پرندگان جوان رویت می شود.

میزان شدت مایکوپلاسموز وابسته به عفونت ثانویه باکتریایی به ویژه Escherichia coli ،  و همچنین برخی از عفونت‌های ویروسی مانند ویروس بیماری نیوکاسل و ویروس انسدادی برونشیت است. تشخیص مایکوپلاسماگالی‌سپتیکوم در مزارع طیور به طور کلی توسط تست آگلوتیناسین صفحه‌ای سریع (SPAT) یا توسط تست  ELISA انجام می‌شود. با وجود استفاده از آزمون کشت، آزمایش‌های بیوشیمیایی مختلف، آزمایش‌های سرولوژیکی و آزمایش مولکولی(واکنش زنجیره ای پلیمراز) برای تشخیص مایکوپلاسماگالی‌سپتیکوم، اما باز شایع‌ترین و مشخص‌ترین آزمون سرولوژیک برای تشخیص سوق کلاسیک و همچنین MG بالینی در گله، الایزاغیرمستقیم ( (indirect ELISA) و آزمون آگلوتیناسیون سطح سرمی است. آزمایش ELISA دقیق‌تر می تواند با استفاده از خواننده ELISA تا سطح بسیار دقیق آنتی‌بادی شناسایی کند. از سوی دیگر آزمون آگلوتیناسیون سرمی یک آزمایش سریع است که در آن واکنش آنتی‌ژن آنتی‌بادی توسط چشم تشخیص داده می‌شود. هر دو آزمايش سرولوژيكي براي تشخيص آنتي بادي‌هاي اختصاصي در برابر MG مورد استفاده قرار می‌گیرد، هر چند كه حساسيت و ويژگي دو روش متفاوت است. سرولوژی به عنوان ابزار تشخیصی، انتخاب به خصوص برای غربالگری گله‌های مرغ دیده می‌شود. آگلوتینین سرم اغلب نتایج مثبت کاذب را تولید می‌کند، در حالی که ELISA ویژگی های بالاتری را ارائه می‌دهد.

اکنون باید به عنوان آزمایش‌های غربالگری از نظارت معمول مایکوپلاسماگالی‌سپتیکوم برای وضعیت سلامت طیور استفاده شود. نتایج مثبت حاصل از آزمون SPA باید با استفاده از تست های اضافی نظیر HI، کشت یا تست‌های مولکولی(PCR)  به دلیل کمبود مشخصات مشاهده شده در SPA تایید شود. با این حال، آزمایش IELISA و SPA می‌تواند برای کشاورزان مرغداری مفید باشد تا وضعیت MG گله را بدانند و همچنین نقش مهمی در استفاده از داروهای ضدمیکروب شناسی، برنامه واکسیناسیون و بیولوژیک مزرعه ایفا کنند. پرندگان آلوده برای همه‌ی عمر این باکتری را حمل می‌کنند.

تشخیص مایکوپلاسماگالی‌سپتیکوم با ELISA برای انواع گونه های پرنده، ترکیبی است از حساسیت بالا یک آزمایش ELISA با خاصیت بالا با توجه به آنتی بادی منوکلونال اختصاصی Mycoplasma gallisepticum. در این روش آنتی‌بادی‌ها را در نمونه‌های سرم و تخم‌مرغ تخمگذار 10 روز پس از عفونت تشخیص می‌دهد. این آزمایش ابزار کنترل مایکوپلاسماگالی‌سپتیکوم را فراهم می‌کند و زیان‌های اقتصادی تولید مرغ را به حداقل می‌رساند. در نتیجه می‌توان کنترل یکی از پر هزینه ترین بیماری های پرندگان با توزیع جهانی را که شیوع افقی و همچنین با انتقال عمودی می‌تواند رخ دهد را در‌ دست گرفت.

منابع:

 

Sesti, L., Inoue, A., Chacón, J. and Lopes, M.A., 2016. GPS (GLOBAL PROTECTION STRATEGY): AN ORGANIZED, SIMPLE, OBJECTIVE AND FLEXIBLE POULTRY DISEASES SURVEILLANCE/DIAGNOSTIC AND VACCINATION MONITORING SYSTEM FOR A SUSTAINED AND PROFITABLE POULTRY MEAT AND EGG PRODUCTION. In WESTERN POULTRY DISEASE CONFERENCE  ) p. 257).

.Verma, V., 2018. Study on peptide based enzyme linked immune-sorbent assay for the diagnosis of infectious bronchiti ,Doctoral dissertation, LUVAS

الایزا در بیماری‌های طیور(قسمت دوم)

نوشته شده در دیدگاه‌تان را بنویسید

استخراج DNA چیست؟

استخراج DNA خارج‌کردن و جداسازی داکسی‌ریبونوکلئیک‌اسید (DNA) از سلول‌ها یا ویروس‌هایی است که دارای DNA به عنوان ماده ژنتیکی هستند.

DNA استخراج شده برای چه کاری استفاده می‌شود؟

استخراج DNA غالبا گام اولیه در بسیاری از فرایندهای تشخیصی است که برای تشخیص باکتری و ویروس‌ها در محیط زیست و نیز تشخیص بیماری‌ها و اختلالات ژنتیکی استفاده می‌شود. این تکنیک‌ها شامل روش‌های زیر می‌شوند:

فلورسانس در حالت هیبریداسیون ( FISH ) :  یک روش مولکولی است که اکثرا برای شناسایی و شمارش گروه‌های باکتری خاص است.

پلی‌مورفیسم قطعه انتهایی هضم‌شده  ( T-RFLP ) : برای شناسایی، مشخص نمودن و تعیین الگوهای مکانی و زمانی در جوامع باکتری اپی‌پلانکتون دریایی استفاده می‌شود.

توالی‌یابی: بخش‌هایی از ژنوم یا کل آن ممکن است دارای توالی و هم‌چنین عناصر کروموزومی اضافی برای مقایسه با توالی موجود در بانک ژن باشد.

DNA چگونه استخراج می‌شود؟

مرحله 1. شکستن سلول برای آزاد کردن DNA

سلول‌های نمونه از یکدیگر جدا می‌شوند، اغلب به وسیله یک وسیله فیزیکی مانند ورتکس کردن و در محلول حاوی نمک قرار می‌گیرند. یون‌های سدیم مثبت با نمک در محافظت از گروه‌های فسفات منفی که در امتداد ستون فقرات DNA قرار دارند شرکت می‌کنند. سپس مواد شوینده اضافه می‌شود. مواد شوینده لیپید‌ها را در غشای سلولی و هسته تجزیه می‌کند. DNA آزاد شده است چون این غشاها مختل می‌شوند.

مرحله 2: جداسازی DNA از پروتئین‌ها و سایر باقی مانده‌های سلولی

برای به دست آوردن یک نمونه تمیز از DNA، لازم است تا حد زیادی از باقی مانده‌های سلولی حذف شود. این کار را می‌توان با روش‌های مختلف انجام داد. اغلب یک پروتئاز (آنزیم پروتئینی) برای تخریب پروتئین‌های مرتبط با DNA و دیگر پروتئین‌های سلولی اضافه می‌شود. به صورت متناوب، برخی از باقی‌مانده‌های سلولی را می‌توان با فیلتر کردن نمونه حذف کرد.

مرحله 3. رسوب DNA با الکل

در نهایت، الکل یخ زده (یا اتانول یا ایزوپروپانول) به دقت به نمونه DNA اضافه می‌شود. DNA محلول در آب است، اما در حضور نمک و الکل، نامحلول است. در این مرحله رسوب ظاهر می‌شود. اگر مقدار زیادی از DNA وجود داشته باشد، ممکن است یک رسوب سفید ببینید.

مرحله 4. تمیز کردن DNA

نمونه DNA اکنون می‌تواند بیشتر تمیز شود. سپس آن را در یک بافر کمی قلیایی دوباره آماده کرده و آماده استفاده می‌شود.

