نوشته شده در دیدگاه‌تان را بنویسید

الکتروفورز ژل پلی‌آکریل‌آمید (PAGE) چیست؟

تکنیک‌ الکتروفورز، مولکول‌ها را بر اساس بار الکتریکی در میدان الکتریکی جدا می‌کند. تحرک یک مولکول به شکل معکوس متناسب با اندازه آن است و به طور مستقیم با شارژ آن متناسب است. در طول الکتروفورز، پروتئین‌ها به سمت یک الکترود متناسب با بار الکتریکی در میدان الکتریکی حرکت می‌کنند. سرعت حرکت مولکول‌ها در یک سیستم الکتروفورز علاوه بر خواص ذاتی مانند اندازه، شارژ و شکل پروتئین‌ها، بر اساس عوامل متعددی نظیر دما، pH  و غلظت بافر نیز کنترل می‌شود. جداسازی الکتروفورز پروتئین به طور دقیق براساس وزن مولکولی آن‌ها امکان‌پذیر است، اگر بار الکتریکی تمام مولکول‌های پروتئین طبق روش مشخص یکسان باشد، در چنین مواردی تحرک مولکول‌های پروتئینی تنها بر اندازه آن‌ها متکی خواهد بود.

الکتروفورز ژل پلی‌آکریل آمید (PAGE) روش مبتنی بر این ایده است و برای جدا‌سازی پروتئین‌ها بر اساس اندازه آن‌ها استفاده می‌شود.

اصول PAGE

در PAGE، مواد شوینده آنیونی به نام سدیم دودسیل سولفات (SDS) برای اتصال به پروتئین‌ها استفاده می‌شود و به آن‌ها بار منفی می‌دهد. سپس پروتئین‌ها با توجه به اندازه پروتئین، در یک ماتریس ژل ساخته شده از پلی‌اکریل‌آمید در میدان الکتریکی به وسیله الکتروفورز جدا می‌شوند.

پلی‌اکریل‌آمید به عنوان فرآورده واکنش پلیمریزاسیون بین اکریل‌آمید و متیلن‌بیس‌اکریل‌آمید ( BIS )  و با استفاده از کاتالیزور تولید می‌شود. درجه پلیمریزاسیون یا اتصال متقاطع را می‌توان با تنظیم غلظت آکریل‌آمید و BIS کنترل کرد. ماده بیشتر منجر به ژل سخت‌تر می‌شود. سختی ژل، به نوبه خود، اصطکاک ماکرومولکول‌هارا در ژل افزایش داده و در زمان عبور از طول ژل، بر جداسازی آن‌ها تاثیر می‌گذارد.

ژل‌های با درصد پایین (4-8٪ آکریل‌آمید) اجازه می‌دهند مولکول‌های با وزن مولکولی بالاتر بتوانند از طریق ژل سریع حرکت کنند، در حالی که ژل‌های سخت و با درصد بالا (12-20٪ آکریل‌آمید) انتقال مولکول‌های بزرگ را محدود می‌کنند و به طور انتخابی به مولکول‌های کوچک اجازه می‌دهند که از طریق ژل حرکت کنند.

پروتکل SDS-PAGE
  1. آماده‌سازی نمونه:

نمونه‌های پروتئین با گرم کردن آنها با SDS مواد شوینده و مرکاپتواتانول دناتوره می‌شوند. این ماده محکم به پروتئین‌ها متصل شده و موجب افزایش بار منفی می‌شود، هم‌چنین گروه‌های سولفیدریل را آزاد می‌کند و به همین دلیل زنجیره‌های پلی‌پپتیدی دارای بار منفی نسبت به وزن می‌شوند. این فرایند به حرکت پروتئین‌ها بر اساس اندازه آن‌ها در الکتروفورز ژل کمک می‌کند.

  1. آماده‌سازی ژل:

ژل الکتروفورز معمولا دارای چندین جزء شامل آکریل‌امید، BIS  و بافر است. پرسولفات‌آمونیوم، یک منبع رادیکال آزاد و یک تثبیت‌کننده برای شروع پلیمریزاسیون به مخلوط اکریل‌آمید اضافه شده است.  BIS نیز برای تشکیل پیوندهای بین مولکول‌های اکریل‌آمید افزوده می‌شود تا زمانی که ژل در نهایت تشکیل شود.

  1. الکتروفورز:

به عنوان یک جریان الکتریکی پروتئین اعمال می‌شود که دارای یک الکترود مثبت و یک الکترود منفی است. هر مولکول با سرعت متفاوت بر اساس وزن مولکولی آن حرکت می‌کند. مولکول‌های کوچک به سرعت از طریق ژل حرکت می‌کنند و مولکول با وزن بالا دارای سرعت حرکت کم‌تر در طول ژل هستند. حرکت معمولا در ولتاژ‌های بالاتر سریع‌تر است. بعد از چند ساعت، مولکول‌های پروتئینی بر اساس اندازه از هم جدا می‌شوند.

  1. رنگ‌آمیزی :

پس از تکمیل شدن الکتروفورز، ژل می‌تواند با استفاده از موادی رنگی مانند Coomassie Brilliant Blue یا اتیدیم بروماید رنگ شود تا پروتئین‌های جدا شده به عنوان نوارهای متمایز رنگ بر روی ژل ظاهر شوند.

پس از رنگ‌آمیزی، رنگ از ژل شسته شده سپس رنگ‌بری می‌شوند تا شدت رنگ باند‌های پروتئینی اندازه‌گیری شود. گروه‌های پروتئین‌های رادیواکتیو با autoradiography می‌توانند شناسایی شوند.

برخی از سیستم‌های ژل یکرنگ مانند رنگ آمیزی بروموفنول همراه با نمونه پروتئین را معرفی می‌کنند – فاصله قابل مشاهده توسط رنگ بر روی ژل کمک می‌کند تا طول مدت الکتروفورز تعیین شود. بروموفنول آبی همراه با مولکول‌های نمونه حرکت می‌کند تا زمانی که در نهایت به پایین ژل برسد. الکتروفورز نیاز به توقف در این مرحله دارد تا هیچ مولکول پروتئینی الکتروفورز از ژل خارج و بافر منتقل نشود.

