نوشته شده در

بیومارکر استرس اکسیداتیو، پروب فلورسنت مالون‌دی‌آلدهید در سلول‌های زنده

مالون‌دی‌آلدهید (MDA) بیومارکر مهمی در استرس اکسیداتیو محسوب می‌شود. تغییرات سطح MDA در سیستم‌های بیولوژیکی اغلب نشان‌دهنده تغییرات پاتولوژیک است که با انواع بیماری‌ها مرتبط است. اگرچه برای تشخیص MDA روش‌های مختلفی وجود دارد، این بیومارکر در سلول‌های زنده هنوز مورد بررسی قرار نگرفته است. در مطالعه‌ای، پروب فلورسنت روشن MDAP-1 را با مکانیسم انتقال پیوند الکترونی همراه کرده‌اند که برای اولین‌بار حساسیت MDA را تحت شرایط فیزیولوژیکی با حساسیت بالا نشان می‌دهد. ارزیابی‌های بیولوژیکی بیشتر نشان می‌دهد که MDAP-1 قادر به شناسایی MDA درونی و خارجی در سلول‌های زنده است که این موضوع می‌تواند برای ردیابی MDA تحت استرس اکسیداتیو کاربرد داشته باشد. این نتایج جهت مطالعات مربوط به رویدادهای بیولوژیک مرتبط با MDA و کشف مکانیزم آسیب شناختی در آینده مفید خواهد بود.
یک محصول جانبی پراکسیداسیون اسیدچرب اشباع نشده ناشی از ROS، مالون‌دی‌آلدهید (MDA) است که به عنوان یک بیومارکر استرس اکسیداتیو بررسی می‌شود. واکنش پذیری بالای MDA باعث سمی شدن آن شده که می‌تواند به راحتی با بیومولکول‌هایی مانند پروتئین‌ها و اسیدهای‌نوکئیک واکنش دهد. تغییرات سطح MDA در اندام‌های زنده اغلب نشان‌دهنده تغییرات پاتولوژیک و بروز بیماری‌های مختلف مانند لوسمی، دیابت، سرطان، بیماری قلبی عروقی، سندرم دائمی ماکولا، آسم، آترواسکلروز و بیماری‌های کبدی است بنابراين تشخيص MDA بسیار بااهمیت بوده تا مانع از پیشرفت بیماری و بررسی مکانیسم‌های پاتولوژیک گردد.

درحال حاضر روش‌های تشخیص MDA عبارتند از: تست تيوباربيتوريک اسيد TBA که به طور گسترده مورد استفاده قرار مي‌گيرد، تکنيک‌هاي تازه توسعه يافته عبارتند از کروماتوگرافي مايع، الکتروفورز، کروماتوگرافي گازي و طیف سنجی. با این حال، تقریبا تمام این روش‌ها با مشتقات شیمیایی نسبتا مضر و تحت شرایط سخت مانند اسیدیته قوی و یا درجه حرارت بالا انجام می‌گیرند، بنابراین فقط در نمونه های مایع بدن مانند سرم و ادرار قابل استفاده هستند. به همین دلیل نیاز بسیار شدید برای توسعه فلورسنت مولکول‌های کوچک، قابل نفوذ و بسیار انتخابی وجود دارد.

محققان اولین پروب فلورسنت MDA را که تحت شرایط فیزیولوژیکی کار می‌کند، گزارش کرده‌اند که برای بررسی MDA در سلول‌های زنده مناسب است. به طور خلاصه، یک پروب فلورسنت روشن (MDAP-1) برای MDA بر اساس مکانیسم پیوند الکترونی پیشنهاد شده است. MDAP-1 قادر به تشخیص MDA خارجی و درون سلولی در سلول‌های زنده است. هم‌چنین در تحقیق MDA تحت استرس اکسیداتیو قابل استفاده است. به طور کامل این اولین پروب فلورسنت برای MDA است که در شرایط فیزیولوژیکی کار می‌کند که می‌تواند برای مطالعات مربوط به رویدادهای بیولوژیک MDA مفید باشد

 

منبع:

Chen, J., Zeng, L., Xia, T., Li, S., Yan, T., Wu, S., Qiu, G. and Liu, Z., 2015. Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Analytical chemistry87(16), pp.8052-8056.