مرحله 5. تأیید حضور و کیفیت DNA

برای انجام آزمایشات بیشتر، مهم است که غلظت و کیفیت DNA را بدانید. برای تعیین غلظت و خلوص DNA در یک نمونه، می‌توان از خواص چگالی نوری گرفته شده توسط یک اسپکتروفتومتر استفاده کرد. به جای آن، الکتروفورز ژل را می‌توان برای نشان دادن حضور DNA در نمونه خود و نشان دادن کیفیت آن به کار برد.

DNA استخراج شده در چه مواردی بررسی می‌شوند؟

DNA استخراج شده برای تجزیه و تحلیل مولکولی از جمله PCR، الکتروفورز، توالی یابی، اثر انگشت و کلونینگ استفاده می‌شود.

 

منابع:

Rohland, N., Glocke, I., Aximu-Petri, A. and Meyer, M., 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature protocols13(11), p.2447.

Guevara, E.E., Frankel, D.C., Ranaivonasy, J., Richard, A.F., Ratsirarson, J., Lawler, R.R. and Bradley, B.J., 2018. A simple, economical protocol for DNA extraction and amplification where there is no lab. Conservation genetics resources10(1), pp.119-125.

Fiedorova, K., Radvansky, M., Nemcova, E., Grombirikova, H., Bosak, J., Cernochova, M., Lexa, M., Smajs, D. and Freiberger, T., 2019. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Frontiers in microbiology10, p.821.

Zinger, L., Chave, J., Coissac, E., Iribar, A., Louisanna, E., Manzi, S., Schilling, V., Schimann, H., Sommeria-Klein, G. and Taberlet, P., 2016. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology and Biochemistry96, pp.16-19.

نوشته شده در دیدگاه‌تان را بنویسید

لومینسانس یا فلوروسنس؟

به نظر می‌رسد لومینسانس و فلورسنس یک معنی دارند مخصوصا هنگام استفاده از این مفاهیم به عنوان راهکارهای ردیابی مغناطیسی در آزمایشگاه‌های بیوسنسور یا آزمایشات تشخیصی in-vitro.  اما آن‌ها یکسان نیستند. بله، این مفاهیم هر دو یک فوتون را به عنوان الکترون می‌گیرند و الکترون از حالت انرژی بالاتر به حالت انرژی پایین‌تر می‌رود، اما تفاوت در روش متداولی است که در ابتدا موجب جذب الکترون به حالت انرژی بالا می‌شود. در فلورسنس، الکترون با اضافه کردن یک فوتون به حالت انرژی بالاتر برمی‌گردد. در لومینسانس، الکترون در حالت انرژی بالا به علت ایجاد نیتروژن متوسط ​​در یک واکنش شیمیایی است. نور در هنگام تجزیه محصولات نهایی واکنش تولید می‌شود.

انتشار نور در فلورسنس به دلیل یک الکترون برانگیخته است که به حالت انرژی پایین رسیده است.

برانگیختگی:

اولین گام در جهت ایجاد یک مولکول فلورسنت، انتشار نور است که الکترون را به یک سطح انرژی بالاتر تحریک می‌کند با قرار دادن مولکول در نور با طول موج مناسب ( این طیف تحریک نامیده می‌شود ) پروب‌های مختلف فلورسنت با طول موج‌های مختلفی از نور مرئی جذب می‌شوند. به عنوان مثال، الکترون‌های valence در AlexaFluor 594  با ورودی فوتون‌های نور 590 نانومتر به حالت انرژی بالاتر باز می‌گردند، در حالی که AlexaFluor488   با نور 496 نانومتری برانگیخته می‌شود.

انتشار:

در این حالت انرژی بالا الکترون‌ها پایدار نیستند و به حالت انرژی پایین‌تر می‌روند به این معنی که الکترون‌ها به صورت مرحله‌ای از سطح انرژی بالاتر به سطح انرژی پایین‌تر آمده و همیشه انرژی اضافی را به‌عنوان فوتون‌های یک رنگ خاص منتشر می‌کنند. اگر AlexaFluor 594 با طول موج مناسب برانگیخته شود، همیشه نور قرمز را با طول موج 617 نانومتر منتشر می‌کند و AlexaFluor 488 همیشه نور سبز را با طول موج 519 نانومتر منتشر می‌کند. این نور می‌تواند به صورت کیفی توسط چشم اندازه‌گیری شود و هم‌چنین می‌تواند به صورت کمی با طیف سنجی فلورسانس اندازه‌گیری شود.

نمونه دیگری از فلورسنس، نقطه‌های کوانتومی است. نقاط کوانتومی نانوبلورهای فلورسنت هستند که بسیار کوچک بوده و محدود به کوانتوم می‌باشند. این به این معنی است که طول موج انتشار، عملکرد مستقیمی از اندازه نقطه کوانتومی است. طیف تحریک از نقاط کوانتومی بسیار گسترده است، اما طیف انتشار بسیار باریک است. نقطه کوانتومی، کریستال‌های غیر معدنی هستند در حالی که پروب‌های فلورسنت، مولکول‌ها می‌باشند.

لومینسانس انتشار یک فوتون به علت واکنش شیمیایی است

برای تولید نور در یک واکنش شیمیایی هیچ نوری نیازی نیست که به واکنش اضافه شود. واکنش شیمیایی خود را در یک حالت برانگیخته تولید می‌کند. واسطه‌های با انرژی بالا اغلب گونه‌های اکسید شده‌ای هستند که نور را آزاد می‌کنند زیرا آن‌ها به محصولات نهایی با انرژی کمتری تبدیل می‌شوند. گاهی اوقات این گونه‌های واسطه تنها مقدار کمی نور آزاد می‌کنند. آنزیم‌هایی مانند هورس‌ردیش پراکسیداز (HRP) و آلکالین فسفاتاز (AP) وجود دارند که برای نورپردازی در حضور بستر‌‌های مناسب مورد استفاده قرار می‌گیرند.

واکنش‌های شیمیایی در IVD مغناطیسی

از طریق تکنیک‌های ترکیبی، یک آنزیم لومینسانس مانند HRP یا AP می‌تواند به مولکول اسیدنوکلئیک و یک ذره مغناطیسی متصل شود. پس از جداسازی مغناطیسی، حضور یا عدم وجود هدف را می‌توان با افزودن مستقیم ماده شیمیایی و اندازه‌گیری میزان نور تولید شده مورد ارزیابی قرار داد. اگر مولکول هدف در نمونه وجود داشته باشد، به دلیل واکنش شیمیایی مولکولی، نور وجود خواهد داشت. اگر مولکول هدف در نمونه وجود نداشته باشد، هیچ واکنش رخ نمی‌دهد و هیچ نوری تولید نمی‌شود. اگر منحنی استاندارد استفاده شود، این اندازه‌گیری می‌تواند کمی باشد.

 

منابع:

Wang, G., Cong, W., Wang, C. and Liu, F., Rensselaer Polytechnic Institute, 2019. Stored luminescence computed tomography. U.S. Patent Application 10/285,659.

Puttock, E.V., Walden, M.T. and Williams, J.G., 2018. The luminescence properties of multinuclear platinum complexes. Coordination Chemistry Reviews367, pp.127-162.

Josephson, L., Medchem Imaging, 2018. Sequence Specific Fluorescence for Peptide-Fluorochrome Interactions. U.S. Patent Application 15/728,502.

نوشته شده در دیدگاه‌تان را بنویسید

الایزا در بیماری‌های طیور (قسمت دوم)

الایزا در بیماری‌های طیور (قسمت اول)

بیماری آنفولانزای طیور یکی از بیماریهای مهم تنفسی و واگیردار طیور است. این بیماری ویروسی به عنوان یکی از مهم‌ترین علل خسارت اقتصادی به صنعت پرورش طیور به شمار می‌رود. از میان بیماری‌های طیور بیماری انفولانزا علاوه بر خسارت اقتصادی، از نظر بهداشت انسانی نیز حائز اهمیت است. ویروس آنفولانزای پرندگان (AI: Avian Influenza ) متعلق به خانواده Orthomyxoviridae است و به سه جنس تقسیم می شود:  A، Bو C. آنفلونزای بیماری‌زای پرندگان نوع خاصی از آنفلونزاست که بوسیله ویروس آنفلونزای نوع A  در پرندگان، بخصوص ماکیان بوجود می‌آید که می‌تواند به انسان نیز منتقل شده و موجب بیماری شدید با میزان مرگ‌ومیر بالا گردد. جنس A  بر روی گونه‌های پرنده تاثیر می‌گذارد. مخزن این بیماری پرندگان آبزی و مهاجر است و احتمال بروز این بیماری در هر منطقه وجود دارد. آنفلوانزا می‌تواند از طریق تماس مستقیم یا تماس از طریق فضولات یا ترشحات پرنده و یا به واسطه تماس با سطوح آلوده منتقل شود. پرندگان آبزی وحشی که میزبان این ویروس هستند علائم خفیف یا عفونت زیرجلدی در میزبان را بروز می‌دهند. مرغ‌ها بیشتر حساس به چنین عفونت هایی هستند، زیرا ویروس آنفولانزای مرغی به طور بالقوه می‌تواند به یک بیماری همه گیر منجر شود و این بسیار دارای اهمیت است.