 

منابع:

Kinoshita, E., Kinoshita-Kikuta, E. and Koike, T., 2009. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nature protocols4(10), p.1513.

Wittig, I., Braun, H.P. and Schägger, H., 2006. Blue native PAGE. Nature protocols1(1), p.418.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌های پلی‌فنول و استرس اکسیداتیو گیاهی

بیماریهای مزمن و استرس اکسیداتیو بیماری‌های مزمن یک چالش بزرگ برای پزشکی و زیست‌شناسی اساسی هستند و مطمئناً برای ده دهه آینده باقی خواهد ماند. به نسبت اپیدمی بیماری‌های مزمن مدرن در قسمت دوم قرن بیستم مشاهده شده‌است، فرایندی که هنوز در حال انجام است. در کشورهای در حال توسعه ، این روند بخشی از آنچه به عنوان یک انتقال اپیدمیولوژیک شناخته می شود است ، و به ویژه در قاره آمریکا قابل توجه است. از نظر مشخصه، بیماری‌های عفونی به عنوان عامل اصلی مرگ و میر با بیماریهای مزمن یا غیر واگیر جایگزین می‌شوند. این وضعیت با تغییر رژیم و سبک زندگی همراه است که به پیشرفت بیماری‌های مزمن کمک می‌کند. از جمله رفتارهای خطرناک این انتقال می‌توان به مصرف بیش از حد چربی در رژیم غذایی ، مصرف کم میوه و سبزیجات ، سبک زندگی بی‌تحرک ، استعمال دخانیات و آلودگی محیطی اشاره کرد.

تمرکز اصلی داروهای پیشگیری ، تشخیص و معالجه افراد در معرض خطر است و از ابزارهای مولکولی به طور فزاینده ای برای شناخت خطر استفاده می‌شود. امروزه بیماری‌های مزمن در روابط ژنتیک مولکولی و داروهای پیشگیری قرار دارند. در مورد بیماری‌های مزمن مانند بیماری عروق کرونر قلب ، اثرات وابسته به متن تعیین‌کننده هستند. آنها شامل فعل و انفعالات بین ژن‌ها (معرفت ژنتیکی)و عوامل محیطی (برهم کنش های ژن و محیط) هستند. نکته جالب توجه اینکه، برخی از عوامل خطرزا و شرایط پاتوفیزیولوژیک وجود دارد که بیشتر بیماری‌ها را در گروه بیماری‌های مزمن مدرن قرار می دهد: بیماری های قلبی عروقی ، فشار خون بالا ، دیابت و برخی از انواع سرطان. استرس اکسیداتیو یک عامل خطر اصلی در بیماریهای مزمن است.

پلی‌فنول‌ها در گیاهان متنوعی وجود دارند که به عنوان مؤلف‌های مهم رژیم‌های غذایی انسان و حیوان مورد استفاده قرار می‌گیرند. اینها شامل غلات غذایی مانند سورگوم ، ارزن ، جو ، لوبیا خشک ، نخود فرنگی ، نخود کبوتر ، لوبیای بالدار و سایر حبوبات است. میوه هایی مانند سیب ، تمشک ، زغال اخته ، انگور ، هلو ، گلابی ، آلو ، تمشک و توت فرنگی؛ و سبزیجات مانند کلم ، کرفس ، پیاز و جعفری نیز حاوی مقدار زیادی پلی فنول هستند. ترکیبات فنولیک نیز در چای نیز موجود است. رژیم های غذایی حاوی میوه و سبزیجات فراوان در برابر انواع بیماری‌ها ، به ویژه بیماری‌های قلبی عروقی و سرطان محافظت می‌کنند. مواد مغذی اصلی که تصور می‌شود از میوه و سبزیجات محافظت می‌کنند آنتی اکسیدان‌ها هستند. پاتر۲۰۰۰ مطالعه اپیدمیولوژیک را مورد بررسی قرار داد ، که اکثر آنها اثر محافظتی از افزایش مصرف میوه و سبزیجات را نشان دادند. هنگامی که نقش آنتی اکسیدان های فردی ، ویتامین های C و E و کاروتنوئیدها توسط مطالعات اپیدمیولوژیک یا آزمایش های مکمل مورد بررسی قرار گرفت، نتایج به اندازه نتایج به دست آمده برای میوه و سبزیجات کاملاً واضح نبود. نتیجه گیری پاتر این بود که میوه و سبزیجات با توجه به اینکه حاوی طیف گسترده ای از اجزای آنتی اکسیدانی مانند پلی فنول ها هستند ، بهترین داروی ضدداروی را در برابر ابتلا به بیماری مزمن ارائه می‌دهند. رژیم‌های غذایی سرشار از میوه و سبزیجات، مانند رژیم‌های گیاهی و مدیترانه ای ، حاوی مقدار زیادی پلی‌فنول هستند. عادت‌های غذایی مطابق با محافظت در برابر بیماری عروق کرونر قلب بسیار محدود کننده (در چربیهای اشباع نشده اشباع نشده و یا گیاهخواری) تلقی می‌شود.

شواهدی وجود دارد که نشان می دهد پلی فنول ها توسط فلور روده متابولیزه می شوند و جذب آنها و متابولیت های آنها می شود. این اطلاعات فعلاً محدود به چند ترکیب است. به طور مشابه ، ما می دانیم که برخی از گونه ها پس از جذب متابولیزه می شوند. میزان ، ویژگی و بومی سازی متابولیسم پلی فنول در ارگانیسم به طور سیستماتیک برقرار نشده است. از این نظر ، ظرفیت شلات سازی شناخته شده پلی فنول ها مسئله مشارکت آنها در جنبه های مربوط به متابولیسم فلزات و آسیب شناسی را مطرح می کند. یکی دیگر از جنبه های متابولیسم پلی فنول به طور سیستماتیک واکنش آن با دیگر آنتی اکسیدان‌های بیولوژیکی ست.