نوشته شده در

آنتی‌اکسیدان‌ها و گسترش سرطان ؟

طبق یک مطالعه منتشر شده در آوریل و در مجله  Science Translational Medicine، دو نوع از داروهای مورد استفاده برای درمان دیابت نوع 2 می‌تواند متاستاز تومورهای انسان را در موش‌ها گسترش دهد.  این دو نوع ترکیب حاوی مهارکننده‌های دی‌پپتیدیل پپتیداز 4 (DPP-4) و  بازدارنده آلفالیپوئیک‌اسید (ALA) است که باعث سرعت بخشیدن به متاستاز ناشی از فعال شدن یک مسیر پاسخ آنتی‌اکسیدانی می‌شود. در این مسیر پروتئین‌های متاستاز فعال می‌شوند. نتایج این تیم نشان‌دهنده ارتباط بین آنتی‌اکسیدان‌ها و گسترش سرطان است.

مهم‌ترین یافته در این زمینه بیان می‌کند که متاستاز، سرطان‌های موجود را با فعال شدن پاسخ آنتی‌اکسیدانی ترویج می‌دهد.

زاکاری شافر، زیست‌شناس سلولی از دانشگاه نوتردام، گفت: “این اطلاعات محرمانه هستند و نتیجه تحقیق با مطالعات دیگر مطابقت دارد که فعالیت آنتی‌اکسیدانی می‌تواند برای متاستاز سلول‌های سرطانی مفید باشد.”

ژنگ و همکاران برای اولین بار از داروهای ضد دیابتی معمول استفاده کردند، از جمله متفورمین و آنالوگ‌های انسولین وتوانایی آن‌ها را برای افزایش تکثیر یا افزایش مهاجرت سلول‌های سرطانی در آزمایشگاه بررسی کردند. محققان نشان دادند که مهارکننده‌های DPP-4  از مهاجرت و تهاجم سلول‌ها جلوگیری می‌کند اما بر روی تکثیر سلول‌های سرطانی ملانوم، کبد، کولون، پستان، ریه و تخمدان تاثیرگذار نیست.

در موش‌ها، این داروها موجب انتشار بیشتر سلول‌های تومور کبدی و کولون و همچنین افزایش میکرومتاستاز در مقایسه با حیوانات با همان تومورهایی بود که هیچ داروهای ضددردی دریافت نکردند. آزمایش‌های بیشتر در آزمایشگاه نشان داد که اثرات مهار‌کننده DPP-4  بر روی انتقال تومور سلول با توانایی ترکیبات برای کاهش استرس‌اکسیداتیو سلول‌های سرطانی همراه است: داروها منجر به کاهش گونه‌های فعال اکسیژن (ROS) ، افزایش گلوتاتیون و افزایش آنتی‌اکسیدان آندوژنز می‌شود. محققان نشان می‌دهند که مهارکننده سنتز گلوتاتیون در سلول‌های سرطانی علاوه بر مهارکردن DPP-4 مانع از انتقال سلول‌های تومور می‌شود.

برای درک این‌که چگونه این ترکیبات بر روی مسیرهای استرس اکسیداتیو سلولی اثر می‌گذارند، محققان فاکتور رونویسی (NRF2) را که از طریق بازدارنده DPP-4 فعال می‌شوند، هم در کشت سلولی و هم در موش بررسی کردند.. پنج مهار‌کننده متفاوت DPP-4  همه در NRF2 فعال شده‌اند. هنگامی که محققان NRF2 را در پروتئین بازدارنده DPP-4 و سلول‌های سرطانی کبد از بین بردند، سلول‌ها کاهش مهاجرت سلول‌های تومور و بیان پروتئین‌های مرتبط با متاستاز را نشان دادند.