 علائم اولیه این ویروس با علائم تنفسی ، کاهش تخم مرغ و تلفات پایین آغاز می‌شود. تشخیص سریع ویروس آنفولانزا و تعیین حدت آن یکی از الویت‌های مهم پیشگیری و مبارزه علیه این بیماری محسوب می‌شود . روش‌های متعددی برای شناخت ویروس وجود دارد مثل روش های سرولوژیک و مولکولی همچون RT-PCR . جداسازی ویروس یا توالی ژنوم آن ضروری است، زیرا با ظهور علائم مختلفی و با توجه به وضعیت ایمنی میزبان، می‌توان سویه ویروس و بسیاری دیگر از پارامترها را شناسایی کرد. روش‌های الایزا زمانی مناسب هستند که خطر بالایی از بروز عفونت فعال آنفولانزا وجود داشته باشد و انتشار ویروس شدت بالایی داشته باشد.

ویروس آنفولانزای مرغی A به دو گروه جداگانه تقسیم می شود که این تقسیم‌بندی به توانایی ایجاد بیماری بستگی دارد:

  1. ویروس‌های آنفلوآنزای پرندگان بسیار پاتوژن، که می تواند بیماری بسیار شدید را ایجاد کند و با عفونت عمومی مرغ را تحت تاثیر قرار می گیرد. ویروس آنفولانزای مرغی به علت خطر ابتلا به ویروس های جهش‌زا به عنوان ویروس شناخته شده است. نرخ مرگ و میر بین 50 تا 100 درصد است
  2. ویروس آنفولانزای پرندگان پاتوژنیک که عمدتا باعث ایجاد علائم تنفسی خفیف در جوجه‌های مرغ می‌شود، در حالی‌که هیچ فاکتور خطر یا عفونت دیگر وجود ندارد. علائم بالینی می تواند از هیچ به تعداد زیادی و شدید متفاوت باشد.  همچنین می‌تواند منجر به درجه حساسیت مختلف، با نرخ تماس کم و کاهش تراکم جمعیت شود.

از آنجا که عفونت ویروس در بین جوجه‌ها و بوقلمون ها اغلب بدون علامت است، تشخیص نیاز به نظارت بر سرولوژیک دارد. بیشتر آزمایشگاههای تشخیصی مرغداری، آزمایش سیتولوژی AGP را به دلیل سادگی و ویژگی خاص آن برای تشخیص عفونت ویروس آنفلوانزای نوع A در میان مرغ، ترجیح می دهند. آنتی‌بادی AGP نشان دهنده پروتئین ویروس آنفولانزای مرغی و پروتئین ماتریکس موجود در سرم مرغ است که در معرض ویروس AI قرار گرفته است و بنابراین می تواند چندین نوع از ویروس آنفلوآنزا A را تشخیص دهد. آزمایش‌ سرولوژی مهم برای تشخیص آنفلونزای پرندگان ELISA است، که پاسخ های آنتی بادی را به پروتئین های داخلی محافظت شده مشخص می کند.

منابع:

Borzi, M.M., Silva, K.R., Montassier, M.D.F.S., Fernando, F.S., Tamanine, M.D.L.F., dos Santos, R.M., de Oliveira, E.S., Mariguela, V.C., Lopes, P.D., Reischak, D. and Mendonca, A.O., 2017. Development and application of an enzyme-linked immunosorbent assay (ELISA) using a soluble recombinant nucleoprotein for the detection of antibodies to avian influenza virus. African Journal of Microbiology Research11(18), pp.697-704.

Tumpey, T.M., Alvarez, R., Swayne, D.E. and Suarez, D.L., 2005. Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus. Journal of clinical microbiology43(2), pp.676-683.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌بیوتیک‌ها در سرطان چه عملی انجام می‌دهند؟

ترکیبی از آنتی‌بیوتیک‌ها مانع از حرکت سلول‌های سرطانی می‌شوند

متخصصان در انگلستان راهی پیدا کرده‌اند که سلول‌های بنیادی سرطانی را تغییر داده و سیستم تکثیر معیوب را در آن‌ها ایجاد می‌کنند. این سلول‌ها توانایی تکثیر ندارند چون انرژی تولید نمی‌کنند.

یک ترکیب سه گانه از ویتامین C و دو آنتی‌بیوتیک استاندارد – داکسی‌سایکلین و آزیترومایسین – برای کاهش رشد سلول‌های بنیادی بیش از 90٪ در آزمایش‌های آزمایشگاهی کافی بودند. دانشمندان گفتند که آنها از نتایج منتشر شده در ژورنال Aging متحیر شدند.

تصور می ‌شود سلول‌های بنیادی مانند سرطان عامل اصلی مقاومت شیمی درمانی بوده و منجر به نارسایی در درمان بیماران مبتلا به بیماری پیشرفته و عود تومور و متاستاز (رشد مجدد و ثانویه) می‌شود. تحقیقات تیم دانشگاه Salford در مورد انرژی سلول‌های بنیادی سرطانی – فرآیندی که به سلول‌ها امکان زندگی و پیشرفت را می‌دهند – متمرکز شده است تا متابولیسم آن‌ها را مختل کند.

لیسانتی با پروفسور فدریکا سوتیا آزمایشات مربوط به آنتی بیوتیک Doxycycline در سال 2018 را در مورد عود مجدد سرطان در بیماران بستری در بیمارستان انجام داد و منجر به کاهش 40 درصدی سلول‌های بنیادی سرطانی در بیماران شد و تقریباً 90 درصد پاسخ داد. پروفسور لیزانتی اظهار داشت: کاهش 40٪ به طور متوسط ​​دلگرم کننده اما ما به 60٪ دیگر علاقه‌مند بودیم‌، بنابراین ما به ترکیبات دارویی جدید علاقه‌مندیم تا بیشترین اثرات داکسی‌سایکلین را داشته باشیم.

“هنگامی که دیدیم داکسی‌سایکلین در هدف قراردادن میتوکندری در سلول‌های بنیادی مؤثر است ، این چالش برای یافتن ترکیبی حتی مؤثرتر بود که معتقدیم با آزیترومایسین پیدا کرده‌ایم.”

در آزمایش‌های آزمایشگاهی ، آن‌ها دریافتند که این دو آنتی‌بیوتیک می‌توانند برای هدف قرار دادن 13 پروتئین کلیدی میتوکندری مورد استفاده قرار بگیرند که باعث کاهش تأمین سوخت در سلول‌های بنیادی می‌شوند. هم‌چنین محققان دریافتند که ویتامین C ، به عنوان یک اکسیدان خفیف عمل می‌کند و اثرات آن را تقویت می‌کند. پروفسور Sotgia توضیح داد: “آنچه این ترکیب را انجام می‌دهد، سرعت بخشیدن به تولید میتوکندری جدید است اما در عین حال آن‌ها را از نظر عملکردی غیرفعال می‌کند. بنابراین میتوکندری جدید قادر به تولید ATP نخواهد بود.”

این تیم تأکید می‌کنند که ترکیب آن‌ها ارزان است ، و به راحتی و به دلیل این‌که دوزهای آنتی‌بیوتیک‌ها ناپدید می‌شوند (1میکرومولار) ، این روش از مشکل احتمالی مقاومت آنتی‌بیوتیکی جلوگیری می‌کند.