یکی دیگر از جنبه های در حال توسعه متابولیسم رادیکال آ زاد، مشارکت آن در فرآیند واسطه و تنظیم عملکرد سلول است. اکسیدنیتریک و آنیون سوپراکسید به طور مداوم در سلول‌های هوازی تولید می‌شوند و عملکرد میتوکندری را تنظیم می‌کنند. این و سایر رادیکال‌های آزاد می‌توانند مسیرهای انتقال سیگنال و بیان ژن را تعدیل کنند. بنابراین به نظر می‌رسد که آنتی‌اکسیدان‌های پلی‌فنول رژیم غذایی به طور مداوم در تنظیم عملکرد سلولی شرکت کنند.

منبع:

Urquiaga, I.N.E.S. and LEIGHTON, F., 2000. Plant polyphenol antioxidants and oxidative stress. Biological research33(2), pp.55-64.

نوشته شده در دیدگاه‌تان را بنویسید

روش‌های تعیین ظرفیت آنتی اکسیدانتی (قسمت اول)

شواهد بیوشیمیایی، زیستی و بالینی فراوان وجود دارد که نشان می‌دهد واکنش اکسایشی ناشی از رادیکال‌های آزاد (ROS) درایجاد بیماری‌های مختلف، تسریع پیری و فساد موادغذایی دخالت دارد. به دلیل خاصیت آنتی اکسیدان‌ها در ممانعت از اثرات رادیکال آزاد در ایجاد بیماریها و فساد مواد غذایی، نقش و اثر آنتی اکسیدانها مورد توجه محققین، پزشکان وعموم مردم قرار گرفته است و مطالعات ارزیابی ظرفیت آنتی اکسیدانی یکی از متداولترین موضوعات مورد بررسی در سالهای اخیر بوده است.روشهای تعیین ظرفیت آنتی اکسیدانی بر اساس ساز و کار انتقال اتم هیدروژن شامل  TRAP،ORAC  و CBA و بر اساس سازوکار روش انتقال الکترون شاملFRAP , TEAC  و DPPH میباشد. در کنار این روشهای تقریبا سنتی در سالهای اخیر روشهای دستگاهی مانند DSC نیز در تعیین ظرفیت آنتی اکسیدانی و پیشرفت اکسیداسیون مطرح شده است.در اینجا به بررسی معایب و مزایای روش TRAP می پردازیم.TRAP یکی از روش‌های متداول تعیین ظرفیت آنتی اکسیدانی پلاسمای خون می‌باشد. در این روش نیز سرعت پراکسیداسیون القا شده توسط AAPH (2’-Azobis (2-AmidinoPropane) Hydrochloride) از طریق کاهش شدت فلوئورسنس پروتئین آر فیکواریترین اندازه گرفته می‌شود. روش TRAP به طرق متعددی انجام میشود روش اولیه آزمون TRAP به این ترتیب است که بعد از اضافه کردن AAPH به پلاسما مقدار اکسیداسیون مواد قابل اکسید شدن از طریق اندازه‌گیری مقدار اکسیژن مصرفی در طول واکنش توسط الکترودهای اکسیژن اندازه گرفته می‌شود. در حضور آنتی اکسیدان‌ها در پلاسما زمان آغاز واکنش اکسیداسیون و یا مصرف اکسیژن به تاخیر میافتد. مدت زمان فاز تاخیری پلاسما با زمانی که مقادیر خاصی از استاندارد یا Trolox به پلاسمای خون اضافه شده است (استاندارد داخلی) مقایسه شده و به این ترتیب مقدارظرفیت آنتی اکسیدانی خون محاسبه می‌شود.

مزايا و معايب روشTRAP

این روش را می‌توان جهت ارزیابی ظرفیت آنتی اکسیدانی سرم و یا پلاسما (به طور کلی شرایط داخل بدن) بکار برد و میزان ظرفیت آنتی اکسیدان‌های غیرآنزیمی مانند گلوتاتیون و آسکوربیک اسید را اندازه گرفت اما از آنجایی که نقطه پایانی متفاوتی را می‌توان برای این روش در نظر گرفت بنابراین امکان مقایسه نتایج در تحقیقات مختلف وجود ندارد. این روش نسبتا پیچیده و زمان‌بر بوده و علاوه بر این اجرای آن نیاز به تخصص و تجربه دارد.

در بخش بعدی به بررسی روش ORAC در سنجش ظرفیت آنتی اکسیدانتی می‌پردازیم. برای مطالعه ادامه مطلب کلیک کنید.

منبع:

حسینی سپیده، قراچورلو مریم، غیاثی طرزی بابک و قوامی مهرداد. مروری بر روشهای تعیین ظرفیت آنتی اکسیدانی (اساس واکنش، روش کار، نقاط قوت و ضعف). Food Technology and Nutrition.

نوشته شده در دیدگاه‌تان را بنویسید

سوپراکسید دیسموتاز در تحقیقات زخم

ترمیم زخم متشکل از پروسه‌ها و واکنش‌های بسیار زیادی است. به‌صورت کلاسیک ترمیم زخم به ۴ فاز تقسیم می‌شود:

۱. فاز هوموستاز

۲. فاز التهابی

۳. فاز پرولیفراسیون

۴. فاز بلوغ و Remodeling

با وجود این دسته‌بندی، این فازها کاملا جدا از هم نیستند و بعضا همپوشانی در آن‌ها دیده می‌شود. بلافاصله بعد از هر آسیب، پلاکت‌ها شروع به تجمع کرده، پلاک‌ها را تشکیل می‌دهند و در عروق آسیب‌دیده مانع از خون‌ریزی می‌شوند. همزمان، پروسه‌های التهابی شروع می‌شوند و طیفی از سلول‌های التهابی به محل ضایعه جذب می‌شوند.

