نوشته شده در دیدگاه‌تان را بنویسید

آیا کلسترول همیشه مولکولی بد است؟

برای اولین بار دانشمندان دانشگاه لیون از تکنیکpath-breaking optical imaging برای مشخص کردن محل کلسترول استفاده کردند و به واقعیتی دست یافتند که در آن کلسترول علاوه بر فعالیتهای دیگری که داشته، به عنوان حامل پیام در سلول مطرح می‌باشد، این یافته در مجله Nature Chemical Biology به چاپ  رسیده و نشان می‌دهد که کلسترول با اینکه جزو ریسک فاکتورهای بد برای بیماریهای قلبی عروقی بوده و وجهه خوبی در بین مردم و پزشکان ندارد ولی با این وجود در سلول نقش حیاتی را اعمال می‌کند.

نصف مغز انسان متشکل از چربی می‌باشد که بیشترین ماده تشکیل دهنده آن کلسترول می‌باشد و کمبود این ماده می‌تواند بیماریهای خطرناکی را به دنبال داشته باشد به عنوان مثال هورمونهای استروئیدی از کلسترول ساخته شده اند که نقش حیاتی را در بدن دارند.

دانشمندان بر این معتقدند که با توجه به حجم بالای کلسترول در دیواره و داخل سلول، نشان از اهمیت و ارزش آن در عملکرد سلول می‌باشد ولی اهمیت بالای این ماده زمانی مشخص می‌شود که بتواند پیامی‌را از پیرامون سلول به داخل سلول انتقال دهد. در تحقیق صورت گرفته بر روی رده‌های سلولی با استقاده از تکنیک اشاره شده در بالا متوجه شدند که در تحریک سلولی، میزان کلسترول داخلی دو برابر افزایش می‌یابد این تشخیص با استفاده از رنگ فلورسنت باند شونده به کلسترول توسط پروتئین مخصوص بوده که میزان لیپید ( کلسترول) را به صورت زنده در سلول نشان می‌دهد.

منبع:

Liu SL, Sheng R, Jung JH, Wang L, Stec E, O’Connor MJ, Song S, Bikkavilli RK, Winn RA, Lee D, Baek K. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nature Chemical Biology. 2016 Dec 26.

نوشته شده در دیدگاه‌تان را بنویسید

آیا با کاهش رادیکال‌های آزاد در زخم‌های دیابتی می‌توان به روند درمان آن‌ها کمک کرد؟

زخم‌های مزمن از جمله زخم‌های دیابتیک که معمولا پا و ساق پا را درگیر می‌کنند. در آمریکا سالانه 6.5 میلیون نفر را درگیر و ضرر مالی که برای آمریکا دارد در حدود 25 میلیارد دلار می‌باشد. سوال اینجاس که چرا این زخم‌ها هزینه زیادی را دربر دارند؟

پروفسور مانولا مارتینز-گرینز از دانشگاه کالیفرنیا در این مورد دو فرضیه را بیان می‌کند که یکی مربوط به عدم تعادل بین رادیکال‌های آزاد و سیستم آنتی اکسیدانتی می‌باشد ودیگری اینکه باکتری‌ها با ساخت بیوفیلم مانع از تاثیر آنتی‌بیوتیک و یا داروها  بر روی زخم شده و آنها را به سمت مزمن شدن می‌برد.

همانطور که میدانید رادیکال‌های آزاد در هوموستاز و انتقال پیام‌ها نقش داشته و به صورت طبیعی در بدن تولید می‌شوند، ولی افزایش نامتعارف آنها باعث التهابات مزمن می‌شود که در زخم‌های دیابتیک هم مزمن بودن زخم هست که درمان را مشکل می‌کند.

در تحقیقی که این پروفسور و همکارانش بر روی موش‌های دیابتی انجام داده‌اند متوجه شده‌اند که با کاهش گونه‌های فعال اکسیژن (ROS) زخم‌های دیابتی روند ترمیم بهتری را نشان می‌دهند. برای دستیابی به این نتیجه، تیم تحقیقاتی آنها دو آنزیم کاتالاز و گلوتاتیون پراکسیداز را که نقش اصلی در تعادل ROS در سلول را دارند را در موش‌های دیابتی مهار کرده و در این حیوانات زخم‌ها با سرعت کمتری بهبود یافت و در ادامه برای نشان دادن نقش آنتی‌اکسیدانت‌ها، ویتامین E و ان استیل سیستئین را به گروه‌ها اضافه نمودند که نتایج حاکی از روند سریع بهبود زخم‌ها نسبت به گروه‌هایی که آنزیم‌ها مهار شده بودند، را نشان می‌داد. با کاهش ROS، بیوفیلم باکتری نیز از هم می‌پاشد و همه اینها در کنار هم بهبود زخم را می‌تواند تسریع کند. محققین بر این باورند که برای دستیابی به درمان موفق در زخم‌های مزمن باید به ظرفیت آنتی اکسیدانتی بدن توجه ویژه‌ایی داشته و در طول درمان تعادل را بین میزان ROS و ظرفیت آنتی اکسیدانتی برقرار نمود. این تحقیق با توجه به اینکه برای اولین بار هست که با حذف آنزیم‌های آنتی‌اکسیدانتی توانسته زخم‌های مزمن را ایجاد کند در نتیجه مسیر جدیدی برای تحقیق بر روی درمان زخم‌های مزمن را برای دانشمندان و محققین جوان فراهم کرده است.