محققان اثر مشابهی را در in vivo مشاهده کردند. موش‌هایی که با سلول‌های نابودکننده NRF2 تلقیح شده بودند، متاستازهای ناشی از مهارکننده DPP-4 کمتری داشتند. محققان گزارش دادند که NRF2 هم‌چنین متاستازهای مستقل از هرگونه درمان دارویی دیابت را تحت تاثیر قرار داده است. فعال‌سازی فاکتور رونویسی باعث بیان پروتئین‌های متاستاز و مهاجرت سلولی در کشت شده و فعال‌سازی فارماکولوژیک NRF2 در موش، باعث افزایش میکرومتاستاز شد.

یکی دیگر از فعال کننده NRF2 شناخته شده، با نام ALA که برای درمان نوروپاتی دیابتی استفاده می‌شود، و اثرات مشابهی را به عنوان مهارکننده DPP-4 دارد، مورد مطالعه قرار گرفت. تجزیه و تحلیل داده‌های بیان اولیه تومور و متاستاتیک، نشان داد که در نمونه‌های با متاستاتیک بیشتر، احتمال افزایش بیان NRF2 را با متاستاز گره لنفاوی مرتبط می‌کند. مطالعات قبلی نشان داده است که NRF2 توسط آنکوژن‌ها فعال می‌شود، که تومورها را قادر می‌سازد تا ROS را خنثی کنند که مانع رشد آن‌ها می‌شود. شافر اشاره کرد که آیا سایر داروها با فعالیت آنتی‌اکسیدانی با یک مکانیزم مشابه کار می‌کنند یا اینکه سلول‌های سرطانی، خود نیز از مکانیسم‌های دیگر برای حفظ آنتی‌اکسیدان استفاده می‌کنند.

گام بعدی این است که مطالعه متاستاز تومور در موش‌های دیابتی داشته باشیم، که به اندازه کافی منعکس‌کننده کاربرد بالینی فعلی داروهای ضدویروسی خواهد بود.

برگئو تأکید کرد: “آنتی اکسیدان‌ها و داروهایی که NRF2 را فعال می‌کنند باعث ایجاد سرطان نمی‌شوند.” “در عوض، آن‌ها به سلول‌های سالم کمک می‌کنند سالم بمانند و به سلول‌های سرطانی کمک می کنند تا در بدن گسترش پیدا کنند.

 

منابع:

Caglayan, A., Katlan, D.C., Tuncer, Z.S. and Yüce, K., 2019. Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. Journal of Trace Elements in Medicine and Biology52, pp.254-262.

Shrivastava, A., Aggarwal, L.M., Mishra, S.P., Khanna, H.D., Shahi, U.P. and Pradhan, S., 2019. Free radicals and antioxidants in normal versus cancerous cells—An overview.

 

نوشته شده در

استرس اکسیداتیو در التهاب لثه

التهاب لثه (پریودنتال) باعث افزایش استرس‌های  اکسیداتیو  شده و تولید گونه‌های اکسیداتیو فعال (ROS) در ادامه باعث آسیب بافتی می‌شود. همانطور که پیش‌تر گفته شد توسط مکانیسم‌های مختلفی تولید می‌شوند. از آنجا که تولید ROS اجتناب ناپذیر است، لذا باید سیستم پیچیده از آنتی اکسیدانت‌ها در دفاع در برابر استرس اکسیداتیو وجود داشته باشد. آنتی اکسیدانت‌های تولید شده در بدن در کنترل اثرات و جلوگیری از آسیب‌های ایجاد شده توسط گونه فعال کنترل نشده، مفید هستند.

