نوشته شده در دیدگاه‌تان را بنویسید

درمورد علل استرس اکسیداتیو بیشتر بدانید…

رادیکال‌های آزاد اتم‌ها یا مولکول‌هایی با الکترون آزاد هستند که بسیار ناپایدار و واکنش پذیر می‌باشند. این ذرات با مولکول‌های دیگر در بدن واکنش داده و باعث تغییر ساختار مولکولی می‌گردند. این مولکول‌ها تبدیل به رادیکال‌های آزاد شده که یک واکنش زنجیره‌ای را ایجاد می‌کنند که میلیون‌ها مولکول را در یک نانوثانیه تحت تاثیر قرار می‌دهند. رادیکال‌های آزاد با عنوان گونه‌‌فعال‌اکسیژن بیان‌شده (ROS)، بنابراین استرس رادیکال آزاد به عنوان استرس اکسیداتیو شناخته می‌شود. علل بسیاری جهت بروز استرس‌ اکسیداتیو وجود دارد که به عنوان مکانیسم اصلی در بیماری‌های مزمن و پیری شناخته می‌شود.

آنتی‌اکسیدان‌ها
آنتی‌اکسیدان‌ها مکانیسم دفاعی بدن علیه رادیکال‌های آزاد هستند که این ذرات آسیب پذیر را خنثی می‌کنند. برخی از رادیکال‌های آزاد به عنوان بخش مهمی از فرایندهای بدن تولید می‌شوند، اما نباید تولید رادیکال‌های آزاد از ظرفیت بدن در خنثی‌سازی آن فراتر رود.
آنتی‌اکسیدان‌های داخلی بدن عبارتند از: گلوتاتیون، کوآنزیم Q10، سوپراکسید دیسموتاز و گلوتاتیون پراکسید

عوامل بیرونی ایجاد رادیکال‌های آزاد عبارتند از:
• نگهدارنده‌ها و مواد شیمیایی در غذاها
• آفت‌کش‌ها در غذاهای غیر آلی
• داروهای تجویزی
• آلودگی و تابش و آفتاب سوختگی
• فلزات سنگین مانند جیوه، آلومینیوم و سرب
• الکل و سیگار
• ترانس و چربی‌های هیدروژنه شده

عوامل درونی ایجاد رادیکال‌های آزاد عبارتند از:
سیستم ایمنی بدن رادیکال‌های آزاد را در جهت از بین بردن باکتری‌ها، ویروس‌ها و قارچ‌ها تولید می‌کند. اگر سیستم ایمنی بدن بیش از حد فعال باشد (در موارد التهاب مزمن)، بار اضافی از استرس اکسیداتیو در بدن ایجاد می‌شود. در شرایط خاصی که عملکرد سیستم ایمنی بدن کاهش می‌یابد، عفونت های مزمن و بیماری مزمن متنوعی در بدن ایجاد می‌شود.
بدن به طور طبیعی رادیکال‌های آزاد را به عنوان یک محصول جانبی از تولید انرژی سلولی و سم‌زدایی از کبد تولید می‌کند. استرس به طور قابل توجهی باعث افزایش بار رادیکال آزاد در بدن می‌شود. همانطور که استرس موجب ترشح هورمون‌ها می‌شود، بدن آمادگی لازم جهت مبارزه و پاسخ ایمنی را به دست می‌آورد که باعث ایجاد تغییرات زیست شیمیایی و افزایش استرس اکسیداتیو در بدن می‌گردد.

 

منابع:

Halliwell, B. and Gutteridge, J.M., 1990. [1] Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology186, pp.1-85.

Halliwell, B., 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. The lancet344(8924), pp.721-724.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology39(1), pp.44-84.

نوشته شده در دیدگاه‌تان را بنویسید

مصرف خوراکی گلوتاتیون

گلوتاتیون به عنوان آنتی‌اکسیدان اصلی شناخته می‌شود، زیرا  بعد از هر بار تشدید بار رادیکال‌های آزاد، می‌تواند خود را در کبد تجدید کند. رادیکال‌های آزاد اغلب به عنوان فرآورده اکسیداسیون سلولی و بار سمی، منجر به بیماری‌های خود ایمنی، سرطان یا حملات قلبی می‌شوند. آنتی‌اکسیدان‌ها جهت از بین بردن رادیکال‌های آزاد، فلزات سنگین و سموم کاربرد دارند.

تا چندی پیش، مطالعات به طور گسترده‌ای بیان می‌کرد که مکمل‌های خوراکی نرمال باعث افزایش سطح گلوتاتیون نمی‌شوند، زیرا گلوتاتیون خوراکی از اسید معده عبور نمی‌کند و به روده کوچک جذب می‌شود. اما مطالعه اخیر نتایجی خلاف این مساله را نشان می‌دهد.

گلوتاتیون هنگامی که از انجام کار خود  در خنثی‌سازی رادیکال‌های آزاد اشباع شود غیرفعال می‌گردد، اما تمایل دارد خود را دوباره بسازد. در شرایط ایده‌آل، 10٪ گلوتاتیون غیرفعال یا اکسید شده باقی می‌ماند در حالیکه 90٪ دیگر فعال یا کاهش می‌یابند و سموم را حذف می‌کنند.

هنگامی که سموم به وجود می‌آیند، گلوتاتیون فعال کاهش می‌یابد. گلوتاتیون فعال نیز به عنوان GSH شناخته می‌شود، در حالی که گلوتاتیون غیر فعال GSSG نامیده شده است. هنگامی که GSH به زیر 70٪ سقوط می‌کند، توانایی سیستم ایمنی بدن کاهش می‌یابد. با افزایش سن، توانایی بدن برای تبدیل GSSG به GSH نیز کاهش می‌یابد و  بسیاری از بیماری‌های پیری در طی این اختلال ایجاد می‌شود، بنابراین حفظ سطح بالای GSH یک کلید ضد پیری است.

مطالعه اخیر نشان می‌دهد مکمل‌های خوراکی می‌تواند سطح GSH را افزایش دهد. کالج پزشکی ایالت پنسیلوانیا آزمایش بالینی انسانی را انجام داد که در آن 54 بالغ سالم (41 زن / 13 مرد)، 28-تا 72 ساله، با گلوتاتیون خوراکی تیمار و ارزیابی شدند. آن‌ها به دو گروه تقسیم و هر دو با گلوتاتیون تیمار شدند، یک گروه با دوز کم، 250 میلی‌گرم در روز و گروه دیگر 1000 میلی‌گرم در روز. آزمایش برای شش ماه انجام شد تا میزان GSH و تفاوت مارکر سیستم ایمنی تعیین شود.

پس از سه ماه، گروه تیمار شده با دوز بالا،  فعاليت طبیعی سلولی  نشان دادند. و پس از شش ماه کامل، GSH کلی در گروه با دوز بالا 35٪ افزایش یافت. پس از یک ماه بدون مکمل، اکثر افراد سطح GSH را به سطح پایه قبل از آزمایش کاهش دادند. محققان به این نتیجه رسیدند که تیمار طولانی مدت یک روش موثر برای افزایش ذخایر GSH  بدن است.

در حالی که فرض بر عدم توانایی مکمل‌های خوراکی GSH برای حفظ فعالیت در طی عبور از دستگاه گوارش مطرح بود، تکنولوژی کپسوله‌سازی لیپوزومی (LET) از ویتامین C فراتر رفت و شامل گلوتاتیون شد. LET اجازه می‌دهد تا همه چیز بسته بندی شده برای عبور از طریق معده و روده کوچک برای جذب خون فراهم شود. این روش کمی گران است، اما بسیار موثر خواهد بود.

 

منابع:

Wierzbicka, G.T., Hagen, T.M. and Tones, D.P., 1989. Glutathione in food. Journal of Food Composition and Analysis2(4), pp.327-337.

Loguercio, C. and Di Pierro, M., 1999. The role of glutathione in the gastrointestinal tract: a review. Italian journal of gastroenterology and hepatology31(5), pp.401-407.