منبع:

17 in New Orleans, La., at the 53rd annual meeting of the American Society for Cell Biology. (Article)

نوشته شده در دیدگاه‌تان را بنویسید

مزیت سنجش ظرفیت آنتی‌اکسیدانتی در گاوهای شیری

از جمله مهمترین مشکلات در مزارع پرورش گاو شیری در طی دوره انتقال (سه هفته قبل از زایش و سه هفته بعد از زایش)، کاهش مصرف ماده خشک، وضعیت توازن منفی انرژی و کاهش ظرفیت سازش‌پذیری گاو شیری در مقابل تغییرات فیزیولوژیکی است. در طی اواخر دوره‌ی آبستنی، نیازمندی‌های تغذیه‌ای جنین به طور قابل توجهی افزایش می‌یابد، در حالی که مصرف خوراک در سه هفته آخر آبستنی کاهش پیدا می‌کند. این کاهش می‌تواند ناشی از رشد جنین و کاهش سایز شکمبه باشد؛ بعلاوه، در طی این دوره تقریبا تمام گلوکز دریافتی برای سنتز لاکتوز مورد استفاده قرار می‌گیرد که ماحصل آن در طی دوره انتقالی گاو شیری، بالانس منفی انرژی است.
این بالانس منفی انرژی زمانی رخ می‌دهد که تقاضای انرژی بیش از میزان جیره دریافتی است و در مواردی که انرژی مورد نیاز بوسیله جیره تامین نمی‌شود، گاو شیری از ذخایر چربی خود بعنوان منبع انرژی استفاده خواهد کرد. بعلاوه، در طی دوره انتقالی، با توجه به اینکه فرایندهای متابولیکی افزایش می‌یابند، حساسیت گاوهای شیری به استرس متابولیکی بیشتر شده و منجر به افزایش تولید گونه‌های فعال اکسیژن (ROS) می‌گردد.
گونه‌های فعال اکسیژن، رادیکال‌های آزادی هستند که از فرایندهای متابولیک طبیعی حاصل می‌شوند و می‌توانند برای سلول‌های بدن مضر و مخرب باشند و منجر به آسیب سلول‌ها، بافت‌ها و DNA شوند. استفاده از آنتی‌اکسیدانت‌ها جهت مهار تشکیل رادیکال‌های آزاد، نابود کردن و یا ترمیم آسیب‌های ناشی از آنها می‌تواند موثر واقع شود. با این حال اگر عدم تعادلی میان آنتی اکسیدانت‌ها و گونه‌های فعال اکسیژن باشد، سیستم دفاع طبیعی بدن دچار اختلال می‌گردد. رادیکال‌های آزاد علاوه بر سرکوب سیستم ایمنی در بسیاری از بیماریها نیز نقش دارند. با این تفاسیر، در 10 روز اول بعد از زایمان، گاوهای شیری در معرض بیشترین میزان ابتلا به اختلالات عفونی و متابولیک می‌باشند. در واقع، با توجه به تحقیقات انجام گرفته توسط Abuelo و همکارانشان در سال ۲۰۱۴ حدود 75٪ از بیماری‌ها در ماه اول شیردهی رخ می‌دهد.
از عوارض بروز استرس متابولیک در گاوهای شیری می‌توان به موارد زیر اشاره کرد:
کبد چرب، کتوز، ورم پستان، باقی‌ماندن پرده‌های جنینی، کاهش تولید، خطر ابتلا به سرطان، بیماری قلبی عروقی، ریوی، بیماری کلیوی، بیماری‌های التهابی مانند آرتریت، شرایط عفونی و اختلالات عصبی.

چگونه سلامتی گاو شیری می‌تواند در طی دوره انتقالی مصون بماند؟

برای اطمینان از سلامتی حیوانات، و کاهش زیان‌های اقتصادی برای دامداران، گاو شیری باید از نظر ظرفیت آنتی اکسیدانی، به خصوص در دوران بارداری تحت نظارت و بررسی قرار گیرد، سیستم دفاع آنتی اکسیدانتی اجزای بسیار زیادی دارد که می‌توان از سنجش ظرفیت آنتی‌اکسیدانتی تام برای اطلاع از کل وضعیت آنتی‌اکسیدانتی استفاده کرد و ارزیابی مناسبی را از توانایی بدن برای مقابله با حمله رادیکال‌های آزاد انجام داد. جهت حصول اطمینان از مکمل‌های غذایی مورد نیازی که برای ایجاد شرایط بدنی مناسب در طول دوره انتقالی گاوهای شیری استفاده می‌شود، سنجش ظرفیت آنتی‌اکسیدانتی تام می‌تواند کمک کننده باشد.

منابع:

Abuelo A., Hernandez J. and Beneditor J.L (2014) The importance of oxidative status of dairy carrel in the periparturient period: revisiting antioxidant supplementation. Journal of Animal Physiology and Animal Nutrition. 99(6):1003-1016

Li, H. Q., et al. (2016) Effects of dietary supplements of rumen-protected folic acid on lactation performance, energy balance, blood parameters and reproductive performance in dairy cows. Animal Feed Science and Technology

نوشته شده در دیدگاه‌تان را بنویسید

رادیکال‌های آزاد مفیدند!

مطالعه جدیدی انجام شده که سوالات جالبی در مورد یکی از نظریه‌های پیری (افزایش تولید رادیکال‌های آزاد) مطرح می‌کند.

این مطالعه نشان داده است که حداقل برای کرم‌ها، رادیکال‌های آزاد مضر نیستند. در کرم C.elegans که از باکتری‌ها برای تغذیه استفاده می‌کند، تغییرات ژنتیکی در جهت افزایش سطوح رادیکال‌های آزاد عمل می‌کنند و نه‌تنها تحدیدی برای زندگی این کرم محسوب نمی‌شود بلکه باعث افزایش طول عمر این جاندار است. ویتامین C به عنوان یک آنتی‌اکسیدانت باعث ایجاد آسیب در کرم شده و سم پاراکوات -که اثرات خود را به‌واسطه افزایش رادیکال‌های آزاد اعمال می‌کند باعث رشد بهتر این کرم می‌شود. این کرم در حضور پاراکوات بیشتر عمر می‌کند و این مساله تا حدی جدی شده است که در کشورهای عضو اتحادیه اروپا استفاده از این سم ممنوع شده است.