ملاتونین (N استیل-5-متوکسی تریپتامین) هورمونی است که توسط غدد صنوبری و تا حدی نیز توسط شبکیه چشم، جسم مژگانی، لنز، غده اشکی، روده و پوست ترشح می‌شود و از طریق پلاسما به بزاق منتقل می‌شود. ملاتونین نسبت به سایر آنتی اکسیدانت‌ها قوی‌تر بوده و در هر دو سطح آنزیمی و ژنومی عمل می‌کند.ملاتونین به عنوان تنظیم‌کننده بیان ژن‌های گلوتاتیون پراکسیداز و سوپراکسید دیسموتاز و همچنین یک مدولاتور ایمنی بدن و پروموتور تشکیل استخوان، شناخته شده است.

به منظور بررسی و مقایسه ظرفیت آنتی‌اکسیدانتی تام (TAC) و سطح هورمون ملاتونین در بزاق زنان مبتلا التهاب لثه مطالعه‌ای در سال 2016 طراحی شد که در آن از دو گروه از زنان در گروه های سنی باروری و پس از یائسگی استفاده کردند زیرا سطح هورمون ملاتونین در یائسگی تغییر می کند.

مقادیر TAC، در زنان مبتلا به پریودنتیت مزمن به طور قابل توجهی کاهش می‌یابد. مطالعه بیشتر در مورد کاهش در سطح ملاتونین و ظرفیت تام آنتی‌اکسیدانتی (TAC) در زنان مبتلا به پریودنتیت مزمن نسبت افراد سالم ملاتونین نشان داد که ملاتونین بزاقی می‌تواند به عنوان یکی از نشانگرهای بیماری پریودنتال استفاده شود. با این حال مطالعات بیشتری در این زمینه نیاز هست تا بدانیم چگونه ملاتونین به عنوان یک آنتی اکسیدانت قوی عمل در دندان عمل می کند.

 

منبع:

Ramesh A, Prakash AP, Thomas B, Shetty M. Salivary melatonin and total antioxidant capacity in reproductive and postmenopausal women. Journal of the International Clinical Dental Research Organization. 2016 Jan 1;8(1):39.

نوشته شده در

انتقال دارو به سلول با حباب کاتالاز

آنزیم طبیعی کاتالاز ممکن است پتانسیل بسیاری در درمان بیماری‌های نورولوژیک از جمله پارکینسون داشته باشد. این آنزیم آنتی‌اکسیدان قوی قادر است التهابِ کشنده‌ی نورون‌ها را با روشی غیرموازی با داروهای ریزمولکول، از بین ببرد. اما یک مشکل بزرگ وجود دارد. این آنزیم بسیار بزرگ هستند. تا حدی که عبور از سد خونی-مغزی و رسیدن به سلول‌های مغزی برای آن‌ها تقریبا غیرممکن است. اما محققین روشی را پیدا کرده‌اند که بارگذاری این آنزیم در حباب‌های کوچک و طبیعی خون، عبور آن‌ها را از سیستم ایمنی مغز ممکن ساخته و راه جدیدی برای درمان بیماری‌های مغزی ایجاد می‌کند.

در تحقیقی که در دانشگاه کارولینای شمالی توسط دکتر النا باتراکوا رهبری می‌شود، دانشمندان اگزوزوم‌های سلول‌های ایمنی را جداسازی کردند. این حباب‌های ریز در بیماری‌هایی از جمله ایدز و سرطان تولید می‌شوند و باعث می‌شوند بیماری با سرعت بیشتری در بدن انتشار یابد. در این مورد، محققین توانستند این حباب‌ها را با کاتالاز بارگذاری کنند تا در بافت مغز پروتئین‌های عامل التهاب مقابله کند.