درحالی که این سلول‌های ایمنی سایتوکاین‌های پیش‌التهابی ترشح می‌کنند، سلول‌های التهابی (به‌ویژه نوتروفیل‌ها) مقادیر زیادی گونه‌های فعال اکسیژن (ROS) تولید می‌کنند. این مواد برای حفاظت بدن در مقابل یک عفونت ضروری هستند اما در صورت تولید بیش از حد می‌توانند به بافت‌های اطراف صدمه بزنند. در پروسه عادی ترمیم زخم، سایتوکاین‌های التهابی و سلول‌های ایمنی طی چند روز پس از آسیب کاهش می‌یابند. درست در این زمان، کراتنوسیت‌ها، فیبروبلاست‌ها و سلول‌های اندوتلیال شروع به ترشح فاکتورهای رشد متعدد می‌کنند.

 

 

در فاز پرولیفراتیو، به‌همراه بازسازی اپیتلیال و رگ‌زایی (آنژیوژنز)، سنتز کلاژن و ترکیب ماتریکس انجام گرفته و باعث تولید بافت گرانوله می‌شود. سلول‌های اپیتلیال به‌صورت افقی حرکت می‌کنند تا به همتایان خود از طرف مقابل برسند. فیبروبلاست‌ها از لبه‌های زخم فراخوانده می‌شوند تقسیم شده و باعث تحریک کراتینوسیت‌ها به مهاجرت و تقسیم می‌شوند. رگ‌زایی جدید (Neovascularization) اتفاق می‌افتد و شروع به تغذیه و اکسیژن‌رسانی بافت در حال اتصال می‌کند. سپس فیبروبلاست‌های تقسیم شده پروتئین‌های ماتریکس از جمله کلاژن را برای ساخت ماتریکس خارج سلولی (ECM) ترشح می‌کنند، که در مجموع باعث ساخت بافت پیوندی می‌شود.

هدف در این مطلب تشریح نحوه ترمیم زخم نیست و صرفا جهت مقدمه و آماده‌سازی موضوع مطالب ذکر شد. اکنون به نقش مهم آنزیم آنتی اکسیدانتی سوپراکسید دیسموتاز در این مورد می‌پردازیم.

سوپراکسید دیسموتاز و نقش آن در ترمیم زخم

آنیون‌های سوپراکسید ROSهای اولیه‌ای هستند که از اکسیژن مولکولی به‌وجود می‌آیند. اگر نیتریک اکساید (NO) که در اثر فعالیت آنزیم نیتریک اکساید سنتاز تولید می‌شود، در محیط موجود باشد، آنیون‌های سوپراکسید با آن واکنش داده و پراُکسی نیتریت‌ها را تولید می‌کنند. پراکسی نیتریت ماده‌ای برای از بین بردن باکتری و حفظ محیط زخم از عفونت‌ است، اما در عین حال ماده‌ای سمی و بسیار اکسید‌کننده نیز هست. برای جلوگیری از واکنش‌های آسیب‌رسان، آنیون‌های سوپراکسید اضافی تولید شده توسط آنزیم سوپراکسید دیسموتاز یا SOD به‌سرعت به H2O­2 تبدیل می‌شوند. خانواده آنزیم سوپراکسید دیسموتاز ۳ عضو دارد: SOD1 که در سیتوپلاسم و فضای بین‌غشایی میتوکندری موجود است. SOD2 که در ماتریکس میتوکندری وجود دارد و SOD3 که در فضای خارج سلولی موجود است و اولین خط دفاعی در مقابل استرس اکسیداتیو در فضای خارج سلول را تشکیل می‌دهد.

 

 

از آن‌جایی که پوست به‌نسبت سایر بافت‌ها بیشتر در معرض سمیت ناشی از اکسیژن قرار می‌گیرد، سوپراکسید دیسموتاز نیز در تحقیقات زخم بسیار مورد پرس‌وجو قرار گرفته است. آنزیم‌های SOD1 و SOD2 در سطح RNA در زخم‌ها به مقدار بسیار زیادی تشخیص داده شده‌اند. با این وجود فعالیت SOD در هنگام ترمیم زخم در رت‌ها کاهش می‌یابد. اما ممکن است این سوال پیش آید که آیا فعالیت SOD برای ترمیم زخم لازم است؟ پاسخ این سوال در موش‌های فاقد ژن کد کننده SOD1 کمی پیچیده است. در موش‌های ۲۰ هفته‌ای، نبود SOD1 باعث تاخیر در ترمیم می‌شود اما در موش‌های جوان‌تر (۵-۶ هفته) تفاوتی در زمان ترمیم در گروه فاقد SOD1 گزارش نشده است. شاید این نتایج اهمیت وجود SOD را در ترمیم زخم در پیری بیشتر بارز کند. چرا که گزارش شده است نبود SOD1 در فیبروبلاست‌های انسان باعث پیری سلول می‌شود. همچنین برای نگهداری سلول‌های فیبروبلاست جنینی موش (MEFs) نیز وجود SOD1 ضروری است. از این رو موش‌های فاقد SOD1‌ در سم‌زدایی و خنثی کردن آنیون‌های سوپراکسید تولید شده در متابولیسم سلولی، ناتوان هستند. علاوه بر این بافت آسیب‌دیده زخم در معرض اکسیژن اتمسفریک قرار می‌گیرد و این مورد با تاثیر بر چرخه ردوکس سلولی بر روند ترمیم تاثیر خواهد گذاشت.

در نهایت، اهمیت آنزیم‌های کنترل کننده اکسیدان‌ها بر کسی پوشیده نیست و شما می‌توانید در تحقیقات خود نیز برای سنجش سوپراکسید دیسموتاز اقدام کنید

 

 

 

منابع:

-Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014, 346, 941–945.

-Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112.

-Steiling, H.; Munz, B.; Werner, S.; Brauchle, M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 1999, 247, 484–494.

-Shukla, A.; Rasik, A.M.; Patnaik, G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 1997, 26, 93–101.