Jin, Q., Li, Y., Huo, J. and Zhao, X., 2016. The “off–on” phosphorescent switch of Mn-doped ZnS quantum dots for detection of glutathione in food, wine, and biological samples. Sensors and Actuators B: Chemical227, pp.108-116.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها می‌توانند به درمان کودکان مبتلا به سلیاک کمک کنند

  1. یک مطالعه برجسته که توسط محققان دانشگاه بلگراد صربستان انجام شده پیشنهاد کرده است که درمان آنتی‌اکسیدانی قادر به کاهش علائم بیماری سلیاک می‌باشد.
    بیماری سلیاک یک بیماری جدی و غیر قابل درمان است که تقریبا 1 درصد کودکان و 1.2 درصد بزرگسالان را تحت تاثیر قرار می‌دهند. افراد مبتلا به بیماری سلیاک، از واکنش‌های شدید و خطرناک گوارشی نسبت به گلوتن، پروتئین اصلی موجود در گندم و بسیاری از دانه‌های دیگر رنج‌ می‌برند. به طور‌کلی فعال شدن سیستم ایمنی توسط پپتیدهای گلوتن مسئول پاتوژنز و پیشرفت بیماری سلیاک است. گلوتن توازن آنتی‌اکسیدانی را در مخاط روده، احتمالا از طریق تولید بیش از حد رادیکال‌های آزاد به هم می‌زند.
    محققان، بیوپسی روده‌ای را در 39 کودک مبتلا به بیماری سلیاک فعال یا خاموش و در 19 فرد سالم با سن معادل انجام دادند تا این ارتباط را بین بیماری سلیاک، رادیکال‌های آزاد و آنتی‌اکسیدان‌ها بررسی کنند. محققان دریافتند که کودکان مبتلا به هر دو نوع بیماری سلیاک به طور قابل توجهی دارای سطوح آنتی‌اکسیدان معروف گلوتاتیون پایین‌تری هستند، در حالی که بیومارکر فعالیت آنتی‌اکسیدانی به طور معنی‌داری بیشتر است.

سطوح پایین مشاهده شده گلوتاتیون قابل توجه است، زیرا این ماده شیمیایی اغلب به عنوان آنتی‌اکسیدان اصلی شناخته می‌شود که مسئول اعطای الکترون به دیگر آنتی‌اکسیدان‌ها می‌باشد تا توانایی مبارزه با رادیکال آزاد را افزایش دهد. یافته‌های بیوشیمی بالینی نشان می‌دهد که در بیماران مبتلا به سلیاک، گلوتن ممکن است موجب سیل رادیکال‌های آزاد در روده شود. این سیل چنان شدید است که به طور کامل ذخایر گلوتاتیون بدن را از بین می‌برد، در نتیجه اثربخشی همه آنتی‌اکسیدان‌های دیگر بدن را کاهش داده و منجر به افزایش آسیب اکسیداتیو و استرس در دستگاه گوارش می‌گردد. این نشان می‌دهد که رژیم غذایی با میزان آنتی‌اکسیدان‌ها می‌تواند به کاهش شدت علائم سلیاک کمک کند.

استرس اکسیداتیو عامل مهمی در پاتوژنز بیماری سلیاک است. آنتی‌اکسیدان‌های طبیعی و مکمل‌های غذایی مناسب می‌توانند مکمل‌های مهم برای درمان کلاسیک بیماری سلیاک باشند. تحقیقات نشان می‌دهد که مصرف آنتی‌اکسیدانی علائم بیماری را کاهش می دهد.
با افزایش مصرف غذاهای غنی از آنتی‌اکسیدان، سطح سلامت بهبود می‌یابد. مطالعات نشان داده‌اند که انواع توت‌ها، انار، زغال اخته، تمشک، خربزه، توت فرنگی، گیلاس و سیب در میان مواد غذایی بیشترین مقدار آنتی‌اکسیدانی را دارا می‌باشند، به طور کلی، رنگ عمیق قرمز یا بنفش، محتوای آنتی‌اکسیدان بالاتری دارند.
میوه‌های خشک شده نیز دارای سطح آنتی‌اکسیدانی بالایی هستند، کشمش، آلو، سبزیجات، لوبیای سیاه، آجیل، چای سبز، قهوه و کاکائو تیره نیز منابع غنی از آنتی‌اکسیدان به شمار می‌آیند.

منابع:

Stojiljković, V., Todorović, A., Pejić, S., Kasapović, J., Saičić, Z.S., Radlović, N. and Pajović, S.B., 2009. Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease. Clinical biochemistry, 42(13), pp.1431-1437.

Stojiljković, V., Pejić, S.A., Kasapović, J., Gavrilović, L., Stojiljković, S., Nikolić, D. and Pajović, S.A.B., 2012. Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients. Anais da Academia Brasileira de Ciencias84(1), pp.175-184.

Boda, M. and Nemeth, I., 1992. Decrease in the antioxidant capacity of red blood cells in children with celiac disease. Acta paediatrica Hungarica32(3), pp.241-255.

نوشته شده در دیدگاه‌تان را بنویسید

درمان آنتی‌اکسیدانی ناباروری مردان

صنایع ناباروری لیست گسترده‌ای از آزمایشات و روش‌های گرا‌‌ن‌قیمت را برای کمک به زوج‌های نابارور، از قبیل( IVF (fertilization in vitroو تزریق اسپرم داخل سیتوپلاسمی (ICSI) ارائه می‌دهند. متأسفانه، تکنولوژی‌های تولید مثل کمکی (ART) می‌تواند یک طرف تاریکی داشته باشد که به سختی ذکر شده است. روش‌های پیشرفته تولید مثل با افزایش خطر ابتلا به ناهنجاری‌های مادرزادی و همچنین احتمال بیشتر بروز بیماری‌های مختلف به طور فزاینده‌ای ارتباط دارد.
اما اکنون یک بررسی جدید سیستماتیک از تحقیقات دانشمندان شواهدی ارائه می‌دهد که درمان طبیعی می‌تواند راه حل مشکلات ناباروری در بسیاری از مردان باشد. این تحقیق نشان داد مردان تیمار شده با مکمل‌های آنتی‌اکسیدان احتمال بیشتری در بهبود باروری در مقایسه با مردانی که مکمل مصرف نمی‌کنند، دارا هستند.
محققان زنان و زایمان در مقاله جدید تحقیقی، اشاره کردند که مواد شیمیایی شناخته شده به عنوان گونه‌های فعال اکسیژن (ROS) باعث آسیب به سلول‌ها، به ویژه سلول‌های اسپرم می‌شوند. این ممکن است دلیلی باشد بر این‌که چرا برخی از مردان تعداد اسپرم کمتر و توانایی باروری کمتری دارند. اما یک عامل آنتی‌اکسیدانی، مانند برخی از ویتامین‌ها و مواد معدنی، به منظور کاهش آسیب‌های ناشی از ROS شناخته شده‌است.
این آزمایش برروی 34 زوج تحت درمان‌های ناباروری از جمله لقاح آزمایشگاهی و تزریق اسپرم انجام شد. اغلب مردان در این مطالعات دارای تعداد کم اسپرم یا حرکت کم اسپرم بوده‌اند. محققان درمان ناباروری مردان را با انواع مختلف آنتی‌اکسیدان، از جمله ویتامین E، L-کارنیتین، روی و منیزیم انجام دادند. نتایج نشان داد که در مقایسه با گروه کنترلی، در صورت درمان آنتی‌اکسیدانی مرد،‌ احتمال باروری افزایش می‌یابد. در سایر آزمایشات اثرات آنتی‌اکسیدان‌ها بر روی غلظت اسپرم و تحرک و هم‌چنین پیشرفت های مثبت با مکمل آنتی‌اکسیدانی یافت شده است.
اطلاعات کافی برای مقایسه آنتی‌اکسیدان‌های مختلف در دسترس نیست تا مشخص شود کدام مکمل‌ها ممکن است در کمک به مردان در پدر شدن، موثر باشند در نتیجه نیاز به مقایسه و مطالعه بیشتر در این زمینه است تا مشخص شود کدام آنتی‌اکسیدان در مقایسه با آنتی‌اکسیدان‌های دیگر بهتر عمل می‌کند.