باتراکوا عنوان کرد:

اگزوزوم‌ها به‌وسیله طبیعت به عنوان یک حامل عالی برای پروتئین‌ها و محتوای ژنتیکی طراحی شده‌اند. کاتالاز پروتئین بزرگی است و تقریبا عبور آن از سد خونی-مغزی امکان ناپذیر است. ما از اگزوزوم‌های گلبول‌های سفید بدین منظور استفاده کردیم. این اگزوزوم‌ها علاوه بر اینکه از نظر سیستم ایمنی نامرئی هستند، با پیوستن به سد خونی-مغزی باعث انتقال محتویات آن به مغز می‌شوند.

این محققین اذعان می‌کنند که هر مولکول کاتالاز می‌تواند تا یک میلیون مولکول مخرب را در هر ثانیه خنثی کنند. این واکنش ادامه پیدا می‌کند چرا که کاتالاز نقش کاتالیزور را ایفا می‌کند.

باتراکوا و همکاران امیدوارند بتوانند درمان‌های شخصی با استفاده از اگزوزوم‌های خود فرد توسعه دهند. به‌عنوان مثال یک اسپری نازال برای این درمان بسیار موثر خواهد بود.

 

منبع:

Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release. 2015 Jun 10;207:18-30.

نوشته شده در

استرس اکسیداتیو و اثر آن بر عروق خونی

محققان گزارش می‌دهند که سطح بالاتر استرس اکسیداتیو در مردان منجر به پایین آمدن یک کوفاکتور مورد نیاز برای ایجاد رقیق‌کننده قوی نیتریک‌اکساید رگ‌های خونی می‌شود.

دکتر جنیفر سی سالیوان، از دانشگاه آگوستا به همراه همکاران به این نتیجه رسیدند که سطح بالاتر نیتریک‌اکساید با ایجاد گشادشدن رگ‌های خونی و افزایش دفع سدیم کلیه‌ها به کاهش فشار خون کمک می‌کند و باعث کاهش حجم آن در رگ‌های خونی می‌شود. دکتر جنیفر سی سالیوان، فارماکولوژیست و فیزیولوژیست در بخش فیزیولوژی کالج پزشکی جورجیا در دانشگاه آگوستا، که در حال بررسی تفاوت‌های جنسیتی در فشار خون بالا است چنین گفت: “ما دریافتیم که استرس اکسیداتیو تفاوت زیادی در سطح BH ایجاد می کند.”

استرس اکسیداتیو که ناشی از مقادیر بالای فرآورده‌های جانبی طبیعی استفاده از اکسیژن است، اما به معنای کاهش فشار خون است، در فشار خون بالا نقش دارد و حداقل قبل از یائسگی، خانم‌ها نسبت به آن حساسیت کمتری دارند، احتمالاً به دلیل اثرات محافظتی استروژن در تلاش برای فهمیدن اینکه چرا زنان حتی در مواجهه با فشار خون بالا، نیتریک‌اکساید بیشتری دارند، دانشمندان سطح موش‌های صحرایی خون را در قسمت داخلی کلیه در موشهای صحرایی نر و ماده به طور خودبخود فشار خون اندازه‌گیری کردند.

سالیوان می‌گوید: “ما دریافتیم که میزان فشار خون در زنان فشار خون بالاتر از مردان دارای فشار خون بالا است.” زنان نیز دارای نیتریک‌اکساید بیشتر و فشار خون پایین – اما هنوز هم زیاد- بودند، و مردان دارای استرس اکسیداتیو بیشتری بودند.

آنها قبلاً نشان داده بودند كه موشهای صحرايی جوان، در قسمت داخلی کلیه نسبت به همتایان خود فشار خون بالاتر، و فعالیت نیتریک‌اکساید را در بخش داخلی کلیه به طور معنی داری نشان می دهند، و این اختلاف در بلوغ موش ها است.

دانشمندان دریافتند که افزایش سطح استرس اکسیداتیو در مردان به معنای فشار خون پایین تر و در نهایت نیتریک‌اکساید کمتر در مقایسه با زنان است. همچنین کاهش استرس اکسیداتیو باعث افزایش سطح BH ، و نیتریک‌اکساید می‌شود.