-Iuchi, Y.; Roy, D.; Okada, F.; Kibe, N.; Tsunoda, S.; Suzuki, S.; Takahashi, M.; Yokoyama, H.; Yoshitake, J.; Kondo, S.; et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 2010, 341, 181–194.

-Tsunoda, S.; Kibe, N.; Kurahashi, T.; Fujii, J. Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch. Biochem. Biophys. 2013, 537, 5–11.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها می‌توانند به درمان کودکان مبتلا به سلیاک کمک کنند

  1. یک مطالعه برجسته که توسط محققان دانشگاه بلگراد صربستان انجام شده پیشنهاد کرده است که درمان آنتی‌اکسیدانی قادر به کاهش علائم بیماری سلیاک می‌باشد.
    بیماری سلیاک یک بیماری جدی و غیر قابل درمان است که تقریبا 1 درصد کودکان و 1.2 درصد بزرگسالان را تحت تاثیر قرار می‌دهند. افراد مبتلا به بیماری سلیاک، از واکنش‌های شدید و خطرناک گوارشی نسبت به گلوتن، پروتئین اصلی موجود در گندم و بسیاری از دانه‌های دیگر رنج‌ می‌برند. به طور‌کلی فعال شدن سیستم ایمنی توسط پپتیدهای گلوتن مسئول پاتوژنز و پیشرفت بیماری سلیاک است. گلوتن توازن آنتی‌اکسیدانی را در مخاط روده، احتمالا از طریق تولید بیش از حد رادیکال‌های آزاد به هم می‌زند.
    محققان، بیوپسی روده‌ای را در 39 کودک مبتلا به بیماری سلیاک فعال یا خاموش و در 19 فرد سالم با سن معادل انجام دادند تا این ارتباط را بین بیماری سلیاک، رادیکال‌های آزاد و آنتی‌اکسیدان‌ها بررسی کنند. محققان دریافتند که کودکان مبتلا به هر دو نوع بیماری سلیاک به طور قابل توجهی دارای سطوح آنتی‌اکسیدان معروف گلوتاتیون پایین‌تری هستند، در حالی که بیومارکر فعالیت آنتی‌اکسیدانی به طور معنی‌داری بیشتر است.

سطوح پایین مشاهده شده گلوتاتیون قابل توجه است، زیرا این ماده شیمیایی اغلب به عنوان آنتی‌اکسیدان اصلی شناخته می‌شود که مسئول اعطای الکترون به دیگر آنتی‌اکسیدان‌ها می‌باشد تا توانایی مبارزه با رادیکال آزاد را افزایش دهد. یافته‌های بیوشیمی بالینی نشان می‌دهد که در بیماران مبتلا به سلیاک، گلوتن ممکن است موجب سیل رادیکال‌های آزاد در روده شود. این سیل چنان شدید است که به طور کامل ذخایر گلوتاتیون بدن را از بین می‌برد، در نتیجه اثربخشی همه آنتی‌اکسیدان‌های دیگر بدن را کاهش داده و منجر به افزایش آسیب اکسیداتیو و استرس در دستگاه گوارش می‌گردد. این نشان می‌دهد که رژیم غذایی با میزان آنتی‌اکسیدان‌ها می‌تواند به کاهش شدت علائم سلیاک کمک کند.

استرس اکسیداتیو عامل مهمی در پاتوژنز بیماری سلیاک است. آنتی‌اکسیدان‌های طبیعی و مکمل‌های غذایی مناسب می‌توانند مکمل‌های مهم برای درمان کلاسیک بیماری سلیاک باشند. تحقیقات نشان می‌دهد که مصرف آنتی‌اکسیدانی علائم بیماری را کاهش می دهد.
با افزایش مصرف غذاهای غنی از آنتی‌اکسیدان، سطح سلامت بهبود می‌یابد. مطالعات نشان داده‌اند که انواع توت‌ها، انار، زغال اخته، تمشک، خربزه، توت فرنگی، گیلاس و سیب در میان مواد غذایی بیشترین مقدار آنتی‌اکسیدانی را دارا می‌باشند، به طور کلی، رنگ عمیق قرمز یا بنفش، محتوای آنتی‌اکسیدان بالاتری دارند.
میوه‌های خشک شده نیز دارای سطح آنتی‌اکسیدانی بالایی هستند، کشمش، آلو، سبزیجات، لوبیای سیاه، آجیل، چای سبز، قهوه و کاکائو تیره نیز منابع غنی از آنتی‌اکسیدان به شمار می‌آیند.

منابع:

Stojiljković, V., Todorović, A., Pejić, S., Kasapović, J., Saičić, Z.S., Radlović, N. and Pajović, S.B., 2009. Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease. Clinical biochemistry, 42(13), pp.1431-1437.

Stojiljković, V., Pejić, S.A., Kasapović, J., Gavrilović, L., Stojiljković, S., Nikolić, D. and Pajović, S.A.B., 2012. Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients. Anais da Academia Brasileira de Ciencias84(1), pp.175-184.

Boda, M. and Nemeth, I., 1992. Decrease in the antioxidant capacity of red blood cells in children with celiac disease. Acta paediatrica Hungarica32(3), pp.241-255.

نوشته شده در دیدگاه‌تان را بنویسید

استخراج DNA چیست؟

استخراج DNA خارج‌کردن و جداسازی داکسی‌ریبونوکلئیک‌اسید (DNA) از سلول‌ها یا ویروس‌هایی است که دارای DNA به عنوان ماده ژنتیکی هستند.

DNA استخراج شده برای چه کاری استفاده می‌شود؟

استخراج DNA غالبا گام اولیه در بسیاری از فرایندهای تشخیصی است که برای تشخیص باکتری و ویروس‌ها در محیط زیست و نیز تشخیص بیماری‌ها و اختلالات ژنتیکی استفاده می‌شود. این تکنیک‌ها شامل روش‌های زیر می‌شوند:

فلورسانس در حالت هیبریداسیون ( FISH ) :  یک روش مولکولی است که اکثرا برای شناسایی و شمارش گروه‌های باکتری خاص است.