منابع:

SIKKA, S.C., RAJASEKARAN, M. and HELLSTROM, W.J., 1995. Role of oxidative stress and antioxidants in male infertility. Journal of andrology, 16(6), pp.464-468.

Agarwal, A., Nallella, K.P., Allamaneni, S.S. and Said, T.M., 2004. Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), pp.616-627.

نوشته شده در دیدگاه‌تان را بنویسید

تغییرات میزان آنزیم گلوتاتیون پراکسیداز در دیابت و علل آن

از آنزیم‌های آنتی‌اکسیدان مهم شناخته شده می‌توان به گلوتاتیون پراکسیداز اشاره کرد. گلوتاتیون پراکسیداز (GPx) نام عمومی خانواده‌ای از آنزیم‌ها با فعالیت پراکسیدازی است که نقش بیولوژیکی اصلی آن‌ها محافظت ارگانیسم‌ها در برابر آسیب‌های اکسیداتیو می‌باشد. عملکرد بیوشیمیایی آنزیم گلوتاتیون پراکسیداز کاهش هیدروپراکسیدهای لیپیدی به الکل‌های مربوطه و کاهش پراکسید هیدروژن آزاد به آب است. آنزیم‌های GPx با استفاده از گلوتاتیون، پراکسیدها را به الکل کاهیده و از تشکیل رادیکال‌های آزاد جلوگیری می‌کنند. در واقع گلوتاتیون پراکسیدازها کاهش پراکسید هیدروژن (آب اکسیژنه) و طیف گسترده ای از پراکسیدهای آلی به الکل مربوطه و آب را با استفاده از گلوتاتیون سلولی کاتالیز می‌کنند. گلوتاتیون فراوان‌ترین ترکیب تیول دار غیرپروتئینی با جرم مولکولی پایین می‌باشد که نقش مهمی را در دفاع سلولی علیه استرس اکسیداتیو به عنوان کوفاکتور گلوتاتیون پراکسیداز برعهده دارد؛ همچنین گلوتاتیون در تنظیم بیان ژن،‌ انتقال سیگنال، تکثیر و مرگ سلولی، تولید سیتوکین‌ها و پاسخ ایمنی دخیل می‌باشد. نسبت گلوتاتیون احیا/ گلوتاتیون اکسید مهمترین شاخص کارایی و سلامتی یک سلول می‌باشد. کمبود گلوتاتیون در فرایند پیری و پاتوژنز بسیاری از بیماری‌ها شامل بیماری‌های قلبی – عروقی، دیابت، ایدز، بیماری‌های سیستم عصبی و تنفسی نقش ایفا می‌کند. استفاده از مواد پروتئینی حاوی پیش‌ماده سنتز گلوتاتیون و دوری از عوامل اکسیدان خارجی مانند اشعه‌های یونیزه کننده، سیگار، ورزش‌های شدید و مصرف بی‌رویه برخی داروها همگی می‌توانند راهکارهای مناسبی در جهت جلوگیری از تهی شدن سلول‌ها از منابع گلوتاتیون باشند.

رادیکال‌های آزاد مولکول‌هایی هستند که از نظر شیمیایی بسیار فعال بوده و طی واکنش‌های متابولیسمی بدن یا در نتیجه موارد دیگر نظیر استعمال دخانیات، قرار گرفتن در معرض اشعه‌های یونیزان، انجام فعالیت‌های شدید بدنی یا در ادامه‌ی برخی بیماری‌ها مانند دیابت ممکن است تولید گردند. ترکیبات ناپایدار رادیکال‌های آزاد بر روی چربی، پروتیین، DNA و کربوهیدرات‌های سلول‌ها تاثیر می‌گذارند؛ که از بین این مواد چربی‌ها بیشترین حساسیت را نسبت به رادیکال‌های آزاد دارا می‌باشند. تاثیر این رادیکال‌ها توسط سیستم دفاعی بدن در حالت طبیعی خنثی می‌گردد. عدم تعادل بین تاثیر دفاعی بدن و کاهش ظرفیت تولید آنتی‌اکسیدانی بدن باعث ایجاد استرس اکسیداتیو می‌شود. این حالت که از تولید اکسیدان‌هایی مثل اکسیژن فعال به‌وجود می‌آید، ممکن است باعث بروز آسیب سلولی شده و در ظهور برخی بیماری‌ها نقش اساسی ایفا کند.

بیماری دیابت یکی از بیماری‌های اصلی در کشورهای پیشرفته می‌باشد. میزان مرگ و میر بیماران دیابتی تیپ ۲ نسبت به افراد سالم به خصوص در رابطه با بیماری‌های قلبی و عروقی افزایش معناداری نشان داده است. مطالعات جدید نشان داده که دیابت با استرس اکسیداتیو در ارتباط بوده و باعث افزایش تولید رادیکال‌های آزاد می‌گردد.هایپرگلیسمی که از نتایج بیماری دیابت می‌باشد نیز یکی از عوامل ایجاد این استرس است. دیابت با افزایش گلوکز و تغییرات بیوشیمیایی در پراکسیداسیون قند و چربی‌ها همراه است. افزایش قند خون از یک سو و از سوی دیگر اختلال در سیستم دفاع آنتی‌اکسیدانی در دیابت، سبب تولید بیش از حد رادیکال‌های آزاد می‌شود. مطالعات آزمایشگاهی نشان داده‌اند استرس اکسیداتیو ناشی از افزایش قند خون مدت‌ها پیش از این که عوارض دیابت به صورت بالینی نمود کند، رخ می‌دهد. درنتیجه این استرس علاوه بر افزایش مقاومت به انسولین و تشدید دیابت، نقش مهمی در پاتوژنز عوارض و تشدید پیامدهای بعدی دیابت دارد. با این وجود مطالعات مختلفی که بر روی مدل‌های حیوانی و همچنین در گروه‌های مختلف بیماران دیابتی صورت گرفته، نتایج ضد و نقیضی در مورد تغییر فعالیت آنزیم‌های آنتی‌اکسیدانی در ابتلا به دیابت نوع ۲ نشان داده‌اند.
در آزمایش صورت گرفته توسط مرجانی و همکاران (۱۳۸۴) بر روی افراد دیابتی، میانگین فعالیت آنزیم گلوتاتیون پراکسیداز در بیماران دیابتی بالاتر از افراد سالم و دارای اختلافی معنادار بوده است. در مطالعه‌ای دیگر توسط Pasaoglu و همکاران درباره‌ی بررسی وضعیت آنتی‌اکسیدانی در افراد سالم و دیابتی، نتایج نشان داده که پراکسیداسون لیپیدها در بیماران دیابتی بالاتر و سطح گلوتاتیون احیا در گلبول‌های قرمز پایین‌تر از افراد سالم است. همچنین در این بررسی گزارش شده که در بیماران دیابتی در مراحل اولیه بیماری، سیستم دفاع آنتی‌اکسیدانی به مقابله با رادیکال‌های آزاد می‌پردازد ولی با پیشرفت مراحل بیماری به تدریج سیستم آنتی‌اکسیدانی دچار اختلال شده و فعالیت آنزیم‌های آنتی‌اکسیدانی کاهش می‌یابد.
با توجه به نتایج جدیدتر حاصل از تحقیقات طاهری و همکاران (۱۳۹۱) اختلاف در نتایج می‌تواند به علت تفاوت مطالعات در زمینه جنس، مدت ابتلا به دیابت، میزان و نحوه کنترل قند خون و گونه‌های مورد مطالعه مدل‌های حیوانی باشد. این تفاوت‌ها در آزمایشات انسانی نیز مطرح است. در این مطالعات بیان می‌شود که افزایش سطح آنزیم‌های گلوتاتیون پراکسیداز می‌تواند ناشی از پاسخ جبرانی بدن به شرایط اکسیداتیو باشد. همچنین در همان مقاله ذکر شده است که احتمالا پس از بالارفتن سطح آنزیم به دلیل پاسخ جبرانی بدن، با رشد و شدت یافتن بیماری یا کنترل ضغیف قند خون، سطوح آنزیمی گلوتاتیون پراکسیداز با کاهش روبرو خواهد شد.
دیابت نوع ۲ تا حد زیادی ناشی از پیروی ناسالم از سبک زندگی‌های پرخطر و ماشینی شدن بیش از اندازه آن‌ها است. همه روزه راهکارهایی برای جوگیری از دچار شدن به آسیب‌های ناشی از کاهش توان بدن در مقابله با استرس اکسیداتیو ارائه می‌شود. این راهکارها شامل توصیه‌های تجویزی و هم‌چنین دستورهایی جهت اجتناب از مصرف برخی مواد یا انجام ندادن برخی کارهای روزمره و پرخطر می‌شود. شما نیز برای سهیم شدن در مبارزه و پیشگیری با این بیماری تلخ و خطرناک، اطلاعات خود را در رابطه با این بیماری و مقابله با استرس اکسیداتیو ناشی از آن زیر این مطلب با دیگران به اشتراک بگذارید؛ یا برای اطلاع از راهکارهای جدید مقابله در خبرنامه ما عضو شوید.