بدون BH ، سنتاز نیتریک‌اکساید “غیرقابل استفاده” می‌شود و در عوض سوپر اکسید تولید می‌کند، که تولید نیتریک‌اکساید را کاهش می‌دهد و با نیتریک‌اکساید موجود برای شکل گیری پراکسی‌نیتریت‌اکساید تعامل دارد که به نوبه خود، BH موجود را هدف قرار می دهد، واضح است که کوفاکتور به راحتی توسط استرس اکسیداتیو تغییر می‌کند تا همتای ناسالم آن BH شود.

BH بدون نسخه به طور گسترده ای در دسترس است و تأثیر آن در تعدادی از کارآزمایی های بالینی از جمله یک مطالعه حاضر در دانشگاه نبراسکا ، اوماها بررسی شده است و به بررسی تأثیر آن بر جریان خون و ظرفیت ورزش در بیماران مبتلا به بیماری شریان محیطی می پردازد.

همکاران تحقیق دکتر دیوید جی هریسون ، مدیر بخش داروسازی بالینی در مرکز پزشکی دانشگاه وندربیلت ، و دکتر وی چن ، معاون پژوهشی این بخش ، سطح BH در کلیه های موش را اندازه گیری کردند. این تحقیق توسط انستیتوی ملی بهداشت و انجمن قلب آمریکا حمایت شده است.

منابع:

Kattoor, A.J., Pothineni, N.V.K., Palagiri, D. and Mehta, J.L., 2017. Oxidative stress in atherosclerosis. Current atherosclerosis reports19(11), p.42.

Sinha, N. and Kumar Dabla, P., 2015. Oxidative stress and antioxidants in hypertension–a current review. Current hypertension reviews11(2), pp.132-142.

 

نوشته شده در

گلوتاتیون، آنتی‌اکسیدان اصلی بدن

محققان بهداشتی به زودی اهمیت بیولوژیکی آنتی‌اکسیدان‌ها را به رسمیت می‌شناسند. با توجه به توانایی آن‌ها جهت جلوگیری از اکسیداسیون و پراکسیداسیون، این مواد مهم که در اکثر مواد غذایی یافت می‌شوند، مزایای سلامتی فراوانی را ارائه می‌دهند. آنتی‌اکسیدان‌ها از آسیب‌های سلولی و بیماری‌های تحلیل عصبی محافظت می‌کنند، چین و چروک‌ها را کم می‌کنند و میزان بروز آفتاب سوختگی را کاهش می‌دهند.

درحالی که اکثر افراد با آنتی‌اکسیدان‌های رایج مانند ویتامین‌های C و E آشنا هستند، یک آنتی‌اکسیدان وجود دارد که نسبتا ناشناخته است به نام گلوتاتیون. اما گلوتاتيون، عليرغم ناشناخته بودن آن، احتمالا مهم‌ترين آنتي‌اكسيدان است.

همانند دیگر آنتی‌اکسیدان‌ها، نقش اصلی گلوتاتیون محافظت از سلول‌ها از آسیب اکسیداتیو و پراکسیداسیون، شامل رادیکال‌های آزاد (اتم‌ها، یون‌ها یا مولکول‌های ناپایدار که می‌توانند بدون هیچ گونه مانع، باعث آسیب جدی به DNA و غشاهای سلولی شوند) است. در زمان کمبود شدید گلوتاتیون، فرد از مشکلات قلبی‌عروقی و التهابی، سرطان، خستگی عضلانی، اختلال عملکرد کبد و بیماری‌های مرتبط با سن مانند پارکینسون و آلزایمر رنج می‌برد.