پلی‌مورفیسم قطعه انتهایی هضم‌شده  ( T-RFLP ) : برای شناسایی، مشخص نمودن و تعیین الگوهای مکانی و زمانی در جوامع باکتری اپی‌پلانکتون دریایی استفاده می‌شود.

توالی‌یابی: بخش‌هایی از ژنوم یا کل آن ممکن است دارای توالی و هم‌چنین عناصر کروموزومی اضافی برای مقایسه با توالی موجود در بانک ژن باشد.

DNA چگونه استخراج می‌شود؟

مرحله 1. شکستن سلول برای آزاد کردن DNA

سلول‌های نمونه از یکدیگر جدا می‌شوند، اغلب به وسیله یک وسیله فیزیکی مانند ورتکس کردن و در محلول حاوی نمک قرار می‌گیرند. یون‌های سدیم مثبت با نمک در محافظت از گروه‌های فسفات منفی که در امتداد ستون فقرات DNA قرار دارند شرکت می‌کنند. سپس مواد شوینده اضافه می‌شود. مواد شوینده لیپید‌ها را در غشای سلولی و هسته تجزیه می‌کند. DNA آزاد شده است چون این غشاها مختل می‌شوند.

مرحله 2: جداسازی DNA از پروتئین‌ها و سایر باقی مانده‌های سلولی

برای به دست آوردن یک نمونه تمیز از DNA، لازم است تا حد زیادی از باقی مانده‌های سلولی حذف شود. این کار را می‌توان با روش‌های مختلف انجام داد. اغلب یک پروتئاز (آنزیم پروتئینی) برای تخریب پروتئین‌های مرتبط با DNA و دیگر پروتئین‌های سلولی اضافه می‌شود. به صورت متناوب، برخی از باقی‌مانده‌های سلولی را می‌توان با فیلتر کردن نمونه حذف کرد.

مرحله 3. رسوب DNA با الکل

در نهایت، الکل یخ زده (یا اتانول یا ایزوپروپانول) به دقت به نمونه DNA اضافه می‌شود. DNA محلول در آب است، اما در حضور نمک و الکل، نامحلول است. در این مرحله رسوب ظاهر می‌شود. اگر مقدار زیادی از DNA وجود داشته باشد، ممکن است یک رسوب سفید ببینید.

مرحله 4. تمیز کردن DNA

نمونه DNA اکنون می‌تواند بیشتر تمیز شود. سپس آن را در یک بافر کمی قلیایی دوباره آماده کرده و آماده استفاده می‌شود.

مرحله 5. تأیید حضور و کیفیت DNA

برای انجام آزمایشات بیشتر، مهم است که غلظت و کیفیت DNA را بدانید. برای تعیین غلظت و خلوص DNA در یک نمونه، می‌توان از خواص چگالی نوری گرفته شده توسط یک اسپکتروفتومتر استفاده کرد. به جای آن، الکتروفورز ژل را می‌توان برای نشان دادن حضور DNA در نمونه خود و نشان دادن کیفیت آن به کار برد.

DNA استخراج شده در چه مواردی بررسی می‌شوند؟

DNA استخراج شده برای تجزیه و تحلیل مولکولی از جمله PCR، الکتروفورز، توالی یابی، اثر انگشت و کلونینگ استفاده می‌شود.

 

منابع:

Rohland, N., Glocke, I., Aximu-Petri, A. and Meyer, M., 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature protocols13(11), p.2447.

Guevara, E.E., Frankel, D.C., Ranaivonasy, J., Richard, A.F., Ratsirarson, J., Lawler, R.R. and Bradley, B.J., 2018. A simple, economical protocol for DNA extraction and amplification where there is no lab. Conservation genetics resources10(1), pp.119-125.

Fiedorova, K., Radvansky, M., Nemcova, E., Grombirikova, H., Bosak, J., Cernochova, M., Lexa, M., Smajs, D. and Freiberger, T., 2019. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Frontiers in microbiology10, p.821.

Zinger, L., Chave, J., Coissac, E., Iribar, A., Louisanna, E., Manzi, S., Schilling, V., Schimann, H., Sommeria-Klein, G. and Taberlet, P., 2016. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology and Biochemistry96, pp.16-19.

نوشته شده در دیدگاه‌تان را بنویسید

آنزیم Ohr در دفاع آنتی‌اکسیدانی

تحقیقات نشان می‌دهد که چگونه آنزیم Ohr نقش اصلی را در دفاع آنتی‌اکسیدانی باکتریایی بازی می‌کند.

یک پروژه تحقیقاتی که در دانشگاه سائوپائولو (برزیل) با همکاری سایر موسسات تحقیقاتی برزیل انجام شده است ، جنبه‌های جدیدی از مکانیسم عملکرد آنزیم مقاومت در برابر هیدروپراکسید آلی (Ohr) را نشان داده است ، که چندین گونه باکتری را قادر می‌سازد تا اکسیدکننده را خنثی کنند. موادی که توسط سیستم دفاعی ارگانیسم میزبان آزاد می‌شود ، خواه یک گیاه یا حیوان باشد. به گفته محققان ، دانش حاصل می‌تواند زمینه‌ساز رویکردهای جدید درمانی باشد.

لوئیس ادواردو سوارس استاد دانشگاه موسسه علوم زیست سائوپائولو (IB-USP) و محقق اصلی این مطالعه گفت:” پروتئین‌های شناخته شده‌ای با ساختاری شبیه به Ohr در گیاهان و حیوانات وجود دارد. این نشان می‌دهد که می‌توان آنزیم موجود در باکتری‌ها را بدون ایجاد صدمه قابل توجهی به ارگانیسم آلوده مهار کرد و آن را به یک هدف جالب برای توسعه دارو تبدیل کرد”. با این حال ، وی تأکید کرد که برای تولید داده‌های مربوط به حضور Ohr به ویروس پاتوژن ، تحقیقات بیشتری لازم است.