منابع:

Pasaoglu, H., Sancak, B. and Bukan, N., 2004. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. The Tohoku journal of experimental medicine, 203(3), pp.211-218.

PeerapatditMD, T., 2007. Glutathione and glutathione peroxidase in type 1 diabetic patients. J Med Assoc Thai, 90(9), pp.1759-67.

Sailaja Devi, M.M., Suresh, Y. and Das, U.N., 2000. Preservation of the antioxidant status in chemically‐induced diabetes mellitus by melatonin. Journal of pineal research29(2), pp.108-115.

Nangle, M.R., Gibson, T.M., Cotter, M.A. and Cameron, N.E., 2006. Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats. Planta medica72(6), p.494.

نوشته شده در دیدگاه‌تان را بنویسید

الکتروفورز ژل پلی‌آکریل‌آمید (PAGE) چیست؟

تکنیک‌ الکتروفورز، مولکول‌ها را بر اساس بار الکتریکی در میدان الکتریکی جدا می‌کند. تحرک یک مولکول به شکل معکوس متناسب با اندازه آن است و به طور مستقیم با شارژ آن متناسب است. در طول الکتروفورز، پروتئین‌ها به سمت یک الکترود متناسب با بار الکتریکی در میدان الکتریکی حرکت می‌کنند. سرعت حرکت مولکول‌ها در یک سیستم الکتروفورز علاوه بر خواص ذاتی مانند اندازه، شارژ و شکل پروتئین‌ها، بر اساس عوامل متعددی نظیر دما، pH  و غلظت بافر نیز کنترل می‌شود. جداسازی الکتروفورز پروتئین به طور دقیق براساس وزن مولکولی آن‌ها امکان‌پذیر است، اگر بار الکتریکی تمام مولکول‌های پروتئین طبق روش مشخص یکسان باشد، در چنین مواردی تحرک مولکول‌های پروتئینی تنها بر اندازه آن‌ها متکی خواهد بود.

الکتروفورز ژل پلی‌آکریل آمید (PAGE) روش مبتنی بر این ایده است و برای جدا‌سازی پروتئین‌ها بر اساس اندازه آن‌ها استفاده می‌شود.

اصول PAGE

در PAGE، مواد شوینده آنیونی به نام سدیم دودسیل سولفات (SDS) برای اتصال به پروتئین‌ها استفاده می‌شود و به آن‌ها بار منفی می‌دهد. سپس پروتئین‌ها با توجه به اندازه پروتئین، در یک ماتریس ژل ساخته شده از پلی‌اکریل‌آمید در میدان الکتریکی به وسیله الکتروفورز جدا می‌شوند.

پلی‌اکریل‌آمید به عنوان فرآورده واکنش پلیمریزاسیون بین اکریل‌آمید و متیلن‌بیس‌اکریل‌آمید ( BIS )  و با استفاده از کاتالیزور تولید می‌شود. درجه پلیمریزاسیون یا اتصال متقاطع را می‌توان با تنظیم غلظت آکریل‌آمید و BIS کنترل کرد. ماده بیشتر منجر به ژل سخت‌تر می‌شود. سختی ژل، به نوبه خود، اصطکاک ماکرومولکول‌هارا در ژل افزایش داده و در زمان عبور از طول ژل، بر جداسازی آن‌ها تاثیر می‌گذارد.

ژل‌های با درصد پایین (4-8٪ آکریل‌آمید) اجازه می‌دهند مولکول‌های با وزن مولکولی بالاتر بتوانند از طریق ژل سریع حرکت کنند، در حالی که ژل‌های سخت و با درصد بالا (12-20٪ آکریل‌آمید) انتقال مولکول‌های بزرگ را محدود می‌کنند و به طور انتخابی به مولکول‌های کوچک اجازه می‌دهند که از طریق ژل حرکت کنند.

پروتکل SDS-PAGE
  1. آماده‌سازی نمونه:

نمونه‌های پروتئین با گرم کردن آنها با SDS مواد شوینده و مرکاپتواتانول دناتوره می‌شوند. این ماده محکم به پروتئین‌ها متصل شده و موجب افزایش بار منفی می‌شود، هم‌چنین گروه‌های سولفیدریل را آزاد می‌کند و به همین دلیل زنجیره‌های پلی‌پپتیدی دارای بار منفی نسبت به وزن می‌شوند. این فرایند به حرکت پروتئین‌ها بر اساس اندازه آن‌ها در الکتروفورز ژل کمک می‌کند.

  1. آماده‌سازی ژل:

ژل الکتروفورز معمولا دارای چندین جزء شامل آکریل‌امید، BIS  و بافر است. پرسولفات‌آمونیوم، یک منبع رادیکال آزاد و یک تثبیت‌کننده برای شروع پلیمریزاسیون به مخلوط اکریل‌آمید اضافه شده است.  BIS نیز برای تشکیل پیوندهای بین مولکول‌های اکریل‌آمید افزوده می‌شود تا زمانی که ژل در نهایت تشکیل شود.

  1. الکتروفورز:

به عنوان یک جریان الکتریکی پروتئین اعمال می‌شود که دارای یک الکترود مثبت و یک الکترود منفی است. هر مولکول با سرعت متفاوت بر اساس وزن مولکولی آن حرکت می‌کند. مولکول‌های کوچک به سرعت از طریق ژل حرکت می‌کنند و مولکول با وزن بالا دارای سرعت حرکت کم‌تر در طول ژل هستند. حرکت معمولا در ولتاژ‌های بالاتر سریع‌تر است. بعد از چند ساعت، مولکول‌های پروتئینی بر اساس اندازه از هم جدا می‌شوند.

  1. رنگ‌آمیزی :

پس از تکمیل شدن الکتروفورز، ژل می‌تواند با استفاده از موادی رنگی مانند Coomassie Brilliant Blue یا اتیدیم بروماید رنگ شود تا پروتئین‌های جدا شده به عنوان نوارهای متمایز رنگ بر روی ژل ظاهر شوند.

پس از رنگ‌آمیزی، رنگ از ژل شسته شده سپس رنگ‌بری می‌شوند تا شدت رنگ باند‌های پروتئینی اندازه‌گیری شود. گروه‌های پروتئین‌های رادیواکتیو با autoradiography می‌توانند شناسایی شوند.