اما برخلاف آنتی‌اکسیدان‌های دیگر، گلوتاتیون درون سلولی است. این بدان معنی است که “در داخل سلول‌ها” وجود دارد و به میزان قابل توجهی تجزیه عفونت، سرطان، استرس اکسیداتیو و رادیکال‌های آزاد را کاهش می‌دهد. به همین دلیل، گلوتاتیون اغلب به نام “آنتی‌اکسیدان اصلی” شناخته می‌شود.
گلوتاتیون به طور طبیعی در بدن ما تولید می‌شود و در تمام سلول‌های بدن یافت می‌شود. متاسفانه، رژیم‌های غذایی ضعیف، سموم، آلودگی، استرس، داروها، پیری و بسیاری دیگر از عوامل داخلی و خارجی به کاهش سطح گلوتاتیون کمک می‌کنند. علاوه بر این، زمانی که بار سمی بدن زیاد می‌شود، توانایی بدن برای بازیافت گلوتاتیون موجود، به خطر می‌افتد.
برای کمک به درمان این مسئله، بسیاری از ما به مکمل‌های گلوتاتیون به منظور افزایش تولید این آنتی‌اکسیدان ضروری نیازمندیم. با این حال، بیشتر مکمل‌های گلوتاتیون دارای قابلیت بیولوژیک ضعیف هستند و در موارد شدید حتی می‌توانند بر تولید گلوتاتیون طبیعی بدن ما تاثیر بگذارند. بنابراین، اگر به دنبال افزایش سطح گلوتاتیون هستید، ایده خوبی است که تمام غذاهای افزایش دهنده تولید گلوتاتیون مانند زردچوبه، سیر، کلم بروکلی، مارچوبه، آووکادو، گردو، گوشت قرمز، تخم مرغ و شیر را در رژیم غذایی خود بگنجانید.

 

منابع:

Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science, pp.588-590.

Anderson, M.E., 1985. [70] Determination of glutathione and glutathione disulfide in biological samples. Methods in enzymology113, pp.548-555.

Flohé, L. and Günzler, W.A., 1984. [12] Assays of glutathione peroxidase. Methods in enzymology105, pp.114-120.

نوشته شده در

دفاع میکروارگانیسم‌ها در برابر رادیکال‌های آزاد

محققان نشان داده‌اند که چگونه میکروارگانیسم‌ها خود را در برابر رادیکال‌های آزاد محافظت می‌کنند.

مطالعات مختلف بی‌شماری وجود دارد که در آن، میکروارگانیسم‌ها در معرض مولکول‌های بسیار واکنشی شناخته شده به عنوان رادیکال‌های آزاد قرار دارند. این مولکول‌ها قادر به آسیب رساندن به اجزای مهم سلول هستند و ممکن است در طول متابولیسم سلول طبیعی یا در پاسخ به عوامل محیطی تولید شوند. رادیکال‌های آزاد نقش مهمی در اثربخشی آنتی بیوتیک ، ایجاد بیماری‌ها و عملکرد طبیعی سیستم ایمنی بدن انسان دارند. تیمی از محققان در  برلین مکانیسم قبلاً ناشناخته را کشف کرده است که میکروارگانیسم‌ها را قادر می‌سازد از خود در برابر رادیکال‌های آزاد محافظت کنند. یافته‌های آن‌ها ممکن است به بهبود اثربخشی مواد ضدمیکروبی کمک کند. نتایج حاصل از این تحقیق در Nature منتشر شده است.