تیم Netto به مرکز تحقیقات فرآیندهای ردوکس در زیست پزشکی (Redoxoma) ، یکی از مراکز تحقیق ، نوآوری و انتشار (RIDCs)  تأمین شده توسط FAPESP ، وابسته است ، تیم Netto چندین آزمایش را انجام داده است ، که اغلب با استفاده از پاتوژن‌ها ، برای درک چگونگی تاثیر Ohr در ضد باکتری‌ها و  دفاع اکسیدانی انجام شده است. Netto گفت: “هنگامی که ما پروژه تحقیق را شروع کردیم ، می‌دانستیم که Ohr عملکرد ضداکسیدانی دارد اما چیزی در مورد بسترهای فیزیولوژیکی این آنزیم نمی‌دانستیم.” “ما در این مطالعه نشان داده‌ایم که این آنزیم به طور مؤثر پراکسیدها ، به ویژه هیدروپراکسیدهای اسیدچرب با زنجیره بلند را خنثی می‌کند.

محققان برای دستیابی به این نتیجه‌گیری ، در ابتدا آزمایشات متصل کردن مولکولی را در شبیه‌سازی‌های رایانه انجام دادند که نشان می‌دهد چگونه بسترهای ممکن در سایت فعال Ohr متصل شده‌اند. این تجزیه و تحلیل‌ها به مکمل ساختاری قابل توجهی بین Ohr و انواع مختلف هیدروپراکسیدهای اسید چرب مانند آن‌هایی که از اسید آراشیدونیک و اسید لینولئیک حاصل می‌شوند ، اشاره کردند که به ترتیب به عنوان واسطه فرآیندهای التهابی در پستانداران و گیاهان عمل می‌کنند.

این یافته برای اولین بار در سنجش‌های بیوشیمیایی آزمایشگاهی با  Ohr  تولید شده توسط Xylella fastidiosa ، باکتری که باعث ایجاد کلروز متنوع مرکبات (CVC) ، یک بیماری جدی پرتقال شیرین و سایر گونه‌های مرکبات می‌شود ، تایید شد. همانطور که Netto  توضیح داد ، این تحقیق از پروژه توالی کل ژنوم X. fastidiosa در دهه 1990 با پشتیبانی FAPESP به پایان رسید.

او در مطالعات آزمایشگاهی شامل جوجه‌کشی تخم خالص با انواع مختلف هیدروپراکسید بود. هدف از این مطالعه اندازه گیری مدت زمان مصرف آنزیم برای تبدیل هر یک از این اکسیدان‌ها به مواد سمی کمتری بود. Netto گفت: “ما به عنوان مثال مشاهده كردیم كه Ohr توانست پراكسیدهیدروژن را خنثی كند اما این روند 100000 برابر كندتر از مورد هیدروپراكسید اسید آراشیدونیك بود.” واکنش شیمیایی در میلی‌ثانیه هنگامی رخ داد که آنزیم با هیدروپراکسیدهای اسید چرب انکوبه شد ، اما با انواع دیگر هیدروپراکسید ، چند دقیقه طول کشید.

محققان شگفت زده شدند كه Ohr همانند كار با هیدروپراكسیدهای حاصل از اسید آراشیدونیك و اسید لینولئیك نیز در تماس با پراكسی‌نیتریت عمل می‌كند ، با توجه به اینكه این مسئله توسط شبیه‌سازی‌های رایانه‌ای پیش بینی نشده بود. Netto توضیح داد: “پراكسی‌نیتریت محصول دو رادیكال دیگر است: سوپراكسید و اکسیدنیتریک. این ماده توسط گیاهان و پستانداران در پاسخ به عفونت توسط عوامل بیماری‌زا منتشر می‌شود.”

مرحله بعدی شامل سنجش‌های میکروبیولوژیکی با استفاده از ترکیبات باکتری سودوموناس آئروژینوزا است که باعث عفونت‌های فرصت طلب در سیستم تنفسی و سایر نقاط انسان می‌شود. Netto گفت: “ما گروهی از باکتری‌های جهش‌یافته را که ژن Ohr در آن حذف شده است با باکتری‌های وحشی تولیدکننده آنزیم مقایسه کردیم.” “هر دو گروه برای آزمایش مقاومت خود در غلظت‌های مختلف هیدروپراکسید قرار گرفتند.”

باکتری‌های وحشی حتی در غلظت‌های زیاد هیدروپراکسید رشد کردند ، در حالی که صفات جهش‌یافته حتی در غلظت‌های کم متوقف شدند. با این حال ، هنگامی که ژن Ohr به باکتری‌های جهش یافته دوباره بیان شد ، مقاومت آن‌ها در برابر اکسیدان قابل مقایسه با باکتری‌های وحشی بود. به گفته Netto ، در طول تکامل آن‌ها ، باکتری‌ها یک سطح وسیع از پروتئین‌های آنتی‌اکسیدان برای دور زدن دفاع از موجودات میزبان ایجاد کردند.

آزمایش‌های انجام شده توسط گروه Netto نشان داد که سایر باکتری‌های جهش یافته ، که ژن‌های این آنزیم‌های آنتی‌اکسیدان حذف شده‌اند ، به اندازه هیدروپراکسید اسید چرب و پراکسی‌نیتریت به عنوان صفات جهش یافته بدون Ohr حساس نیستند. طبق گفته Netto ، این  مطالعه نشان می‌دهد که Ohr نقش مهمی در دفاع آنتی‌اکسیدانی باکتریایی دارد.

 

منابع:

Shea, R.J. and Mulks, M.H., 2002. ohr, Encoding an organic hydroperoxide reductase, is an in vivo-induced gene in Actinobacillus pleuropneumoniae. Infection and immunity70(2), pp.794-802.