رادیکال‌های آزاد مولکول‌هایی هستند که در بدن انسان طی فرآوری اکسیژن تولید می‌شوند. بسیاری از پستانداران برای ادامه حیات اکسیژن مصرف می‌کنند و به عنوان یک فرآورده فرعی رادیکال‌های آزاد تولید می‌کنند که ممکن است برای سلول‌ها مضر باشد. به این فرآیند استرس اکسیداتیو گفته می‌شود، که فرآیندی تجزیه‌کننده در سلول است. این‌ها همه دلایلی برای تبدیل عبارت «استرس اکسیداتیو» به یک زنگ خطر در پزشکی و طب مکمل شده است.

یکی از تئوری‌های معروف پیری عنوان می‌کند که در طی پیشرفت عمر، تولید رادیکال‌های آزاد افزایش می‌یابد که در نتیجه باعث افزایش صدمات سلولی می‌شود که در یک چرخه‌ی معیوب دوباره خود باعث افزایش رادیکال‌های آزاد می‌شود. مصرف آنتی‌اکسیدانت‌های تغذیه‌ای می‌تواند به معکوس کردن این چرخه کمک کند.

دکتر سیگفراید هِکیمی، پژوهشگر بخش زیست‌شناسی دانشگاه مک‌گیل می‌گوید: این یافته‌ها فهم ما از نقش رادیکال‌های آزاد در پیری را به چالش می‌کشد. این تئوری بسیار ساده و منطقی است، اما یافته‌های ما نشان می‌دهد که چارچوب متفاوتی در خصوص ارتباط استرس اکسیداتیو و پیری وجود دارد. مطالعات بیشتری برای درک این چارچوب مورد نیاز است. رادیکال‌های آزاد قطعا در این فرآیند دخیل هستند اما ممکن است این دخالت در مسیری متفاوت از آنچه همه متصور هستند اتفاق می‌افتد.

 

یادداشت: ممکن است پدیده Hormesis یا انطباق که قبلا راجع به آن مطلبی نوشته‌ایم در این فرآیند تاثیر داشته باشد.

 

منبع:

 

Van Raamsdonk JM, Hekimi S (2009) Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans. PLoS Genet 5(2): e1000361. https://doi.org/10.1371/journal.pgen.1000361

نوشته شده در دیدگاه‌تان را بنویسید

راهی برای جلوگیری از آلزایمر

محققان معتقدند که یک ساختار پروتئینی به نام آمیلوئید بتا، عامل اصلی آسیب عصبی در بیماری آلزایمر است.
مطالعه‌ای در دانشگاه کالیفرنیا سان دیگو که در مجله Journal of Biological Chemistry به چاپ رسیده، نشان می‌دهد که آمیلوئید بتا یکی از پروتئین‌های آنتی‌اکسیدانتی مغز را مختل می‌کند، همچنین در این مطالعه راهی برای محافظت از اثرات مضر آمیلوئید بر روی پروتئین‌های آنتی اکسیدانتی پیشنهاد شده است.
پروفسور جری یانگ در این رابطه می‌گوید: به نظر می‌رسد آمیلوئید، سبب آسیب به سلول‌ها می‌شود. در مطالعه حاضر شیوه بسیار دقیقی از یک فعل و انفعال بالقوه، در رابطه با اینکه آمیلوئید چطور می‌تواند باعث ایجاد بیماری شود و راه مقابله با آن چیست را پیدا کردیم.
این مطالعه بر روی کاتالاز (آنزیمی که اکسیدانت‌های اضافی را از بین می‌برد) تمرکز داشته، زیرا کاتالاز به طور معمول به جلوگیری از آسیب مغزی در بیماران مبتلا به آلزایمر کمک می‌کند و در مطالعات قبلی نشان داده شده که پروتئین‌های کاتالاز در پلاک‌های آمیلوئیدی ذخیره می‌شوند.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

لیلا حبیب، دانشجوی کارشناسی ارشد مهندسی زیستی و نویسنده نخست این مقاله می‌افزاید: در این مطالعه، آمیلوئید به محیط کشت سلول‌های عصبی اضافه شد و اثرات آن مورد بررسی قرار گرفت. وی گفت: ما توانستیم تعامل میان بتا آمیلوئید و کاتالاز را ارزیابی کرده و به این نتیجه برسیم که در این بین، عملکرد فیزیولوژیکی کاتالاز دچار اختلال شده و تبدیل پراکسید هیدروژن به اکسیژن و آب به درستی صورت نمی‌پذیرد.
این محققان جهت جلوگیری از تعامل آمیلوئید با دیگر پروتئین‌ها، اقدام به پوشاندن آمیلوئید توسط مولکول‌های کوچکی کردند و توانستند فعالیت کاتالاز و پراکسید هیدروژن درون سلول‌ها را به سطوح نرمال بازگردانند. این پوشش که محققان برای بررسی اثر متقابل آمیلوئید و کاتالاز استفاده کردند، نامزدی برای پیدایش یک داروست که در آزمایشگاه پروفسور یانگ توسعه یافته است.

 

منبع:

Habib, Lila K., Michelle TC Lee, and Jerry Yang. “Inhibitors of catalase-amyloid interactions protect cells from β-amyloid-induced oxidative stress and toxicity.” Journal of Biological Chemistry 285.50 (2010): 38933-38943.