برخی از سیستم‌های ژل یکرنگ مانند رنگ آمیزی بروموفنول همراه با نمونه پروتئین را معرفی می‌کنند – فاصله قابل مشاهده توسط رنگ بر روی ژل کمک می‌کند تا طول مدت الکتروفورز تعیین شود. بروموفنول آبی همراه با مولکول‌های نمونه حرکت می‌کند تا زمانی که در نهایت به پایین ژل برسد. الکتروفورز نیاز به توقف در این مرحله دارد تا هیچ مولکول پروتئینی الکتروفورز از ژل خارج و بافر منتقل نشود.

 

منابع:

Kinoshita, E., Kinoshita-Kikuta, E. and Koike, T., 2009. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nature protocols4(10), p.1513.

Wittig, I., Braun, H.P. and Schägger, H., 2006. Blue native PAGE. Nature protocols1(1), p.418.

نوشته شده در دیدگاه‌تان را بنویسید

استخراج DNA چیست؟

استخراج DNA خارج‌کردن و جداسازی داکسی‌ریبونوکلئیک‌اسید (DNA) از سلول‌ها یا ویروس‌هایی است که دارای DNA به عنوان ماده ژنتیکی هستند.

DNA استخراج شده برای چه کاری استفاده می‌شود؟

استخراج DNA غالبا گام اولیه در بسیاری از فرایندهای تشخیصی است که برای تشخیص باکتری و ویروس‌ها در محیط زیست و نیز تشخیص بیماری‌ها و اختلالات ژنتیکی استفاده می‌شود. این تکنیک‌ها شامل روش‌های زیر می‌شوند:

فلورسانس در حالت هیبریداسیون ( FISH ) :  یک روش مولکولی است که اکثرا برای شناسایی و شمارش گروه‌های باکتری خاص است.

پلی‌مورفیسم قطعه انتهایی هضم‌شده  ( T-RFLP ) : برای شناسایی، مشخص نمودن و تعیین الگوهای مکانی و زمانی در جوامع باکتری اپی‌پلانکتون دریایی استفاده می‌شود.

توالی‌یابی: بخش‌هایی از ژنوم یا کل آن ممکن است دارای توالی و هم‌چنین عناصر کروموزومی اضافی برای مقایسه با توالی موجود در بانک ژن باشد.

DNA چگونه استخراج می‌شود؟

مرحله 1. شکستن سلول برای آزاد کردن DNA

سلول‌های نمونه از یکدیگر جدا می‌شوند، اغلب به وسیله یک وسیله فیزیکی مانند ورتکس کردن و در محلول حاوی نمک قرار می‌گیرند. یون‌های سدیم مثبت با نمک در محافظت از گروه‌های فسفات منفی که در امتداد ستون فقرات DNA قرار دارند شرکت می‌کنند. سپس مواد شوینده اضافه می‌شود. مواد شوینده لیپید‌ها را در غشای سلولی و هسته تجزیه می‌کند. DNA آزاد شده است چون این غشاها مختل می‌شوند.

مرحله 2: جداسازی DNA از پروتئین‌ها و سایر باقی مانده‌های سلولی

برای به دست آوردن یک نمونه تمیز از DNA، لازم است تا حد زیادی از باقی مانده‌های سلولی حذف شود. این کار را می‌توان با روش‌های مختلف انجام داد. اغلب یک پروتئاز (آنزیم پروتئینی) برای تخریب پروتئین‌های مرتبط با DNA و دیگر پروتئین‌های سلولی اضافه می‌شود. به صورت متناوب، برخی از باقی‌مانده‌های سلولی را می‌توان با فیلتر کردن نمونه حذف کرد.

مرحله 3. رسوب DNA با الکل

در نهایت، الکل یخ زده (یا اتانول یا ایزوپروپانول) به دقت به نمونه DNA اضافه می‌شود. DNA محلول در آب است، اما در حضور نمک و الکل، نامحلول است. در این مرحله رسوب ظاهر می‌شود. اگر مقدار زیادی از DNA وجود داشته باشد، ممکن است یک رسوب سفید ببینید.

مرحله 4. تمیز کردن DNA

نمونه DNA اکنون می‌تواند بیشتر تمیز شود. سپس آن را در یک بافر کمی قلیایی دوباره آماده کرده و آماده استفاده می‌شود.

مرحله 5. تأیید حضور و کیفیت DNA

برای انجام آزمایشات بیشتر، مهم است که غلظت و کیفیت DNA را بدانید. برای تعیین غلظت و خلوص DNA در یک نمونه، می‌توان از خواص چگالی نوری گرفته شده توسط یک اسپکتروفتومتر استفاده کرد. به جای آن، الکتروفورز ژل را می‌توان برای نشان دادن حضور DNA در نمونه خود و نشان دادن کیفیت آن به کار برد.

DNA استخراج شده در چه مواردی بررسی می‌شوند؟

DNA استخراج شده برای تجزیه و تحلیل مولکولی از جمله PCR، الکتروفورز، توالی یابی، اثر انگشت و کلونینگ استفاده می‌شود.

 

منابع:

Rohland, N., Glocke, I., Aximu-Petri, A. and Meyer, M., 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nature protocols13(11), p.2447.

Guevara, E.E., Frankel, D.C., Ranaivonasy, J., Richard, A.F., Ratsirarson, J., Lawler, R.R. and Bradley, B.J., 2018. A simple, economical protocol for DNA extraction and amplification where there is no lab. Conservation genetics resources10(1), pp.119-125.

Fiedorova, K., Radvansky, M., Nemcova, E., Grombirikova, H., Bosak, J., Cernochova, M., Lexa, M., Smajs, D. and Freiberger, T., 2019. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Frontiers in microbiology10, p.821.

Zinger, L., Chave, J., Coissac, E., Iribar, A., Louisanna, E., Manzi, S., Schilling, V., Schimann, H., Sommeria-Klein, G. and Taberlet, P., 2016. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology and Biochemistry96, pp.16-19.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان محافظ مغز در برابر آلزایمر

تحقیقات جدید نشان می‌دهند که چطور یک آنتی‌اکسیدان محافظ مغز می‌تواند از زوال عقل و آلزایمر جلوگیری کند.

آنتی‌اکسیدان سوپراکسید دیسموتاز یا  SOD1 با رادیکال‌های آزاد که باعث آسیب اکسیداتیو در مغز می‌شود، مبارزه می‌کند با این حال، یک تیم تحقیقاتی دانشگاه ایالتی آیووا، مزایای محافظتی SOD1 را به طور چشمگیری ضعیف می‌داند. درحالی که سطح پروتئین‌های tau در  بیماری آلزایمر افزایش می‌یابد اما بر اساس نتایج، محققان معتقدند SOD1 برای مقابله با اثرات مضر پروتئین tau مبارزه می‌کند اما در نهایت نبرد را از دست می‌دهد.

در افراد مبتلا به اختلال شناختی ضعیف و آلزایمر، SOD1  بیشتر به بخش خاکستری مغز مربوط می‌شود که نقش مهمی در حافظه دارد. با این حال، نتایج نشان می‌دهد 90 درصد از این تاثیر مثبت توسط tau از بین می‌رود. این مساله باعث نمی‌شود که سوپراکسیددیسموتاز به عنوان عامل منفی در آلزایمر شناخته شود، بلکه اثر پروتئین tau را در تشدید آسیب اکسیداتیو بیان می‌کند.

مکلیمانز، فارغ التحصیل PhD و دستیار تحقیق، علوم غذایی و تغذیه انسانی و بریجت کلارک، کارشناس تحقیقاتی دانشنامۀ سیکلون تابستان، این مطالعه را منتشر کردند که توسط مجله Antioxidants & Redox Signaling منتشر شده است. علاقه آن‌ها به آنتی‌اکسیدان‌ها که به طور طبیعی در بدن و در غذاها وجود دارد، منجر به بررسی این مساله شد که چگونه SOD1 پیری را تحت تاثیر قرار می‌دهد.