Cussiol, J.R., Alegria, T.G., Szweda, L.I. and Netto, L.E., 2010. Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. Journal of Biological Chemistry285(29), pp.21943-21950.

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو باعث پیری در سلول‌های RPE می‌شود

دژنراسیون سلولی مرتبط با سن (AMD) یکی از مهمترین دلایل کوری در افراد کهنسال محسوب می‌شود. این پدیده که هر دو چشم را درگیر می‌کند بوسیله آسیب دیدن رتینای میانی (ماکولا) ایجاد می‌شود. ماکولا در نور روز مسولیت دید رنگ‌ها را در انسان بر عهده دارد. بنابراین ضایعات ماکولا در انسان تاثیر بسیار مهمی در بینایی دارد.

مطالعات پیشین پیشنهاد کرده‌اند که تاثیرات استرس اکسیداتیو بر سلول‌های بینایی می‌تواند نقشی در بوجود آمدن AMD داشته باشند. استرس اکسیداتیو زمانی اتفاق می‌افتد که گونه‌های فعال اکسیژن (ROS) با پروتئین و DNA مداخله دارند. در این مطالعه نیز آریان و همکاران از هیدروژن پراکساید به عنوان یک ماده فعال استفاده کرده‌اند تا در سلول‌های رنگی اپیتلیال رتینای انسان، استرس اکسیداتیو ایجاد کنند. سلول‌های رنگی اپیتلیال رتینا وظیفه تغذیه سلول‌های رتینا را برعهده دارند. این استرس اکسیداتیو باعث پیشرفت زیادی در پیری سلول‌ها شد و از تقسیم آن‌ها جلوگیری نمود. این نتایج به قدرت اثبات می‌کند که استرس اکسیداتیو نقش بسیاری در توسعه AMD‌ در جمعیت کهنسال دارد. با وجود اینکه روش‌های مختلف برای سنجش ظرفیت تام آنتی‌اکسیدانتی معرفی شده است، مطالعات بیشتر در مورد نقش آنتی‌اکسیدانت‌ها احتمالا می‌تواند به عنوان یک راهکار درمانی برای AMD در قشر کهنسال مطرح گردد.

 

منبع:

Aryan, N., Betts-Obregon, B. S., Perry, G., & Tsin, A. T. (2016). Oxidative Stress Induces Senescence in Cultured RPE Cells. The Open Neurology Journal, 10, 83–87. http://doi.org/10.2174/1874205X01610010083

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در دیدگاه‌تان را بنویسید

درمان آنتی‌اکسیدانی ناباروری مردان

صنایع ناباروری لیست گسترده‌ای از آزمایشات و روش‌های گرا‌‌ن‌قیمت را برای کمک به زوج‌های نابارور، از قبیل( IVF (fertilization in vitroو تزریق اسپرم داخل سیتوپلاسمی (ICSI) ارائه می‌دهند. متأسفانه، تکنولوژی‌های تولید مثل کمکی (ART) می‌تواند یک طرف تاریکی داشته باشد که به سختی ذکر شده است. روش‌های پیشرفته تولید مثل با افزایش خطر ابتلا به ناهنجاری‌های مادرزادی و همچنین احتمال بیشتر بروز بیماری‌های مختلف به طور فزاینده‌ای ارتباط دارد.
اما اکنون یک بررسی جدید سیستماتیک از تحقیقات دانشمندان شواهدی ارائه می‌دهد که درمان طبیعی می‌تواند راه حل مشکلات ناباروری در بسیاری از مردان باشد. این تحقیق نشان داد مردان تیمار شده با مکمل‌های آنتی‌اکسیدان احتمال بیشتری در بهبود باروری در مقایسه با مردانی که مکمل مصرف نمی‌کنند، دارا هستند.
محققان زنان و زایمان در مقاله جدید تحقیقی، اشاره کردند که مواد شیمیایی شناخته شده به عنوان گونه‌های فعال اکسیژن (ROS) باعث آسیب به سلول‌ها، به ویژه سلول‌های اسپرم می‌شوند. این ممکن است دلیلی باشد بر این‌که چرا برخی از مردان تعداد اسپرم کمتر و توانایی باروری کمتری دارند. اما یک عامل آنتی‌اکسیدانی، مانند برخی از ویتامین‌ها و مواد معدنی، به منظور کاهش آسیب‌های ناشی از ROS شناخته شده‌است.
این آزمایش برروی 34 زوج تحت درمان‌های ناباروری از جمله لقاح آزمایشگاهی و تزریق اسپرم انجام شد. اغلب مردان در این مطالعات دارای تعداد کم اسپرم یا حرکت کم اسپرم بوده‌اند. محققان درمان ناباروری مردان را با انواع مختلف آنتی‌اکسیدان، از جمله ویتامین E، L-کارنیتین، روی و منیزیم انجام دادند. نتایج نشان داد که در مقایسه با گروه کنترلی، در صورت درمان آنتی‌اکسیدانی مرد،‌ احتمال باروری افزایش می‌یابد. در سایر آزمایشات اثرات آنتی‌اکسیدان‌ها بر روی غلظت اسپرم و تحرک و هم‌چنین پیشرفت های مثبت با مکمل آنتی‌اکسیدانی یافت شده است.
اطلاعات کافی برای مقایسه آنتی‌اکسیدان‌های مختلف در دسترس نیست تا مشخص شود کدام مکمل‌ها ممکن است در کمک به مردان در پدر شدن، موثر باشند در نتیجه نیاز به مقایسه و مطالعه بیشتر در این زمینه است تا مشخص شود کدام آنتی‌اکسیدان در مقایسه با آنتی‌اکسیدان‌های دیگر بهتر عمل می‌کند.

منابع:

SIKKA, S.C., RAJASEKARAN, M. and HELLSTROM, W.J., 1995. Role of oxidative stress and antioxidants in male infertility. Journal of andrology, 16(6), pp.464-468.

Agarwal, A., Nallella, K.P., Allamaneni, S.S. and Said, T.M., 2004. Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), pp.616-627.