نوشته شده در دیدگاه‌تان را بنویسید

انتقال دارو به سلول با حباب کاتالاز

آنزیم طبیعی کاتالاز ممکن است پتانسیل بسیاری در درمان بیماری‌های نورولوژیک از جمله پارکینسون داشته باشد. این آنزیم آنتی‌اکسیدان قوی قادر است التهابِ کشنده‌ی نورون‌ها را با روشی غیرموازی با داروهای ریزمولکول، از بین ببرد. اما یک مشکل بزرگ وجود دارد. این آنزیم بسیار بزرگ هستند. تا حدی که عبور از سد خونی-مغزی و رسیدن به سلول‌های مغزی برای آن‌ها تقریبا غیرممکن است. اما محققین روشی را پیدا کرده‌اند که بارگذاری این آنزیم در حباب‌های کوچک و طبیعی خون، عبور آن‌ها را از سیستم ایمنی مغز ممکن ساخته و راه جدیدی برای درمان بیماری‌های مغزی ایجاد می‌کند.

در تحقیقی که در دانشگاه کارولینای شمالی توسط دکتر النا باتراکوا رهبری می‌شود، دانشمندان اگزوزوم‌های سلول‌های ایمنی را جداسازی کردند. این حباب‌های ریز در بیماری‌هایی از جمله ایدز و سرطان تولید می‌شوند و باعث می‌شوند بیماری با سرعت بیشتری در بدن انتشار یابد. در این مورد، محققین توانستند این حباب‌ها را با کاتالاز بارگذاری کنند تا در بافت مغز پروتئین‌های عامل التهاب مقابله کند.

باتراکوا عنوان کرد:

اگزوزوم‌ها به‌وسیله طبیعت به عنوان یک حامل عالی برای پروتئین‌ها و محتوای ژنتیکی طراحی شده‌اند. کاتالاز پروتئین بزرگی است و تقریبا عبور آن از سد خونی-مغزی امکان ناپذیر است. ما از اگزوزوم‌های گلبول‌های سفید بدین منظور استفاده کردیم. این اگزوزوم‌ها علاوه بر اینکه از نظر سیستم ایمنی نامرئی هستند، با پیوستن به سد خونی-مغزی باعث انتقال محتویات آن به مغز می‌شوند.

این محققین اذعان می‌کنند که هر مولکول کاتالاز می‌تواند تا یک میلیون مولکول مخرب را در هر ثانیه خنثی کنند. این واکنش ادامه پیدا می‌کند چرا که کاتالاز نقش کاتالیزور را ایفا می‌کند.

باتراکوا و همکاران امیدوارند بتوانند درمان‌های شخصی با استفاده از اگزوزوم‌های خود فرد توسعه دهند. به‌عنوان مثال یک اسپری نازال برای این درمان بسیار موثر خواهد بود.

 

منبع:

Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release. 2015 Jun 10;207:18-30.

نوشته شده در دیدگاه‌تان را بنویسید

درمان فلجی با ژل‌های ترمیم کننده

هنگامی که یک عصب در سیستم عصبی محیطی پاره یا قطع می‌شود، بسته به نوع آسیب ممکن است به کلی از کار بیفتد و یا زمان زیادی صرف شود تا این آسیب ترمیم گردد. با توجه به محل این آسیب، ممکن است بخشی از بدن بیمار از بین برود و یا برای سال‌ها یا حتی بقیه عمر منجر به فلجی گردد. با این حال، به تازگی دانشمندان ادعا می‌کنند یک نوع ژل و ایمپلنتی را ایجاد کرده‌اند که می‌تواند به بهبود اعصاب آسیب دیده کمک کند.

این ایمپلنت یک لوله زیست تخریب پذیر بسیار کوچک و قابل انعطاف است که در اطراف دو انتهای آسیب دیده عصب قرار می‌گیرد و منجر می‌شود تا این دو انتها در راستای یکدیگر قرار گرفته و ثابت گردند، بعلاوه سطح داخلی این ایمپلنت با ژل خاصی پوشیده شده است که ژل هدایت کننده ترمیم (Guiding Regeneration Gel) نامیده می‌شود این ژل منجر به رشد فیبرهای عصبی جدید می‌گردد و دارای سه ترکیب اصلی زیر می‌باشد:

  • آنتی اکسیدانت‌ها، که به جلوگیری از التهاب کمک می‌کنند.
  • پپتیدهای سنتتیک لامینین (ترکیبات آمینو اسیدی)، که نوعی مسیر هدایت کننده برای رشد فیبر‌های عصبی را فراهم می‌کند تا فاصله بین دو انتهای عصب آسیب دیده ترمیم شود.
  • اسید هیالورونیک، که معمولا در جنین انسان یافت می‌شود، مانع از خشکی بافت می‌شود.

در حال حاضر سیستم ایمپلنت-ژل با موفقیت در حیوانات آزمایشگاهی آزمایش شده است و انتظار می‌رود تا چند سال آینده به صورت بالینی بر روی انسان نیز استفاده گردد. همچنین این ژل می‌تواند در زمینه سلول درمانی به عنوان وسیله‌ای جهت حفظ سلول‌ها برای پیوند استفاده شود.

 

منبع:

American Friends of Tel Aviv University. “Reversing paralysis with a restorative gel.” ScienceDaily.  (accessed July 6, 2017).