کلارک گفت: “این مطالعه می‌تواند بیشتر به بررسی نحوه کاهش میزان تغذیه و جلوگیری از تولید عصبی و پیری در مغز مربوط شود. Auriel Willett  استادیار علوم غذایی و تغذیه انسان، که به تحقیق نظارت داشت بیان می‌کند که میزان پروتئین SOD1 و tau در افراد با درجه‌های مختلف بیماری آلزایمر متفاوت است. محققان آزمایش‌های بالینی را بر روی بزرگسالان محدوده سنی 65 تا 90 ساله مبتلا به آلزایمر در زمینه ابتلا به بیماری‌های عصبی، مورد مطالعه قرار دادند. از 287 نفر در این مطالعه، 86 نفر اختلال شناختی داشتند، 135 نفر اختلال خفیف داشتند و 66 نفر مبتلا به بیماری آلزایمر بودند.

مک ليمانس گفت، بسياری از محققان آزمایشات خود را در زمینهSOD1  و مغز بر اساس تحليل مغز پس از مرگ مبتلایان به آلزايمر انجام می‌دهند. طبق همین بررسی‌ها تاثیر SOD1  در آلزایمر و تاثیر بیومارکرها در مغز و مایع مغزی نخاعی در بزرگسالان مشخص شده بود. امروزه تحقیقات بیشتر، نقش پروتئین tau را در توسعه آلزایمر نشان می‌دهد. Willette  گفت: “بیماری ممکن است تا حدی شروع شود یا پیشرفت کند، زیرا آنتی‌اکسیدان‌ها در مغز ما کارآیی خود را هنگام افزایش آسیب اکسیداتیو، افزایش می‌دهند.”

محققان در ایالت آیووا می‌گویند مطالعات بیشتری نیاز است تا تعیین کند آیا افزایش تولید SOD1 احتمالا از طریق رژیم یا دارو ممکن است به پیشرفت بیماری آلزایمر تاثیر داشته باشد یا خیر؟

 

منابع:

McLimans, K.E., Clark, B.E., Plagman, A., Pappas, C., Klinedinst, B., Anantharam, V., Kanthasamy, A. and Willette, A.A., 2019. Is CSF SOD1 a Biomarker of Tau but not Amyloid Induced Neurodegeneration in Alzheimer’s Disease?. Antioxidants and Redox Signaling,

نوشته شده در دیدگاه‌تان را بنویسید

آیا آنتی‌اکسیدان‌ها سرعت پیشرفت سرطان را افزایش می‌دهند؟

مطالعات جدید نشان می‌دهد که افراد سیگاری و سایر افراد مبتلا به بیماری ریه، خطر پیشرفت بیماری را در صورت مصرف مکمل‌های آنتی‌اکسیدانی نشان می‌دهند.

محققان در سوئد گزارش دادند که آنتی‌اکسیدان‌ها به سرعت پیشرفت سرطان را با کوتاه شدن یکی از پاسخ های کلیدی ایمنی بدن به سلول‌های بدخیم نشان می‌دهند. دوزهای نرمال ویتامین E و دوزهای کمتر از آنتی‌اکسیدان استیل‌سیستئین باعث افزایش رشد تومورها در موش‌های مبتلا به سرطان ریه می‌شوند.

دکتر مارتین برگو در یک کنفرانس مطبوعاتی بیان کرد: “ما دریافتیم که آنتی‌اکسیدان‌ها باعث افزایش سه برابر تعداد تومور‌ها شده و رشد تومورها را تشدید می‌کنند.” آنتی‌اکسیدان‌ها، موش‌های مبتلا به سرطان را دو برابر سریع‌تر می‌کشند و تأثیر آن به صورت وابسته به دوز است. اگر دوز کمتری به موش‌ها تزریق کنیم، تومورها رشد کمی نشان میدهند و اگر دوز بالاتری از آنتی‌اکسیدان تزریق کنیم، تومورها رشد بیشتری را نشان می‌دهند.

برگو مدیر مرکز سرطان در دانشگاه گوتنبرگ گفت که یافته‌های مربوط به این موضوع بسیار با اهمیت هستند زیرا استیل‌سیستئین برای بهبود تنفس در بیماران مبتلا به بیماری مزمن انسدادی ریوی یا COPD مورد استفاده قرار می‌گیرد. اکثر افراد مبتلا به COPD را افراد سیگاری تشکیل می‌دهند.

آنتی‌اکسیدان‌ها از طریق جلوگیری از آسیب سلولی ناشی از مولکول‌هایی به نام رادیکال‌های آزاد، بدن را از بیماری محافظت می‌کنند. این رادیکال‌ها می‌توانند به تقریبا هر چیزی در داخل سلول، از جمله DNA، آسیب برسانند و آسیب DNA می‌تواند منجر به سرطان شود.

هنگامی که بدن تشخیص می‌دهد آسیب DNA سلولی رخ داده است که می‌تواند منجر به سرطان شود، پروتئین مهار‌کننده تومور به نام p53 آزاد می‌شود. محققان در آزمایشات بالینی بر روی سلول‌های سرطانی موش و انسان، متوجه شدند که آنتی‌‌اکسیدان‌ها، آزاد شدن p53 را متوقف می‌کنند و باعث آسیب DNA در سلول‌های سرطانی توسط رادیکال‌های آزاد می‌شوند. در اثر کاهش آسیب  DNA، آنتی‌اکسیدان در حقیقت به سلول‌های سرطانی کمک می‌کند تا از تشخیص جلوگیری کنند.

یافته‌های این تحقیق نشان می‌دهد که افرادی که تومور‌های ناشناخته در ریه خود دارند، باید از مصرف آنتی‌اکسیدان‌های اضافی جلوگیری کنند.

برگو گفت: “اگر سرطان ریه دارید یا خطر ابتلا به سرطان ریه نشان می‌هید، آنتی‌اکسیدان‌های اضافی ممکن است مضر باشند و باعث رشد سریع تومور شوند.” آزمایشات انسانی در دهه های 1980 و 1990 نشان می‌دهد که آنتی‌اکسیدان‌های بتا کاروتن، ویتامین A و ویتامین E، میزان بروز سرطان ریه را در افراد سیگاری افزایش می‌دهد.

بدن انسان، آنتی‌اکسیدان‌های مورد نیاز خود را تولید می‌کند، و با مصرف مکمل‌های آنتی‌اکسیدانی که از مواد غذایی تامین می‌شوند ، توانایی بدن برای مبارزه با سرطان و بیماری افزایش می‌یابد. این یک باور قدیمی در زمینه تاثیر آنتی‌اکسیدان‌ها بر سرطان است که امروزه با تحقیقات بیشتر زیر سوال می‌رود.

مسیرهای پیچیده و چرخه‌های فراوانی در بدن وجود دارد که باید در جهت تشخیص صحیح تاثیر آنتی‌اکسیدان‌ها در بیماری سرطان مطالعه شوند. با این حال،در سوئد تا زمان مطالعات بیشتر، مصرف مکمل‌های آنتی‌اکسیدانی در بیماران مبتلا به سرطان ریه ممنوع شده است.

 

منابع:

Emfietzoglou, R., Spyrou, N., Mantzoros, C.S. and Dalamaga, M., 2019. Could the endocrine disruptor bisphenol-A be implicated in the pathogenesis of oral and oropharyngeal cancer? Metabolic considerations and future directions. Metabolism91, pp.61-69.

Cipolletti, M., Solar Fernandez, V., Montalesi, E., Marino, M. and Fiocchetti, M., 2018. Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ers) signaling. International journal of molecular sciences19(9), p.2624.