 

منابع:

Baden, L.R., Swaminathan, S., Angarone, M., Blouin, G., Camins, B.C., Casper, C., Cooper, B., Dubberke, E.R., Engemann, A.M., Freifeld, A.G. and Greene, J.N., 2016. Prevention and treatment of cancer-related infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 14(7), pp.882-913.

Kuczma, M.P., Ding, Z.C., Li, T., Habtetsion, T., Chen, T., Hao, Z., Bryan, L., Singh, N., Kochenderfer, J.N. and Zhou, G., 2017. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget8(67), p.111931.

نوشته شده در دیدگاه‌تان را بنویسید

چگونه آنتی اکسیدان‌ها می توانند گسترش سرطان ریه را تشدید کنند

چند سال پیش، دانشمندان در سوئد، بحث‌های داغی را در هنگام انتشار تحقیقات نشان دادند که مصرف مکمل‌های آنتی اکسیدانی مانند ویتامین E باعث می‌شود که سرطان بیشتر تهاجمی باشد. آنها به این باور رسیدند که آنتی اکسیدان‌ها می توانند به مبارزه با سرطان کمک کنند. در حال حاضر، دو مطالعه مستقل سلولی، یکی از ایالات متحده و دیگری از سوئد، نشان می‌دهد که چگونه سلول‌های سرطانی ریه می‌توانند از آنتی اکسیدان ها استفاده کنند تا به گسترش آنها در سایر قسمت‌های بدن کمک کند.محققان پیش بینی می کنند که این یافته ها به درمان های جدید برای سرطان ریه منجر خواهد شد که باعث می شود افراد بیشتری در دنیا از سرطان‌ جان سالم به در برند.

سلول های سرطانی به مقدار زیاد قند یا گلوکز نیاز دارند تا به سرعت رشد کنند و متاستاز شوند و یا گسترش پیدا کنند. برای پاسخگویی به این نیاز، آنها از یک فرایند تولید انرژی استفاده می‌کنند که سریع‌تر از آن است که سلول های غیر سرطانی استفاده می کنند. مکانیسم انرژی سریع تر این است که مولکول های زیادی را به نام رادیکال‌های آزاد اکسیژن تولید می‌کند که فشارهای شیمیایی قابل توجهی روی سلول‌ها ایجاد می‌کند. متاستاز دلیل اصلی این است که سرطان چنین بیماری جدی است. بدون متاستاز، افراد قابل توجه کمتری از سرطان می میرند.

مطالعات جدید که محققان با استفاده از بافت موش و انسان انجام دادند، نشان می دهد که چگونه سلول‌های سرطانی ریه از آنتی اکسیدان‌ها برای مقاومت در برابر استرس اکسیداتیو و رشد استفاده می کنند. طبق تحقیقاتی در ایالات متحده چگونگی کمک دو جهش ژنتیکی به سلول های سرطانی ریه، برای غلبه بر استرس اکسیداتیو و ایجاد متاستاز توسط آنتی اکسیدان‌های خود اثبات شده است. جهش به تولید آنتی اکسیدان کمک می کند. همچنین مطالعه سوئدی نشان می‌دهد سلول‌های سرطانی ریه از آنتی اکسیدان‌های رژیم غذایی برای رسیدن به نتایج مشابه استفاده می‌کنند آنتی اکسیدان‌ها مکانیسم‌های متاستاز را تقویت می‌کنند.

به نظر می رسد که کاهش استرس اکسیداتیو از طریق آنتی اکسیدان‌ها می تواند ثبات BACH1 را افزایش داده و انباشت آن را در سلول های سرطانی ریه افزایش دهد.(تاثیر کاهش استرس اکسیداتیو بر روی پروتئین به نام Domain BTB و همولوگ 1 (CAC (BACH1 می‌باشد). BACH1 می تواند مکانیسم هایی را ایجاد کند که متاستاز را تقویت می کنند، یکی از آنها باعث می شود که سلول های سرطانی از گلوکز خون دریافت کنند و آن را به سوخت تبدیل کنند.

سرطان ریه سرطانی است که در سلولهای ریه آغاز می شود. این همان سرطان نیست که در جای دیگر شروع می شود و سپس به ریه ها می رود تا تومورهای ثانویه یا متاستاز های ثانویه ایجاد کند. هنگامی که سرطان که در ریه ها شروع می شود، متاستاز می شود، از طریق گره های لنفاوی به مغز و سایر قسمت های بدن گسترش می یابد.

مطالعات قبلی نشان داده است که حدود 30٪ از سرطان های ریه‌ غیر سلولی شکوفا می شوند، زیرا سلول های آنها یکی از دو نوع جهش را به وجود آورده اند که باعث تولید آنتی اکسیدانی می شود. مطالعه جدید ایالات متحده این جهش ها را بررسی کرد:

۱. یکی از دو جهش که تیم تحقیقاتی ایالات متحده انجام داد، سطح پروتئینی به نام NRF2 را افزایش می دهد که بر روی ژن هایی که سلول های سرطانی ریه را ایجاد می کنند، آنتی اکسیدان ها را ایجاد می کند.

۲. جهش دیگر که تیم تحقیقاتی ایالات متحده تحقیق کرد، KEAP1 را که پروتئینی است که باعث تخریب NRF2 می شود، سوئیچ می کند.

مارتین برگو، نویسنده ارشد مطالعات سوئدی جدید، می گوید: “ما در حال حاضر اطلاعات جدید مهمی در زمینه متاستاز سرطان ریه داریم.” این امکان را برای ما فراهم می کند تا درمان های جدیدی را ایجاد کنیم، مانند آنهایی که مبتنی بر مهار BACH1 هستند. ”

Bergo استاد علوم و علوم تغذیه در موسسه Karolinska در Solna، سوئد است. او تیم را در پشت مطالعات اصلی 2014 هدایت کرد که نشان داد که مکمل های آنتی اکسیدانی در رژیم غذایی، مانند ویتامین E، می تواند رشد تومور را تشدید کند.

او می گوید که یافته های جدیدشان “نشان می دهد که متاستاز تهاجمی ناشی از آنتی اکسیدان ها می تواند با متوقف ساختن BACH1 یا با استفاده از داروهایی که سرکوب شکر را متوقف می کنند، مسدود شود.” او اضافه می کند “همکاران آمریکایی ما” نشان می دهند که چگونه مهار کننده آنزیم دیگری، heme oxygenase که با BACH1 مرتبط است، می تواند فرآیند متاستاز را مهار کند. ”

محققان همچنین معتقدند که یافته ها نشان می دهد بینش های جدید در مورد مکانیسم سریع تر که سلول های سرطانی برای تولید انرژی استفاده می کنند، که دانشمندان به اثر Warburg اشاره می کنند: “برای بیماران مبتلا به سرطان ریه، مصرف ویتامین E ممکن است افزایش قابل توجهی در توانایی سرطان را به عنوان جهش‌های NRF2 و KEAP1  افزایش دهد.”

نوشته شده در دیدگاه‌تان را بنویسید

مواد غذایی ارگانیک و غیر ارگانیک

تحقیقات جدید می گوید: غذاهای ارگانیک و غیرارگانیک ترکیباتی متفاوت هستند. تجزیه و تحلیل جدید بحث درباره ارزش غذایی غذاهای ارگانیک نسبت به غذاهای متعارف را نشان می‌دهد و می‌گوید که محصولات ارگانیک 69٪ بیشتر آنتی اکسیدان‌های خاص دارند. سطح کادمیوم سمی فلز سنگین به طور قابل توجهی پایین تر است.باقی‌مانده‌های آفت‌کش‌ها چهار برابر بیشتر از محصولات ارگانیک یافت می‌شود.