 

نوشته شده در دیدگاه‌تان را بنویسید

مسیر ژنتیکی پروسه پیری

واکنش شیمیایی که منجر به تولید زنگ از آهن می‌شود نقش مشابهی در بدن دارد. تراکم استرس اکسیداتیو در سلول‌های سالم میزبان بیماری‌های مختلف در انسان مانند آلزایمر ، بیماری‌های قلبی ، سرطان و روند پیری می‌باشد.
مطالعات جدید مسیرهای تاثیر بیان ژن بر استرس اکسیداتیو را مشخص میکند. این مطالعات می‌توانند پایه بسیار مهمی در جهت تشخیص عامل استرس‌زا در شرایط پزشکی بوده و می‌تواند زمینه دستکاری ژنتیکی و تولید داروهای جدید را فراهم آورد.
به گفته ریچارد اندرسون از دانشکده پزشکی و بهداشت عمومی و نویسنده ارشد گزارش در مجله nature بسیاری از ژن‌های این مسیر کنترلی در بیماری‌های انسانی مهم هستند و این مسیر بسیار جدیدی در کنترل سنتز آنزیم‌های کلیدی درگیر در بسیاری از بیماری‌هاست.
استرس اکسیداتیو زمانی اتفاق می‌افتد که توانایی بدن برای خنثی‌سازی مواد شیمیایی بسیار سمی که به عنوان رادیکال‌های آزاد شناخته می‌شوند، بیش از حد تحمیل شده است. رادیکال‌های آزاد میتوانند به DNA و سایر مولکول‌ها که برای سلامتی سلول ضروری هستند، آسیب برساند.
آنزیم کلیدی در مسیر جدید که Star-PAP نام‌گذاری شده است، به عنوان بخشی از مجموعه کنترلی در مسیر بیان messenger RNA عمل میکند. mRNAها مولکول‌های مهمی هستند که اطلاعات ژنتیکی را از هسته سلول به سیتوپلاسم که پروتئین در انجا ساخته میشوند منتقل می‌کنند. این آنزیم مسئول اضافه کردن دنباله بیوشیمیایی به mRNA است که این دنباله برای پایداری مولکول‌های mRNA ضروری بوده، می‌توانند انها را خاموش و روشن کنند و در نتیجه تولید برخی آنزیم‌های کلیدی و پروتئین‌های موجود در سلول را کنترل می‌کنند. این دنباله‌های ژنتیکی همانند یک تمبر پستی عمل می‌کنند که مسیر هدایت mRNA از هسته سلولی به سیتوپلاسم را مشخص کرده و در سیتوپلاسم به پروتئین ترجمه می‌شود.
آنزیم STAR-PAP ترجمه تعداد محدودی از پروتئین ها و آنزیم ها در سلول را تنظیم می‌کند اما می‌تواند تاثیر بسیاری در استرس اکسیداتیو داشته باشد. یافته‌ها نشان می‌دهد مسیر جدید به عنوان یک کلید روشن-خاموش برای پروتئین‌هایی مانند Heme oxygenase-1 عمل کرده که سلول را از آسیب‌های استرس اکسیداتیو محافظت می‌کند.
این آنزیم یک کلید کنترلی اصلی در استرس اکسیداتیو سلول‌ها می‌باشد. به نظر می‌رسد بسیاری از ژن‌های درگیر در استرس اکسیداتیو هدف مستقیم مسیر STAR-PAP قرار می‌گیرند. . بررسی مسیر بیان ژن و آنزیم هایی که تاثیر گسترده بر روند استرس اکسیداتیو دارند از طریق دستکاری ژنتیکی میتوانند کاربردهای بالینی نیز داشته باشد.
اکسیداسیون میتواند به DNA، میتوکندری، غشای سلولی و سایر مکانیسم‌ها و ساختارهای ضروری سلول آسیب برساند که این آسیب‌ها سبب بروز مشکلاتی برای اندام های با بیشترین مصرف اکسیژن مانند قلب، ریه و مغز می شود.
داروهای جدید از طریق کنترل فعالیت آنزیم با استرس‌های اکسیداتیو مقابله می کنند. دکتر اندرسون معتقد است کشف یک مسیر ژنتیکی جدید در سلول‌ها مهم بوده اما هنوز مشخص نیست چگونه این مسیر می‌تواند بر بیماری‌های انسانی تاثیر بگذارد. ما مسیر جدیدی را در کنترل بیان ژن‌های درگیر در استرس اکسیداتیو کشف کرده‌ایم که می‌تواند نکته کلیدی در بیماری های قلبی‌، سکته و روند پیری باشد. اما هنوز عملکرد این مسیر و تاثیر آن بر شرایط کاملا مشخص نشده است.

منبع :

 

Mellman, D.L., Gonzales, M.L., Song, C., Barlow, C.A., Wang, P., Kendziorski, C. and Anderson, R.A., 2008. A PtdIns4, 5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature451(7181), p.1013.

نوشته شده در دیدگاه‌تان را بنویسید

مسدود کردن مسیر سیگنالینگ نورون، درمان جدید نوروپاتی محیطی

مسدود کردن مسیر سیگنالینگ نورون، درمان جدید نوروپاتی محیطی

محققان در دانشکده پزشکیCalifornia San Diego با همکاری موسسه ملی دیابت و بیماریهای گوارشی و کلیوی، دانشگاه مانیتوبا و مرکز تحقیقات Albrechtsen بیمارستان سنت Boniface در کانادا، مسیر سیگنالینگ مولکولی را شناسایی کرده‌اند که هنگام مسدود شدن، رشد نورون حساس را افزایش می‌دهد و نوروپاتی محیطی را در مدل‌های سلولی، جوندگان مبتلا به دیابت نوع 1 و 2 و نوروپاتی ناشی از شیمی‌درمانی و HIV از بین می‌برد.
نوروپاتی محیطی (PR) وضعیتی است که از آسیب به سیستم عصبی محیطی ایجاد می‌شود و علایم بی‌حسی، سوزن شدن، ضعف عضلانی تا درد شدید، فلج و اختلال حرکتی را بروز می‌دهد. سیستم عصبی محیطی، شبکه ارتباطی گسترده‌ای است که اطلاعات بین سیستم عصبی مرکزی (مغز و نخاع) و سایر اندام های بدن را برقرار می‌کند. حدود 20 میلیون آمریکایی دارای نوعی از PR هستند که می‌تواند نشانه بسیاری از بیماری‌ها، از جمله دیابت، HIV و یا یک اثر جانبی از انواع شیمی درمانی باشد.
نیگل کالکات، دکترا، استاد آسیب شناسی در دانشکده پزشکی دانشگاه سن دیگو، گفت: “نوروپاتی محیطی، علت اصلی و به طور عمده درمان نشده رنج انسان است.