 

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو وناباروری

تولید بیش از حد گونه‌های فعال اکسیژن (ROS) در علل ناباروری، به خصوص ناباروری مردان در گیرند. ناباروری مشکلی است که در سراسر جهان وجود دارد و جوامع مختلف را درگیر می­کند و پیامد­های روانی- اجتماعی آن گریبان­گیر مردان و زنان نابارور است. ناباروری باعلت مردانه، حدود نیمی‌از انواع ناباروری را به خود اختصاص داده است و یکی از معضلات فعلی جامعه بشری است. اولین قدم جهت تشخیص و درمان ناباروری، بررسی پارامتر­های اسپرم می­‌باشد که مهمترین آنها ارزیابی تعداد، تحرک و مورفولوژی اسپرم است. مطالعات متعددی نشان داده‌­اند که افراد نابارور با کاهش کیفیت پارامتر­های اسپرمی‌مواجه هستند. اگر چه، 15 درصد از بیماران نابارور با فاکتور مردانه، آنالیز مایع منی ­آنها نرمال است. بنابراین، می­توان نتیجه گرفت که این موضوع به تنهایی برای ارزیابی پتانسیل باروری مردان کارآمد نیست. لذا علاوه بر ارزیابی­های معمول، چند آزمون پیشرفته از جمله ارزیابی سطح قطعه قطعه شدن DNA اسپرم و تراکم DNA را می­توان برای یافتن علل ناباروری انجام داد. با توجه به شواهد، قطعه قطعه شدن DNA اسپرم با تغییر در پارامتر­های اسپرمی‌در ارتباط است. علاوه بر این، با توجه به افزایش آسیب DNA اسپرم در مردان نابارور نسبت به مردان بارور می­توان نتیجه گرفت که این موضوع می­‌تواند قدرت باروری مردان را تحت تأثیر قرار دهد. از این رو ارزیابی محتوای DNA اسپرم ممکن است برای آنالیز مایع منی مفید باشد و پیش بینی باروری برای مردان را ممکن سازد. چند فاکتور در اختلال محتوای DNA اسپرم دخیل هستند که از جمله آن‌ها می­توان به عوامل محیطی و شیوه زندگی، دخانیات، واریکوسل و استرس اکسیداتیو، اشاره نمود. مطالعات نشان می‌دهد که غلظت بالای ROS، با ناباروری در 40 درصد از مردان در ارتباط است و مطالعات جدید، سطح ROS بالا را در 80 ـ 30 درصد از مردان نابارور نشان داده‌اند. غلظت بیش از حد ROS و استرس اکسیداتیو اثرات پاتولوژیکی را در دستگاه تناسلی مرد اعمال می‌کند که مخرب اسپرم هستند و ارتباط منفی با تغییر در غلظت، تحرک و مورفولوژی اسپرم دارد و می‌تواند منجر به ضعف اسپرم و در نهایت ناباروری آن شود. اگر چه ROS برای عملکردهای مختلف فیزیولوژیک مهم است اما مقادیر بیش از حد آن به استرس اکسیداتیو کمک می‌کند. مکانیسم عمل ROS شامل پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم است که به دلیل وجود مقدار زیاد اسیدهای چرب غیر اشباع در غشاء خود، بسیار مستعد ابتلاء به آسیب‌های اکسیداتیو است و این موضوع می‌تواند روی تحرک اسپرم، سیالیت غشا و توانایی لقاح آن اثر منفی گذارد. علاوه بر این ROS می‌تواند به پروتئین‌های اکسونم اسپرم صدمه بزند و باعث تسریع و شتاب مصرف ATP گردد و در عملکرد میتوکندری و DNA اختلال ایجاد کند.

همچنین قرار گرفتن در معرض استرس روانی اجتماعی با افزایش استرس اکسیداتیو و التهاب در پلاسمای مایع منی همراه است که در نهایت منجر به کاهش کیفیت اسپرم می­شود. لذا احتمال کاهش باروری در این افراد بیشتر گزارش شده است و جهت درمان آنها از تکنیک‌های کمک باروری استفاده می‌گردد.
در روش کمک باروری از تکنیک‌هایی مانند: تلقیح داخل رحمی‌اسپرم (IUI)، لقاح آزمایشگاهی (IVF) و تزریق درون سیتوپلاسمی ‌اسپرم (ICSI)(Intracytoplasmic0Sperm-Injection) استفاده می‌شود. در حقیقت هدف از ART افزایش شانس باروری از طریق نزدیک کردن یا حتی وارد کردن اسپرم به تخمک است که بدین وسیله می‌توان از برخی نواقص عملکردی گامت نر گذر کرد. نکته مهمی‌که باید به آن توجه داشت این است که کیفیت پارامترهای اسپرم در طی آماده سازی جهت استفاده برای این تکنیک‌ها باید حذف شود و اسپرم‌های عملکردی از اسپرم‌های غیر‌طبیعی که قادر به باروری تخمک نیستند، باید جدا شوند. دو روش معمول آماده سازی اسپرم که بیشتر در مراکز درمانی ناباروری استفاده می‌شوند که  DGC (Density Gradient Centrifugation) و Swim up نام دارد که در طی آن پلاسمای منی که 90 درصد از منی را تشکیل می‌دهد، باید حذف گردد، یکی از این ترکیبات بسیار مهم پلاسما، آنتی‌اکسیدان‌هاا هستند که با حذف پلاسما در حین شستشو از اسپرم حذف می‌شوند، پس حذف این آنتی‌اکسیدان‌ها و انجام سانتریفوژ در حین شستشو می‌تواند سبب تولید ROS گردد. علاوه بر این فریز- ذوب اسپرم، آسیب مکانیکی، شوک سرد و قرار گرفتن در معرض اتمسفر اکسیژن، به نوبه خود حساسیت به پراکسیداسیون لیپیدی را افزایش و سبب تولید ROSبیشتر می‌شود. همچنین این موضوع را نیز باید در نظر گرفت که نمونه‌های بیمارانی که برای درمان IVF یا  ICSI به مرکز درمانی مراجعه می‌کنند، در صورتی که در مدت زمان بیش از یک ساعت بمانند، به دلیل حذف پلاسما که حاوی آنتی‌اکسیدان است، در معرض ROS تولید شده توسط سلول ها قرار گرفته و با افزایش میزان آسیب DNA نسبت به اسپرم افراد بارور رو به رو خواهند شد و در کمک باروری، اسپرم با DNA آسیب دیده، نرخ لقاح و حاملگی را کاهش می‌دهد و در رشد جنین اختلال ایجاد می‌کند و خطر سقط جنین خود به خود، تولد نوزاد ناقص و بیماری‌های دوران کودکی مانند سرطان را افزایش می‌دهد.

منابع:

 

 

    1. Mehta, A., Esteves, S.C., Schlegel, P.N., Niederberger, C.I., Sigman, M., Zini, A. and Brannigan, R.E., 2018. Use of testicular sperm in nonazoospermic males. Fertility and sterility, 109(6), pp.981-987.
    2.  , M. Amirzadegan  M. Tavalaee  , M.H. Nasr-Esfahani, Oxidative Stress and Its Effects on Male InfertilityM. Arbabian

 

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکر چیست؟

بیومارکرها مولکول‌هایی هستند که فرایند طبیعی یا غیرطبیعی را در بدن شما نشان می‌دهند و ممکن است نشانه‌ای از وضعیت یا بیماری باشند. انواع مختلف مولکول‌ها، مانند DNA، ژن‌ها، پروتئین‌ها و هورمون‌ها می‌توانند به عنوان نشانگرهای زیستی عمل کنند، زیرا همه آن‌ها در مورد سلامتی اطلاعات بسیاری را در اختیار قرار می‌دهند. بیومارکرها ممکن است توسط خود بافت سرطانی و یا توسط سلول‌های دیگر در بدن در پاسخ به سرطان تولید شوند. آن‌ها می‌توانند در خون، مدفوع، ادرار، بافت تومور یا سایر بافت‌ها و یا مایعات بدن یافت شوند. به طور مشخص، نشانگرهای زیستی محدود به سرطان نیستند. بیومارکرها برای بیماری‌های قلبی، مولتیپل اسکلروز و بسیاری از بیماری‌های دیگر وجود دارد.