تیم بین المللی کارشناسان دانشگاه نیوکاسل که در بریتانیا رهبری می‌شود، یافته‌های خود را در مجله تغذیه بریتانیا منتشر می‌کند. کارلو لایفرت، استاد کشاورزی زیست محیطی در دانشگاه نیوکاسل، می‌گوید: شواهد قریب به اتفاق نشان می دهد که:” انتخاب مواد غذایی تولید شده با توجه به استانداردهای ارگانیک می تواند منجر به افزایش مصرف آنتی اکسیدان های مطلوب و کاهش تماس با فلزات سنگین سنگین شود. این علاوه بر اهمیت اطلاعات موجود در حال حاضر برای مصرف کنندگان است که تا کنون اشتباه گرفته شده است. ”

پروفسور لايفرت و همكارانش مي‌گويند كه يافته‌هاي آنها نشان مي‌دهد كه با تغيير غذاهاي زراعي و غذاهايي كه از آنها توليد مي‌شود، مردم آنتي اكسيدان‌هاي اضافي مصرف مي‌كنند كه معادل مصرف يك تا دو عدد ميوه و سبزی در روز است. آنها همچنین کمتر از کادمیوم مصرف خواهند کرد، یکی از سه آلاینده فلزی – دو مورد دیگر سرب و جیوه است – که کمیسیون اروپا حداکثر سطح مجاز را در مواد غذایی به آنها داده است. در تجزیه و تحلیل این تیم، سطح کادمیوم محصولات ارگانیک حدود 50 درصد پایین تر از محصولاتی که به طور معمول رشد کرده‌اند، بود.

تولید کننده یک محصول برای واجد شرایط بودن به عنوان “ارگانیک”، مجاز نیست که آن را با مواد شیمیایی مصنوعی محافظت کند یا آن را با کود معدنی خاص (مثلا ترکیبات نیتروژن، کلرید پتاسیم و سوپر فسفات) تامین کند. این به منظور کاهش اثرات زیست محیطی از نیترات و فسفر و جلوگیری از آلودگی آفت کش ها در آب های زیرزمینی است. در عوض، انتظار می رود که تولید کنندگان ارگانیک به طور منظم از کودهای آلی مانند کود و کمپوست برای غنی سازی نیتروژن در خاک بوسیله چرخش محصولات زیتون استفاده کنند و از روش های حفاظت از محصولات غیر شیمیایی مانند چرخش محصول، وجین مکانیکی و کنترل آفات بیولوژیک.

مطالعه سال 2009 – که توسط آژانس استانداردهای غذایی بریتانیا (FSA) سفارش داده شد – اولین بررسی سیستماتیک مربوط به مواد غذایی ارگانیک و غیر غذایی ارگانیک بود. محققان دانشکده بهداشت و گرمسیری لندن به این نتیجه رسیدند که در حال حاضر هیچ مدرکی برای توجیه انتخاب ارگانیک بر مواد غذایی تولید شده بر اساس برتری از تغذیه وجود ندارد.

مطالعه سال 2012 نیز یک بررسی در مورد مواد غذایی ارگانیک و به طور معمول تولید شده بود. محققان دانشگاه دانشکده دانشگاه استنفورد همچنین به این نتیجه رسیده اند که – صرف نظر از “شواهد ضعیف” سطح فنول بالاتر در محصولات آلی – شواهد قابل توجهی وجود ندارد که به مزایای تغذیه ای مرتبط با مصرف غذاهای ارگانیک اشاره شود.

پروفسور لايفرت و همكارانش معتقدند كه مطالعات استنفورد كمتر از نيمي از مقادير مقايسه‌اي را براي بيشتر مواد مغذي محرك سلامت انجام داد. نیمی از مطالعات در تجزیه و تحلیل تحت رهبری نیوکاسل برای تیمی که تحقیق تحت حمایت FSA 2009 انجام داد، در دسترس نبود.

متخصص تجزیه و تحلیل، دکتر گاوین استوارت، مدرس در سنتز شواهد در نیوکاسل افزود: به دلیل حجم بسیار بالایی از اطلاعات موجود، آنها توانستند از روش های آماری مناسب تر برای رسیدن نتیجه گیری قطعی بیشتر در مورد تفاوت بین محصولات ارگانیک و متعارف استفاده کنند.

در همین حال، برخی از کارشناسان در مورد یافته های جدید انتقاد کرده اند. یکی از این‌ها، دکتر آلن دنگور، محقق در زمینه غذا و تغذیه برای سلامت جهانی در دانشکده بهداشت و تنسی پزشکی لندن و اولین نویسنده مقاله FSA 2009، می‌گوید که بررسی جدید، کیفیت داده‌های با کیفیت با داده های بد کیفیت را به نحوی که بسیار “مشکل ساز” است، ترکیب می‌کند و به نظر وی نتایج محققان را به طور قابل توجهی ضعیف می‌کند.

او همچنین می گوید: “تحقیقات جدید بر اهمیت یافته های آن تاکید کرده است؛ زیرا هیچ شواهد خوبی برای حمایت از این ایده وجود ندارد که مصرف آنتی اکسیدان ها و پلی فنل ها مزایای مهمی در سلامت عمومی دارد و شواهد قوی وجود دارد که مصرف بیشتر آنها در رژیم غذایی انسان خطر ابتلا به بیماری قلبی عروقی، سرطان و سایر بیماری های مزمن را کاهش می دهد.

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو؛ رادیکال آزاد؛ و ROS…

رادیکال آزاد چیست و چگونه ایجاد می شود؟
رادیکال آزاد (Free radical) به اتم، مولکول یا یونی هایی گفته می‌شود که دارای الکترون جفت‌نشده هستند و به همین علت بسیار فعال ، ناپایدار و بسیار واکنش پذیرند. رادیکال های آزاد در اثر شکستگی یک پیوند از یک مولکول پایدار ایجاد می‌شوند. رادیکال های آزاد برای رسیدن به پایداری به سایر مولکول ها برخورد کرده و قادر به جدا کردن الکترون ها از آنها هستند و به دنبال این، زنجیره ای از مولکولهای بی ثبات تری را ایجاد می کنند. یک رادیکال آزاد می‌تواند دارای بار مثبت، منفی یا خنثی باشد. طی روند متابولیسم طبیعی بدن و یا تحت شرایطی مانند استعمال دخانیات، آلودگی ها، ورود مواد شیمیایی غیر ضروری به بدن از هر طریقی، اشعه و استرس در بدن رادیکال های آزاد تولید می شوند. در بدن انسان مهم‌ترین رادیکال آزاد اکسیژن است که می تواند موجب تخریب DNA و دیگر مولکول ها گردد.

استرس اکسیداتیو 
در حقیقت استرس آکسیداتیو همان پیروزی رادیکال های آزاد بر دفاع آنتی اکسیدانی بدن ماست. و به نوعی به حمله های بیولوژیک به ارگانیزم بدن اطلاق می شود. به بیان دیگر، استرس اکسیداتیو عدم تعادل بین رادیکال های آزاد و آنتی اکسیدان ها در بدن شما است. رادیکال های آزاد مولکول های حاوی اکسیژن با تعداد نامتناهی الکترون است. تعداد نامناسب اجازه می‌دهد تا آنها به راحتی با مولکول‌های دیگر واکنش نشان می‌دهند. رادیکال‌های آزاد می‌توانند واکنش‌های شیمیایی زنجیره‌ای زیادی در بدن شما ایجاد کنند زیرا به راحتی با مولکول‌های دیگر واکنش نشان می‌دهند. این واکنش اکسیداسیون نامیده می‌شود. آنها می‌توانند مفید یا مضر باشند.

آنتی اکسیدانها مولکولهایی هستند که میتوانند یک الکترون را به یک رادیکال آزاد اهدا کنند بدون آن که خود را بی‌ثبات سازند. این باعث می‌شود که رادیکال آزاد شود تا تثبیت شود و کمتر واکنش پذیر باشد. حاصل استرس اکسیداتیو در بدن انواع دژنراسیون، سرطان‌، دیابت، نارسایی‌های قلبی، آسیب‌های مغزی، مشکلات عضلانی، پیری زودرس، آسیب‌های چشمی و در کل ضعف سیستم ایمنی بدن است. رادیکالهای اکسیژن بطور مداوم در همه ارگانیزم های زنده تولید می شوند با اثرات نابود کنندهای که منجر به آسیب سلولی ومرگ می شود. تولید گونه های اکسیدان در شرایط فیزیولوزیک دارای سرعت کنترل شده ای است اما این تولید در شرایط اکسیداتیو افزایش می یابد.