تحقیقات اخیر برخی از فرآیندهای اساسی درگیر در رشد عصب محیطی سالم و بازسازی آن را بیان می‌کند. از جمله میتوکندری، اندام¬های سلولی تولیدکننده مولکول انتقال انرژی آدنوزین تری فسفات (ATP) که نقش حیاتی در بازسازی عصب پس از آسیب دارند.
محققان به دنبال مولکول‌های کلیدی و مکانیسم‌های مورد استفاده در رشد و بازسازی عصب بوده و به طور خاص اشاره کرده‌اند که رشد عصبی با فعال شدن گیرنده‌های muscarinic acetylcholine محدود می‌شود. Acetylocholine انتقال دهنده عصبی است كه معمولا با فعال شدن سلول ارتباط دارد.

با شناسایی این مسیر سیگنالینگ، دانشمندان معتقدند اکنون می‌توان از داروهای acetylocholine به عنوان درمان جدید برای نوروپاتی محیطی استفاده کرد. مشخصات ایمنی داروهای anti-muscarinic با بیش از 20 سال بررسی بالینی، به خوبی مشخص شده است و درمان‌های آنتاگونیست anti-muscarinic بسیار سریع می‌تواند به مرحله آزمایش‌های بالینی برسد.

 

منبع:

Calcutt, N.A., Smith, D.R., Frizzi, K., Sabbir, M.G., Chowdhury, S.K.R., Mixcoatl-Zecuatl, T., Saleh, A., Muttalib, N., Van der Ploeg, R., Ochoa, J. and Gopaul, A., 2017. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. The Journal of clinical investigation, 127(2), p.608.

نوشته شده در دیدگاه‌تان را بنویسید

جداسازی بیومولکول‌های با ارزش از سبوس گندم!

سبوس گندم به عنوان بخشی از جیره غذایی حیوانات تلقی می‌شود اما نکته جالب توجه این است که به زودی با آشکار شدن خواص غذایی آن توسط محققان سوئدی جایگاهی ویژه ای در رژیم غذایی انسان‌ها به خود اختصاص خواهد داد.

به عنوان یک ماده غذایی مفید، سبوس دانه گندم بسیار حائز اهمیت بوده و بخش خارجی پوسته دانه را تشکیل می‌دهد. در پرورش حیوانات و دام‌ها سبوس گندم به عنوان یک ماده غذایی ویژه به فروش می‌رسد. هم‌اکنون محققان موسسه تکنولوژی استکهلم فرآیند استخراج بیومولکول‌های سودمند حاصل از سبوس گندم را ابداع نموده‌اند که به عنوان آنتی‌اکسیدانت، پربیوتیک‌ و حتی مواد مورد استفاده در بسته بندی ارگانیک می‌تواند مورد استفاده قرار گیرد.

در گندم و سایر غلات استخراج همی سلولز بدلیل پیوندهای بسیار فشرده واحدهای ساختاری آنها بسیار دشوار می‌باشد. یکی از روش‌های انجام این پروسه استخراج به واسطه آلکالین می‌باشد که خود موجب تخریب بخشی از ساختار آنتی اکسیدانتی مولکول‌های سبوس گندم می‌گردد.

محققان برای این منظور از متد آبشاری استفاده نمودند که در آن ابتدا همی سلولز به صورت پلیمر استخراج شده و سپس آنزیم‌های مداخله کننده با مواد غیرقابل استخراج مواجه می شوند. با استفاده از این روش محققان میزان بازدهی روش استخراج بیومولکول‌های سبوس گندم را افزایش می دهند.

در حال حاضر پژوهشگران بر روی روش‌های کاربردی بر اساس بیوپلیمرها که شامل نوارهای بسته بندی مواد غذایی و کاهش ضخامت و در نهایت عدم استفاده از مواد افزودنی  و اکسیدانت‌ها می‌باشد متمرکز گردیده‌اند. در علوم پزشکی، محققان قادرند ترکیبات حساس به اکسیژن را بصورت کپسول درآورده و موجب کاهش فرآیند ایجاد التهاب ناشی از گونه‌های فعال اکسیژن ROS شوند که با استفاده از بیومولکول‌های سبوس گندم امکان‌پذیر خواهد بود.

همی سلولز و اولیگوساکاریدها به خوبی به دلیل خاصیت پروبیوتیکی خود در فیبرهای خوراکی شناخته شده‌اند لذا استفاده از آنها دلیل مناسبی برای افزایش کیفیت مواد‌غذایی و تغذیه افراد می‌باشد.

برنامه ارائه شده توسط پژوهشگران این است که: در راستای استفاده طولانی مدت از همی‌سلولز، به دلیل دارا بودن خواص آنتی اکسیدانتی آن مانند بسته بندی غیر‌فسیلی مواد غذایی، حمل و تحویل داروها و مواد خوراکی حساس به اکسیدانت‌ها و رادیکال‌های آزاد، تامین فیبرهای خوراکی مورد نیاز بدن و در نهایت متناسب سازی ژل‌ها در مواد خوراکی و محصولات آرایشی – بهداشتی اقدام نمایند.

منبع:

Andrea C. Ruthes , Antonio Martínez-Abad , Hwei-Ting Tan , Vincent Bulone and Francisco Vilaplana. Sequential fractionation of feruloylated hemicelluloses and oligosaccharides from wheat bran using subcritical water and xylanolytic enzyme.