یادگیری برخی از حقایق اولیه برای درک اهمیت بیومارکر‌ها در سرطان، داشتن اطلاعات در مورد DNA، RNA و پروتئین مفید است. DNA یک مولکول درون سلولی است که اطلاعات ژنتیکی را حمل می‌کند و از یک نسل به نسل بعد منتقل می‌شود RNA یا اسیدریبونوکلئیک شامل اطلاعاتی است که از DNA کپی شده است. سلول‌های بدن چندین مولکول RNA مختلف را تشکیل می‌دهند که برای سنتز مولکول‌های پروتئین ضروری هستند. به عنوان مثال، mRNA، یا مولکول های RNA messenger، به عنوان الگوهایی برای تولید پروتئین از واحد‌های آمینو اسید عمل می‌کنند، در حالی که tRNA یا مولکول‌های RNA ناقل، واحدهای اسید‌آمینه را به ریبوزوم می‌رسانند. داخل ریبوزوم، فرآیند ترجمه به پروتئین انجام می‌گیرد.

پروتئین به عملکرد بدن کمک می‌کند و اساس ساختار بدن مانند پوست و مو است. آنها طیف گسترده‌ای از توابع در داخل بدن انسان دارند. برخی از پروتئین‌ها (آنزیم‌ها) سرعت واکنش‌های شیمیایی را افزایش می‌دهند، برخی (سیتوکنین‌ها) بر عملکرد سیستم ایمنی بدن تاثیر می‌گذارند و در عین حال سایر پروتئین‌ها که آنتی‌بادی نامیده می‌شوند، واکنش‌های ایمنی خاص را در پاسخ به آنتی‌ژن‌ها انجام می‌دهند.
بیومارکرهای سرطانی می‌توانند شامل موارد زیر باشند:

• پروتئین‌ها
• جهش‌های ژنی (تغییرات)
• بازسازی ژن
• کپی‌های اضافی از ژن‌ها
• حذف ژن‌ها
• مولکول های دیگر

هنگامی که مردم در مورد بیومارکرهای سرطانی صحبت می‌کنند، معمولا به پروتئین‌ها، ژن‌ها و مولکول‌های دیگر اشاره دارند که بر روی سلول‌های سرطانی رشد می‌کنند. در سال‌های اخیر، دانشمندان شروع به مطالعه درباره الگوهای بیان ژن و تغییرات در DNA به عنوان بیومارکرهای سرطانی پرداختند. در حالی‌که برخی از بیومارکرهای سرطانی می‌توانند در جهت پیش‌بینی سرطان، روند پیشرفت، درمان و بهبودی کمک کنند.

در قسمت‌های بعدی به تفصیل درباره انواع عملکرد بیومارکرهای سرطانی و به خصوص بیومارکرهای آنتی‌اکسیدانی بحث خواهیم کرد…

بیومارکرهای سرطان ( قسمت دوم )

بیومارکرهای استرس اکسیداتیو ( قسمت سوم )

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان موجود در عسل

عسل از زمان طولانی در نیازهای پزشکی و خانگی مورد استفاده قرار می‌گیرد، اما اخیرا ویژگی آنتی‌اکسیدانی آن به چشم دیده شده است. با افزایش تقاضا برای عرضه آنتی‌اکسیدان در غذا، عسل به عنوان یک منبع آنتی‌اکسیدانی محبوب شناخته می‌شود، زیرا غنی از اسیدهای فنولیک و فلاونوئیدها و دیگر آنتی اکسیدان‌ها شامل گلوکز اکسیداز، کاتالاز، اسید اسکوربیک، مشتقات کاروتینوئید، اسیدهای ارگانیک، اسیدآمینه و پروتئین‌ها می‌باشد. فلاونوئیدها به شدت در فعالیت های دارویی خود مانند ضدسرطان، ضداکسیدکننده و ضدالتهاب مورد مطالعه قرار گرفته‌اند. با این حال، اثرات عصبی محافظتی آنها کم است. مطالعات اخیر نشان می‌دهد که التهاب توسط میکروگلیا ممکن است نقش مهمی در بیماری‌های نوروژنیک داشته باشد.

آنتی‌اکسیدان‌ها دارای اثرات پیشگیرانه متعددی در برابر بیماری‌های مختلف مانند سرطان، بیماری‌های قلبی عروقی، اختلالات التهابی، ناهنجاری‌های عصبی، بهبود زخم، بیماری‌های عفونی و پیری است که منجر به جستجوی غذاهای غنی از آنتی اکسیدان ها می‌شود. مطالعات مختلفی درباره خواص آنتی اکسیدانی عسل انجام شده است.
عسل دارای طیف گسترده‌ای از فیتوکمیکال‌ها از جمله پلی‌فنول‌ها است که به عنوان آنتی اکسیدان ها عمل می کنند. پلی فنل ها و اسید های فنولی موجود در عسل بر اساس شرایط جغرافیایی و آب و هوایی متفاوتند. بعضی از آنها به عنوان نشانگر خاص برای منبع گیاهی از عسل گزارش شده است. تفاوت‌های قابل توجهی در هر دو ترکیب و محتوای ترکیبات فنلی در عسل‌های مختلف وجود دارد.

همچنین عسل می‌تواند به پیری و بیماری‌های مرتبط با پیری انسان کمک کند. هنگامی که اکسیژن متابولیزه می‌شود، سلول‌هایی به نام “رادیکال های آزاد” تولید می‌‌‌‌کنند. رادیکال‌های آزاد از طریق سلول عبور می‌کنند، ساختار مولکول‌های دیگر را مختل می‌کنند و موجب آسیب سلولی می‌شوند. اعتقاد بر این چنین آسیب‌هایی به پیری و مشکلات مختلف سلامتی کمک می‌کند. آنتی‌اکسیدان‌ها با خنثی‌سازی رادیکال‌های آزاد از مولکول‌های اصلی سلول محافظت می‌کنند. آنتی‌اکسیدان‌هایی که به طور طبیعی در بدن رخ می‌دهند یا از طریق رژیم غذایی مصرف می شوند، ممکن است سبب آسیب به سلول ها شوند. محققان معتقدند با این‌حال، در طول زمان، سلول‌های آسیب‌دیده می‌توانند انباشته شوند و به بیماری‌های مرتبط با سن منجر شوند.
در تلاش برای مبارزه با فعالیت‌های رادیکال آزاد، دانشمندان در حال بررسی اثرات افزایش سطح آنتی اکسیدانی افراد از طریق رژیم غذایی و مکمل های غذایی هستند. عسل به نظر می رسد به عنوان یک آنتی‌اکسیدان در راه‌های بیشتری عمل می‌کند. در بدن، عسل می‌تواند رادیکال‌های آزاد را آزاد کند و به بهبود سلامت کمک کند. هنگامی که در غذاها استفاده می‌شود، ترکیبات تولید شده به هنگام گرم کردن عسل، می‌توانند از ترشیدگی و تعفن برخی از محصولات، به ویژه گوشت، جلوگیری کنند.

در یک پژوهش که در نشست سالانه انجمن شیمی آمریکا در آناهیم، ​​کالیفرنیا ارائه شد، محققان 25 شرکت کننده در حدود 4 قاشق غذاخوری عسل گندم سیاه در روز را به مدت 29 روز به علاوه رژیم غذایی معمول خود تغذیه کردند. دو نوع عسل حاوی مقادیر مختلف پلی‌فنول‌ها مورد آزمایش قرار گرفتند. نمونه‌های خون گرفته‌شده در ابتدا و پایان مطالعه، ارتباط مستقیم بین مصرف عسل و سطوح پلی‌فنول‌های مبارزه با بیماری را نشان داد. عسل حاوی پلی‌فنول که بیشتر آنها خوردند، سبب گردید آنتی‌اکسیدان بالاتری در خونشان مشاهده شود.

منابع:

  1. (Khalil, M.I., Sulaiman, S.A. and Boukraa, L., 2010. Antioxidant properties of honey and its role in preventing health disorder. The Open Nutraceuticals Journal, 3(1
  2. Priyadarshini, A. and Pandey, P., 2018. Biocatalysis and Agricultural Biotechnology: Fundamentals, Advances, and Practices for a Greener Future. Apple Academic Press