استرس اکسیداتیو می تواند زمانی رخ دهد که عدم تعادل رادیکال های آزاد و آنتی اکسیدان ها در بدن وجود دارد. سلول های بدن در طول فرایندهای طبیعی متابولیک رادیکال های آزاد ایجاد می کنند. با این حال، سلول‌ها همچنین آنتی اکسیدان ها را تولید می کنند که این رادیکال های آزاد را خنثی می‌کنند. به طور کلی، بدن قادر به حفظ تعادل بین آنتی اکسیدان ها و رادیکال های آزاد است.

گونه های فعال اکسیژن(ROS): 
این اصطلاح (ROS)شامل همه ملکولهای بسیار فعال واجد اکسیژن از جمله رادیکال های آزاداست. انواع این گونه های فعال اکسیژن شامل رادیکال هیدروکسیل،رادیکال آنیون سوپراکسید، پراکسید هیدروژن، اکسیژن تکی،رادیکال NO، رادیکال هیپوکلریت ولیپیدپراکسید های مختلف است. همه اینها قادرند با لیپید های غشا،اسیدهای نوکلئیک پروتئین ها ،آنزیم هاو سایرملکولهای کوچک واکنش داده ومنجر به آسیب سلولی شوند.
نيتريك اكسايد (NO) مولكولي فعال، قابل انتشار، غيرآلي، آزاد و ناپايدار بوده كه اولين بار در عروق به عنوان يک فاکتور شل کننده مورد توجه قرار گرفت. اين ماده در سلولهاي متنوعي توليد شده و اعمال متفاوتي را انجام ميدهد. به عنوان مثال در سلول هاي ايمني به خصوص ماكروفاژها، توليد شده و در كشتن باكتريها و يا سلول هـــاي تومـــوري مشاركت مي كند و يا در سيستم عصبي به عنوان ناقل عصبی مطرح بوده و در بسياري از اعمال مغزي دخالت دارد.
همچنين مشخص شده است كه نيتريك اكسايد در سيستم (NANC=Non-Adrenergic Non-Cholinergic) نقش مهمي را بعهده دارد. به هر حال، امروزه حضور NO در بسياري از اعمال فيزيولوژيک دستگاه هاي بدن ثابت شده است. نيتــريك اكسايد در طــي يك فـرآینـــد آنزيمی ازواكنش ال-آرژينين و اكسيژن حاصل مي‌شود. آنزيم‌هاي سازنده نيتريك اكسايد شامل سه ایزومر بوده، دو ایزومر اين آنزيم به شكل ساختماني در سلول ديده مي‌شوند در حالي كه ایزومر سوم تنها در سلول‌هاي تحريك شده، ديده مي‌شود.
منابع:

  1. ,Jamie Eske, revied April 2019, Oxidative stress effect the body
  2. .healthline./health/oxidative-stress
نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای استرس اکسیداتیو

بیومارکر چیست ؟ ( قسمت اول )

بیومارکرهای سرطان ( قسمت دوم )

 

استرس اکسیداتیو، قسمت سمی اکسیژن و متابولیسم را نشان می‌دهد. استرس اکسیداتیو به عنوان عدم تعادل بین اکسیدان‌ها و آنتی‌اکسیدان‌ها به نفع اکسیدان‌ها شناخته شده که منجر به اختلال در سیگنالینگ مجدد، کنترل چرخه سلولی و آسیب مولکولی می‌شود.

بیومارکرهای استرس اکسیداتیو به سه دسته اصلی تقسیم می‌شوند:
– گونه‌های فعال اکسیژن ROS
– DNA / RNA، چربی‌ها و پروتئین‌هایی که توسط اکسیداسیون آسیب دیده‌اند
– آنتی‌اکسیدان‌ها

درباره این سه گروه این توضیح را باید افزود که:
– ROS نشان‌دهنده عواملي هستند كه استرس‌اكسيداتيو را تحريك مي كنند و باعث آسیب به اجزاي سلول می‌شوند.
– آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، آسیب‌های ناشی از اکسیداسیون را نشان می‌دهد
– آنتی‌اکسیدان‌ها سیستم‌های مبارزه با استرس اکسیداتیو را نشان می‌دهند

• گونه فعال اکسیژن ROS

گونه فعال اکسیژن، گونه‌های شیمیایی واکنشی هستند که حاوی اکسیژن فعال می‌باشند. آن‌ها عبارتند از پراکسید، سوپراکسید، هیدروکسیل رادیکال، اکسیژن مجزا و آلفا اکسیژن.
با توجه به ماهیت گذار آن‌ها، به راحتی در سلول‌های زنده با استفاده از تست‌های رنگ‌سنجی، مانند DCFDA، اندازه‌گیری می‌شوند. این بیومارکرها قابل اندازه‌گیری در خون، پلاسما، بافت و ادرار هستند.

• آسیب DNA / RNA، پراکسیداسیون لیپید، و اکسیداسیون / نیترات پروتئین

استرس اکسیداتیو را می‌توان به طور غیرمستقیم با اندازه‌گیری سطوح آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، به جای اندازه‌گیری مستقیم گونه‌های فعال اکسیژن، اندازه‌گیری کرد. بیومارکرهای استرس اکسیداتیو پایدارتر از انواع اکسیژن فعال هستند.

آسیب DNA / RNA

انواع مختلفی از آسیب DNA / RNA وجود دارد که می‌تواند به عنوان بیومارکرهای استرس اکسیداتیو اندازه‌گیری شود.  8-hydroxydeoxyguanosine احتمالا به عنوان یکی از رایج ترین بیومارکرهای آسیب DNA برای استرس اکسیداتیو است. تست‌های مکان‌های apurinic / apyrimidinic و آزمون‌های آسیب ناشی از آلدهید می‌تواند به عنوان اندازه‌گیری‌های مستقیم از آسیب DNA استفاده شود که به طور بالقوه مرتبط با استرس اکسیداتیو است.

پراکسیداسیون لیپید

مالون‌دی‌آلدئید MDA یکی از معمول‌ترین شاخص‌های لیپیدی استرس اکسیداتیو است. این ماده از طریق پراکسیداسیون اسیدهای چرب غیراشباع تشکیل شده است و معمولا با استفاده از آزمون TBARS اندازه‌گیری می‌شود. تست TBARS به طور کامل برای MDA خاص نیست، همانطور که سایر آلدهید‌ها نیز سیگنال مشابهی را با این تست تولید می‌کنند، با این حال، تست TBARS عموما راحت‌تر از استفاده از HPLC برای اندازه گیری MDA است. آزمون‌های ELISA رقابتی برای MDA نیز در دسترس هستند.
دیگر بیومارکرهای پراکسیداسیون چربی شامل 4-HNA، 8-ایزوپروستان، هیدروپراکسید لیپیدها و LDL اکسید شده است.

اکسیداسیون / نیترات پروتئین

آسیب اکسیداتیو به پروتئین‌ها می‌تواند به شکل کربن لیپتین پروتئین و نیتراسیون پروتئین (3-نیتروتیروزین) باشد. گونه‌های فعال اکسیژن هم‌چنین می‌توانند تولید محصولات پیشرفته گلیکوزیله AGE و پروتئین‌های AOPP را ایجاد کنند. همه این بیومارکرها را می‌توان با روش‌های استاندارد اندازه‌گیری کرد.