 

نوشته شده در دیدگاه‌تان را بنویسید

تست ۵۰ آزمایش توسط وسیله ایی به اندازه کارت بانکی

انجام آزمایش کامل بیوشیمی یکی از استراتژی‌های تشخیصی برای پزشکان می‌باشد. برای انجام این آزمایشات نیاز به حجم زیادی از خون می‌باشد که علاوه بر هزینه بالا، نیاز به دستگاه‌های پیشرفته و نیروی متخصص می‌باشد. نتایج این آزمایشات معمولا دقیق می‌باشند ولی همانطور که گفته شد زمان رسیدن به نتایج  از سوس آزمایشگاه زیاد می‌باشد. دانشمندان بیمارستان متودیست هوستون به همراه مرکز تحقیقاتی سرطان آندرسون وسیله‌ایی را طراحی کرده‌اند که به اندازه یک کارت بانکی بوده و می‌تواند با استفاده از یک قطره خون بیش از 50 تست آزمایشگاهی مورد نیاز برای چک آپ دوره ایی افراد را انجام دهد که هزینه آن در حدود 10 دلار می‌باشد.

نام انتخابی برای این وسیله و یا همان کارت، V-chip می‌باشد که از دو صفحه شیشه‌ایی ساخته شده و در یک سمت آن 50 لوله باریک که دارای آنتی‌بادی‌های اختصاصی برای اتصال به پروتئین‍‌ها می‌باشد، وجود دارد. علاوه بر این در لوله‌ها مقدار مشخصی کاتالاز وجود دارد که در صورت واکنش و اتصال آنتی‌بادی به پروتئین مورد نظر مثلا انسولین، کاتالاز فعال شده و آب و گاز اکسیژن به دست می‌آید. گاز حاصل از فعال شدن کاتلاز باعث می‌شود که نماینگر هر لوله به سمت بالا حرکت کرده و قابل مشاهده بوده، تفسیر بدین گونه خواهد بود که هر چقدر تولید گاز بیشتر، ارتفاع در لوله‌ها بیشتر. ساخت این دستگاه نمی تواند جایگزین تست‌های دقیق بیوشیمیایی در آزمایشگاه شود ولی در کشورهای در حال توسعه و یا مکان‌هایی که دستگاه‌های پیشرفته وجود ندارند این کارت‌ها شاید بیشتر به کار آیند.

منبع:

Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, Zu Y, Qin L. Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nature communications. 2012 Dec 18; 3:1283.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای اکسیداتیو

استرس اکسیداتیو / نیتروژنی، که منجر به افزایش گونه‌های فعال اکسیژن / نیتروژن می‌شود، درحال حاضر به عنوان یکی از ویژگی‌های برجسته بسیاری از بیماری‌های حاد و مزمن و حتی فرایند پیری طبیعی شناخته شده است. با این حال، شواهد قطعی برای این ارتباط به علت محدودیت روش‌های شناسایی نشانگرهای زیستی برای ارزیابی وضعیت استرس اکسیداتیو در انسان‌ها کم است. در حال حاضر بر شناسایی بیومارکرهای زیستی در استرس اکسیداتیو که به صورت عینی اندازه گیری و ارزیابی می‌شوند تاکید می‌گردد. این بیومارکرها به ‌عنوان شاخص فرآیندهای بیولوژیکی طبیعی، فرآیندهای بیماری‌زا و یا پاسخ‌های دارویی به تیمارهای درمانی شناخته شده‌اند. برای پیش‌بینی بیماری، یک نشانگر زیستی باید مورد شناسایی، تشخیص و سنجش قرار گیرد. مهمترین عوامل درسنجش و اندازه‌گیری این بیومارکرها اختصاصی بودن و حساسیت می باشد. علاوه براین، شرایط نمونه‌گیری و روش های تحلیلی و برخی محدودیت‌ها مانند شرایط نمونه‌برداری، پایداری بیومارکرها، حساسیت و سادگی تحلیل نتایج باید مورد توجه قرار گیرد.

در این بخش ما به بررسی بیومارکرهای شناخته شده که بیشتر از سایر بیومارکرها در تشخیص بیماری‌ها و آزمایشات کلینیکی و تحقیقاتی مورد توجه قرار گرفته‌اند پرداخته‌ایم. سنجش هرکدام از بیومارکرهای زیستی دارای مزیت‌ و محدودیت‌های به خصوص بوده که در طی بررسی و سنجش باید مورد توجه قرار گیرد. هم‌چنین دسترسی به امکانات و دستگاه‌های آزمایشگاهی از مهم‌ترین عوامل انتخاب روش سنجش مناسب بیومارکرهای زیستی می‌باشد.

 

 

[table id=5 /]

 

ایزوپروستان‌ها (IsoPs)

IsoPs ترکیب پروستاگلاندینی است که از پراکسیداسیون اسیدچرب ضروری (به طور عمده اسید آراکیدونیک) بدون کاتالیزور و بدون اثر مستقیم آنزیم‌های سیکلوکوکسیژناز (COX) تولید می‌‌شود. این ترکیبات در سال 1990 توسط L. Jackson Roberts و Jason D. Morrow در بخش فارماکولوژی بالینی در دانشگاه واندربیلت کشف شد. این ایکوسانوئید دارای فعالیت بیولوژیکی قوی به عنوان واسطه‌های التهابی است که باعث درک درد شده و نشانگر دقیق پراکسیداسیون لیپید در هر دو مدل حیوانی و انسان می‌باشد. افزایش سطح ایزوپروستان‌ها مشکوک به افزایش خطر ابتلا به حمله قلبی است و متابولیت‌های آن‌ها در ادرار افراد سیگاری افزایش یافته است و به عنوان نشانگر بیولوژیک استرس اکسیداتیو در سیگاری‌ها پیشنهاد شده است.

 

تولید کنندگان تجاری کیت‌های سنجش ایزوپروستان : cayman و abcam

 

مالون دی آلدهید (MDA)

MDA بیومارکر استرس اکسیداتیو در بسیاری از بیماری‌ها مانند سرطان، بیماری‌های روانی، بیماری مزمن انسدادی ریوی، آسم یا بیماری های قلبی عروقی است. تست تيوباربيتوريک اسيد (TBA) روشي است که بيشترين استفاده را براي تعيين MDA در مايعات بيولوژيک دارد. مالون‌دی‌آلدئید به عنوان محصول اصلی برای ارزیابی پراکسیداسیون لیپید است. اکثر آزمایش‌ها با سنجش توسط اسید تيوباربيتوريک انجام می‌گیرد که توسط روش‌های غیرمستقيم (اسپکترومتری) و روش‌های مستقیم (کروماتوگرافی) اندازه‌گیری می‌شود. اگر چه در میان روش‌ها اختلاف نظر وجود دارد، آزمون های مبتنی بر HPLC انتخابی یک روش قابل اندازه‌گیری پراکسیداسیون لیپید را فراهم می کند.

تولید کنندگان تجاری کیت‌های سنجش مالون دی آلدهید: sigmaaldrich و نوند سلامت. (چرا کیت‌های آزمایشگاهی نوند سلامت؟)

نیتروتایروزین (Nitrotyrosine)

Nitrotyrosine محصول نیترات تیروزین است که به وسیله گونه‌های فعال نیتروژن مانند پروتئین نیترات و دی اکسید نیتروژن تولید می‌شود. نیتروتیروسین به عنوان شاخص یا نشانگر آسیب سلول، التهاب و تولید NO (نیتریک اکسید) شناخته می‌شود. نیتروتیروسین در حضور متابولیت فعال NO تشکیل شده است. تولید ONOO قادر به اکسیداسیون چند ليپوپروتئين و نيتروژن باقي‌مانده تيروزين در بسياری از پروتئين‌ها است. نیتروتیروسین در مایعات بیولوژیکی نظیر پلاسما، ریه، BALF و ادرار تشخیص داده می‌شود. افزایش سطح نیتروتیروستین در آرتریت روماتوئید شوک سپتیک و بیماری سلیاک مشاهده می‌شود. نیتروتیروستین هم‌چنین در بسیاری از انواع دیگر بیماری ها مانند آسیب قرنیه در کراتوکونوس و دیابت سنجیده می شود.

تولید کنندگان تجاری کیت‌های سنجش نیتروتایروزین: merck و abcam 

 

s-گلوتاتیونیلاسیون (s-gluthathionylation)

S-glutathionylation  وسط استرس اکسیداتیو یا نیتراتیک تولید می‌شود، اما در سلول‌های بدون استرس نیز قابل مشاهده است که این مساله می‌تواند به تنظیم انواع فرایندهای سلولی توسط تعدیل عملکرد پروتئین و جلوگیری از اکسیداسیون غیرقابل برگشت پروتئین‌های تیول کمک کند. یافته های اخیر نقش مهمی در کنترل مسیرهای سیگنالینگ S-glutathionylation سلولی مرتبط با عفونت های ویروسی و آپوپتوز ناشی از عامل ناباروری تومور ایفا می‌کند.

تولید کنندگان تجاری کیت‌های سنجش اس-گلوتاتیونیلاسیون: cayman و cellbiolabs

میلوپراکسیداز (Myeloperoxidase)

MPO آنزیمی است که در گرانول‌های آزورفیل از نوتروفیل‌ها و ماکروفاژهای چند هسته‌ای و در محیط پروتئین التهابی در مایع خارج سلولی ذخیره می‌شود. میلوپرکسیداز در استرس اکسیداتیو و التهاب دخیل است و عامل مهمی برای مطالعه میلوپوکسیداز به عنوان نشانگر احتمال بی ثباتی پلاک و ابزار بالینی مفید در ارزیابی بیماران مبتلا به بیماری قلبی عروقی است.

تولید کنندگان تجاری کیت‌های سنجش میلو پراکسیداز: sigmaaldrich و cayman و نوند سلامت

 

اکسی ال دی ال (OxLDL)

OxLDL چربی لیپوپروتئین با چگالی کم (LDL) یکی از پروتئین های کلیدی در خون است و یکی از اجزای مهم سوخت و ساز بدن و مسئول حمل و نقل چربی‌ها در سراسر بدن است. اکسیداسیون LDL فرایند طبیعی درون بدن بوده و LDL اکسید شده ابزار مهمی در مطالعه اندوسیتوز توسط گیرنده رسپتور ماکروفاژها و سلول های اندوتلیال و همچنین تشکیل سلول‌های فوم است.

تولید کنندگان تجاری کیت‌های سنجش اکسی ال دی ال: cellbiolabs و biocompare

 

بیومارکر DNA

DNA biomarker : اکسیداسیون DNA به دلیل جهش‌زایی آن بسیار بااهمیت است، اگر چه دارای نقش های متعدد دیگری در پیری و سرطان است، اکسیداسیون DNA بسیار مورد توجه قرار قرار گرفته است که برای مقابله با ضایعات اکسید شده DNA، تعدادی از سیستم های زیستی پیرایش تکامل یافته‌است، از جمله BER (پیرایش اگزون)، Ligation، NER (تعمیر مجدد نوکلئوتیدی) که دارای خاصیت هم‌پوشانی هستند و ممکن است به عنوان سیستم پشتیبان به صورت تعاملی عمل کنند. حمله به DNA توسط گونه های فعال اکسیژن، به ویژه رادیکال های هیدروکسیل، می تواند منجر به شکستن رشته DNA-DNA و پروتئین متصل به DNA، کراسینگ اور، تغییر شکل بازها و جهش زایی شود.

تولید کنندگان تجاری کیت‌های سنجش بیومارکرهای دی‌ ان ای: abcam و cayman

 

 

منبع:

Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D. and Milzani, A., 2006. Biomarkers of oxidative damage in human disease. Clinical chemistry52(4), pp.601-62