• آنتی‌اکسیدان‌ها

آنزیم‌های آنتی‌اکسیدانی و دیگر مولکول‌های ROS، باعث آسیب اکسیداتیو می شوند. سه نوع آنتی‌اکسیدان به عنوان بیومارکر استرس اکسیداتیو وجود دارد: مولکول‌های کوچک، آنزیم‌ها و پروتئین‌ها (مانند آلبومین).
برای اندازه گیری ظرفیت کل‌آنتی اکسیدانی نمونه، از جمله مولکول‌کوچک و ظرفیت آنتی‌اکسیدانی پروتئین، تعدادی از تست‌ها وجود دارد. یکی از رایج‌ترین تست‌های کلسترول آنتی‌اکسیدانی، تست آنتی‌اکسیدانیTEAC است. تست آنتی‌اکسیدانی رادیکال اکسیژن ORAC یکی دیگر از آزمون‌های معمول استرس اکسیداتیو است که ظرفیت آنتی‌اکسیدان را با اندازه‌گیری توانایی آنتی‌اکسیدان‌ها برای کاهش رنگ فلورسنت توسط ROS اندازه‌گیری می‌کند.
فعالیت آنتی‌اکسیدانی نیز می‌تواند در سطح آنالیت‌های خاص اندازه‌گیری شود. به عنوان مثال با نگاه کردن به سطوح نسبی GSH و GSSG ، سطح آنالیت اندازه‌گیری می‌شود. گلوتاتیون احیا GSH به عنوان مولکولی فراوان در میان آنتی‌اکسیدان‌های درون سلولی در نظر گرفته می‌شود که GSSG را در فرم اکسید شده تشکیل می‌دهد. این واکنش توسط آنزیم گلوتاتیون ردوکتاز فعال می‌شود.
در غیر این صورت، سطح فعالیت آنزیم‌های آنتی‌اکسیدانی مانند GST و سوپراکسید‌دیسموتاز می‌تواند در رابطه با سطوح استرس اکسیداتیو اندازه‌گیری شود.

 

منابع:

Valavanidis, A., Vlachogianni, T. and Fiotakis, C., 2009. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C27(2), pp.120-139.

Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P., 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical chemistry43(7), pp.1209-1214.

Lykkesfeldt, J., 2007. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica chimica acta380(1-2), pp.50-58.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها و هزار مسیر تاثیر بر سلول سرطانی

یک فرم جایگزین آنزیمی که در مسیر متابولیسم گلوکز دخیل است، سلول‌های سرطانی را از استرس‌اکسیداتیو محافظت می‌کند.

محققان با فعال کردن آنزیمی که در تجزیه گلوکز دخالت دارند، می‌توانند رشد سلول‌های سرطانی ریه را تسکین دهند و آسیب‌های تولید شده توسط گونه‌های فعال اکسیژن(ROS) تولید شده در متابولیسم طبیعی را کاهش دهند. این گونه‌های فعال اکسیژن می‌توانند باعث آسیب به سلول در غلظت‌های بالا شود. یافته‌های منتشر شده در Science Express می‌تواند در جهت تحت تاثیر قرار دادن درمان‌های سرطان مورد استفاده قرار گیرد و رشد تومور را به حداقل برساند.
Karen Vousden از مؤسسه تحقیقات سرطان گلاسکو، گفت: این مطالعه نشان می‌دهد که چگونه تومورها به طور طبیعی با افزایش استرس اکسیداتیو روبرو می‌شوند و راه را برای تبدیل این مکانیسم علیه سرطان فراهم می‌کند.

دانشمندان مدت‌هاست دریافته‌اند که سلول‌های سرطانی تمایل دارند فرم دیگری از آنزیم پیرووات کیناز (PKM1) داشته باشند که بخشی از مسیر گلیکولیزی است و گلوکز را به پیروات و ATP می‌شکند. بر خلاف PKM1 که سطح فعالیت آن‌ها ثابت است، فعالیت PKM2 می‌تواند بالا یا پایین باشد و فرم جایگزینی آنزیم در کمک به رشد سلول‌های تومور نقش مهمی ایفا می‌کند.
دانشمندان هم‌چنین با این واقعیت که سلول‌های سرطانی می‌توانند از آسیب به اجزای سلولی اصلی که به طور ناگهانی در نتیجه سطوح بالای ROS پایدار می‌باشند، تحریک شوند، سلول‌های سرطانی ROS بیشتری تولید می‌کنند، اما به طریقی از عواقب معمولی اجتناب می‌کنند. کار قبلی نشان داد که مسیر PKM2 در این مسیر آسیب اکسیداتیو نقش مهمی ایفا می‌کند.
Anastasiou و همکارانش خطوط سلولی سرطان ریه را با عوامل اکسیدکننده افزایش دادند و سطوح ROS و PKM2 را افزایش دادند اما متوجه شدند که این سلول‌ها فعالیت PKM2 را کاهش داده‌اند. از سوی دیگر، هنگامی که عامل‌های کاهش دهنده را اضافه می‌کنند تا سطوح ROS را کاهش دهند و اکسیداسیون PKM2 را معکوس کنند، فعالیت آنزیمی افزایش می‌یابد و این نشان می‌دهد که PKM2 به عنوان سنسور برای ROS عمل می‌کند.

سپس محققان فرم جهش PKM2 را ایجاد کردند که همچون PKM1 هم‌چنان به عنوان سطح “ROS” عمل می‌کند. سلول‌های سرطانی با فرم جهش PKM2 باعث آسیب بیشتر نسبت به کنترل سرطان‌ها شدند، که نشان می‌دهد توانایی سلول سرطانی برای کاهش فعالیت PKM2 در پاسخ به میزان ROS بالا نقش کلیدی در حفظ سلول‌ها از آسیب دارد. هم‌چنین محققان دریافتند که کاهش فعالیت PKM2 موجب می‌شود که سلول‌های سرطانی با بازسازی گلوتاتیون، یک مولکول خنثی کننده ROS، زنده بمانند.
آزمایش به گونه‌ای طراحی شد که سلول‌هایی با جهش اکسیداتیو PKM2 طراحی شده و به موش‌ها تزریق کرده و رشد آن‌ها را بررسی کردند. سلول‌های با فرم جهش‌یافته، تومورهای کوچک‌تر از همتایان نوع وحشی داشتند.

یافته‌های این پژوهش نشان می‌دهد که محققان ممکن است یک روز بتوانند PKM2 را فعال کنند تا سلول‌های سرطانی بیشتر به درمان‌های سرکوب کننده مانند شیمی‌درمانی و رادیوتراپی آسیب پذیر باشند.
هم‌چنین پرسش مهم این است که آیا می‌توان از مکانیزم‌هایی استفاده کرد که بتواند PKM2 را فعال کند؟ اگر بتوان PKM2 را فعال کرد، آیا می‌توان به عنوان درمان اصلی بیماری سرطان کاربرد داشته باشد؟

منابع:

Alexander, B.M., Wang, X.Z., Niemierko, A., Weaver, D.T., Mak, R.H., Roof, K.S., Fidias, P., Wain, J. and Choi, N.C., 2012. DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology* Biology* Physics83(1), pp.164-171.

Zhao, C., Tang, Z., Chung, A.C.K., Wang, H. and Cai, Z., 2019. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicology and environmental safety170, pp.495-501.

نوشته شده در دیدگاه‌تان را بنویسید

ژنوم میتوکندری و هسته‌ای به طور متقابل یکدیگر را تنظیم می‌کنند

براساس مطالعه جدیدی که در مجله Cell Metabolism منتشر شده است ، انتقال اطلاعات ژنتیکی حیاتی در داخل سلول، مخابره یک طرفه نیست. میتوکندری ساختارهایی است که درون سلول‌ها بیشتر برای تبدیل مواد مغذی به انرژی قابل استفاده، شناخته می‌شود.

بیشتر مواد ژنتیکی در هسته ساکن هستند و DNA بزرگترین ماده سلول است که الگوهای رمزگذاری شده را ارسال می‌کند و اعمال انجام شده در سلول را مشخص می‌کند.

میتوکندری‌ها هم‌چنین حاوی DNA هستند ،که همه از مادر به ارث رسیده‌اند ، و همانطور که مطالعه جدید نشان می‌دهد ، میتوکندری‌ها فقط دستوراتی از هسته دریافت نمی‌کنند بلکه خود نیز دستوراتی جهت کنترل سلول صادر می‌کنند.

دکتر چنگان دیوید‌لی ، نویسنده ارشد ، از دانشگاه کالیفرنیای جنوبی لس آنجلس ، مرکز جامع سرطان می‌گوید: “میتوکندری‌ها DNA  خود را دارند که احتمالاً از باکتری‌های باستانی که مدت‌ها قبل به سلول‌های‌ ما پیوسته‌اند ، منشا گرفته است. ما نمی‌دانستیم که DNA میتوکندری، پیام‌هایی را برای کنترل هسته رمزگذاری می‌کند.”

این یک کشف اساسی است که دو ژنوم، سلول را به عنوان یک سیستم ژنتیکی همزمان تکامل می‌بخشد و ممکن است تأثیر ماندگار برای طیف گسترده‌ای از زمینه‌های علمی و پزشکی داشته باشد.

وی افزود: “دانستن چگونگی ارتباط DNA درون سلول و DNA میتوکندری سخت می‌شود و محققان بیشتری را به درک هماهنگی ژن‌های رمزگذاری شده در هر دو ژنوم و نقش آن‌ها در پیری و بیماری‌ها سوق می‌دهد. یافته‌های ما قابل توجه است زیرا پیری باعث تجزیه سلول‌ها می‌شود و منجر به بیماری‌هایی مانند سرطان و آلزایمر می‌گردد.”

دکتر لی و همكاران آن‌ها با همكاری سلول‌های انسانی كشف كردند كه وقتی سلول در معرض استرس است و برای مواد مغذی گرسنه است ، MOTS-c ، پروتئین كمی رمزگذاری شده در DNA میتوكندری ، برای كنترل ژن‌ها در هسته، فعال می‌شود و كنترل ژن‌ها را فعال می‌كند. از جمله پاسخ آنتی‌اکسیدانی که در شرایط استرس اکسیداتیو توسط ژن‌های میتوکندری فعال می‌شود.

محققان گفتند: “دانستن نحوه عملکرد سلول‌ها می‌تواند منجر به درک بیشتر بیماری‌های مرتبط با سن و شاید درمان‌های جدید مبتنی بر میتوکندری، بر این اساس پایه‌گذاری شود.”

داروهای تجویزی امروزه براساس طرح كدگذاری شده در ژنوم هسته‌ای طراحی شده‌اند.

محققان به دنبال پیچیدگی کامل شبکه سلولی نبوده‌اند. اگر مثلاً تنها با نیمی از ژنوم خود با سرطان مبارزه‌ کنیم ، این تنها نیمی از راه‌حل خواهد بود. اکنون می‌توانیم با تمام مؤلفه‌های ژنتیکی خود با این بیماری‌ها مبارزه کنیم.

منابع:

Kim, K.H., Son, J.M., Benayoun, B.A. and Lee, C., 2018. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell metabolism28(3), pp.516-524.

نوشته شده در دیدگاه‌تان را بنویسید

حسگرهای زیستی می‌توانند تولید اکسیدان را در موجودات زنده تشخیص دهند

گمان می‌رود که کلسیفیکاسیون شریانی و بیماری عروق کرونر قلب ، بیماری‌های عصبی مانند پارکینسون و آلزایمر ، سرطان و حتی روند پیری به خودی خود تا حدی در اثر استرس اکسیداتیو ایجاد شده یا تسریع شوند. استرس اکسیداتیو در بافت‌ها هنگامی ایجاد می‌شود که مقدار بیشتری از گونه‌های اکسیژن فعال (ROS) در سلول وجود داشته باشد. با این وجود ، تاکنون هیچ کس نتوانسته است به طور مستقیم تغییرات اکسیداتیو موجود در یک موجود زنده را مشاهده کند و مطمئناً چگونگی ارتباط آن‌ها با فرآیندهای بیماری مشخص نیست. فقط روش‌های نسبتاً نامشخص یا غیرمستقیمی برای تشخیص این‌که کدام فرآیندهای اکسیداتیو واقعاً در یک ارگانیسم اتفاق می‌افتند، وجود دارد.

برای اولین بار ، توبیاس دیک و همکارانش توانسته‌اند این روندها را در یک حیوان زنده مشاهده کنند. آن‌ها به طور مشترک با دکتر Aurelio ژن‌های مربوط به حسگرهای زیستی را در ماده ژنتیکی مگس‌های میوه معرفی کردند. این حسگرهای زیستی مخصوص اکسیدان‌های مختلف هستند و با انتشار سیگنال نوری وضعیت اکسیداتیو هر سلول را نشان می‌دهند. این نمایش در زمان واقعی ، در کل ارگانیسم و در کل طول زندگی نشان داده می‌شود.

محققان قبلاً دریافتند که در لاروهای مگس ، اکسیدان‌ها در سطوح بسیار متفاوت در انواع مختلف بافت تولید می‌شوند. بنابراین ، سلول‌های خونی نسبت به سلول‌های روده یا ماهیچه مقدار بیشتری دارند. علاوه بر این ، رفتار لاروها در تولید اکسیدان‌ها در بافت‌های فردی منعکس می‌شود: محققان توانستند تشخیص دهند که آیا لاروها با توجه به وضعیت اکسیداتیو بافت چربی چه طول عمری نشان می‌دهند..
تاکنون بسیاری از دانشمندان تصور می‌کردند که روند پیری با افزایش عمومی اکسیدان‌ها در بدن همراه است. با این حال ، این توسط مشاهدات انجام شده توسط محققان در کل طول عمر حیوانات بزرگسال تأیید نشده است. آنها شگفت زده شدند که تقریباً تنها افزایش وابسته به سن اکسیدان‌ها در روده مگس یافت شده است. علاوه بر این ، هنگام مقایسه مگس‌ها با طول عمر مختلف ، آنها دریافتند که تجمع اکسیدان‌ها در بافت روده حتی با طول عمر بیشتر تسریع می‌یابد. بنابراین این گروه هیچ مدرکی را برای تأیید این فرض که اغلب ابراز می‌شود محدوده عمر یک ارگانیسم با تولید اکسیدان‌های مضر است ، پیدا نکرد.

حتی اگر مطالعات جامع تا به امروز اثبات نشده است ، آنتی‌اکسیدان‌ها غالباً به عنوان محافظت در برابر استرس اکسیداتیو و در نتیجه ، تقویت کننده سلامت تبلیغ می‌شوند. دیک و همکارانش مگس‌های خود را با N-استیل سیستئین (NAC) تغذیه کردند ، ماده‌ای که به آن یک اثر آنتی‌اکسیدانی نسبت داده می‌شود و بعضی از دانشمندان آن را مناسب برای محافظت از بدن در برابر اکسیدان‌های احتمالاً خطرناک می‌دانند. جالب است که ، هیچ مدرکی مبنی بر کاهش اکسیدان در مگس‌های تغذیه شده با NAC یافت نشد. در مقابل ، محققان از اینكه تعجب كردند كه NAC مکان‌های تولید انرژی بافت‌های مختلف را به میزان قابل توجهی برای تولید اکسیدان ترغیب می‌کند ، شگفت زده شدند.
توبیاس دیک با بیان خلاصه یافته‌های خود گفت: “بسیاری از مواردی که ما در مگس‌ها با کمک بیوسنسورها مشاهده کردیم برای ما شگفت آور است. به نظر می‌رسد بسیاری از یافته‌های بدست آمده در سلول‌های جدا شده به سادگی نمی‌توانند به یک موجودات زنده منتقل شوند. وی می‌افزاید: “مثال NAC هم‌چنین نشان می‌دهد كه ما در حال حاضر قادر نیستیم از طریق فارماكولوژی شناسی بر فرآیندهای اکسیداتیو در یك ارگانیسم زنده تأثیر بگذاریم.” “البته ، ما به سادگی نمی‌توانیم این یافته‌ها را از حشرات به انسان منتقل کنیم. هدف بعدی ما استفاده از حسگرهای زیستی برای مشاهده فرآیندهای اکسیداتیو در پستانداران ، به ویژه در واکنش‌های التهابی و ایجاد تومورها است.”

 

منابع:

Swain, L., Nanadikar, M.S., Borowik, S., Zieseniss, A. and Katschinski, D.M., 2018. Transgenic organisms meet redox bioimaging: one step closer to physiology. Antioxidants & redox signaling29(6), pp.603-612.

Zhao, X., Peng, M., Liu, Y., Wang, C., Guan, L., Li, K. and Lin, Y., 2019. Fabrication of Cobalt Nanocomposites as Enzyme Mimetic with Excellent Electrocatalytic Activity for Superoxide Oxidation and Cellular Release Detection. ACS Sustainable Chemistry & Engineering.