اصطلاح رادیکال‌های آزاد اکسیژن به مولکول‌های اکسیژن بسیار واکنش پذیر اشاره دارد که قادرند به طیف وسیعی از ساختارهای سلولی مهم مانند پروتئین ، DNA  و غشای سلولی آسیب برساند. برخی از سلول‌های سیستم ایمنی بدن رادیکال‌های آزاد را به عنوان بخشی از مبارزه با میکروارگانیسم‌های مهاجم تولید می‌کنند. فرآیندهای متابولیک هم‌چنین در هنگام تماس سلول‌های میکروبی با آنتی بیوتیک‌ها منجر به تولید رادیکال‌های آزاد می‌شوند. این یک عامل مهم در فعالیت آن‌هاست. میکروارگانیسم‌ها مکانیسم‌های مختلفی را برای رهگیری و خنثی کردن این مولکول‌های بسیار واکنش پذیر ایجاد کرده اند تا بتوانند حمله سیستم ایمنی را خنثی کنند. یک تیم بین المللی از محققان به سرپرستی پروفسور دکتر مارکوس رالسر ، مدیر موسسه بیوشیمی شیمیایی Charité ، اکنون توانسته است نشان دهد که میکروارگانیسم‌ها همچنین یک استراتژی دفاعی دیگر را نیز در اختیار دارند. در مقایسه با سازوکارهای قبلاً مستند ، این استراتژی می‌تواند بسیار مؤثر باشد.

محققان، تحقیقات خود را با استفاده از مخمر نانوائی به عنوان ارگانیسم مدل شروع کردند و مشاهده کردند که سلول‌های مخمر مقادیر زیادی لیزین ، یک مونومر را که در تولید پروتئین‌های مخمر مورد استفاده قرار می‌گیرد ، جمع می‌کنند. پس از جذب محیط ، لیزین در سطوح 70 تا 100 برابر بیشتر از مقدار لازم برای رشد طبیعی ذخیره می‌شود. محققان با استفاده از مدل‌سازی ریاضی و تجزیه و تحلیل ژنتیکی برای تعیین هدف این “برداشت لیزین” ، دریافتند که سلول‌های مخمر از لیزین تجمع یافته برای تغییر متابولیسم خود استفاده می‌کنند. یکی از پیامدهای این تنظیم مجدد ، تولید مقادیر خارق العاده گلوتاتیون ، یکی از مهم‌ترین مولکولهای اصلاح رادیکال موجود در موجودات زنده بود. پس از برداشت لیزین ، سلول‌های مخمر مقاومت قابل توجهی در برابر رادیکال‌های آزاد افزایش داده‌اند. این امر به آن‌ها امکان می‌دهد مقادیر رادیکال‌های آزاد را که معمولاً منجر به مرگ سلولی می‌شوند ، تجزیه کنند. محققان نشان دادند كه این مکانیسم مقاومت، نه تنها توسط انواع مختلفی از مخمرها بلكه توسط باكتری‌ها نیز مورد استفاده قرار می‌گیرد.

مطالعات محققان نشان می‌دهد که میکروارگانیسم‌ها نه تنها برای فعال کردن رشد ، بلکه به عنوان یک اقدام احتیاطی ، مواد مغذی را از محیط اطراف خود جذب می‌کنند ، اما در برابر حمله احتمالی رادیکال‌های آزاد آماده می‌شوند. این دانش می‌تواند در آینده مفید باشد. اگر موفق شدیم این مکانیسم مقاومت را مختل کنیم ، می‌توانیم به طور بالقوه اثربخشی مواد ضدمیکروبی را بهبود بخشیم. این گروه تحقیق با استفاده از این هدف کار خود را ادامه می دهند. ما هم‌چنین مکانیسم‌های مقاومت ناشناخته دیگر را جستجو خواهیم کرد. از این گذشته ، درک فرایندهای بنیادی سلولی پیش شرط لازم برای تولید مواد ضد میکروبی است.

 

منابع:

Olin-Sandoval, V., Yu, J.S.L., Miller-Fleming, L., Alam, M.T., Kamrad, S., Correia-Melo, C., Haas, R., Segal, J., Navarro, D.A.P., Herrera-Dominguez, L. and Méndez-Lucio, O., 2019. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature, p.1.

نوشته شده در

روش‌های تعیین ظرفیت آنتی اکسیدانتی (قسمت اول)

شواهد بیوشیمیایی، زیستی و بالینی فراوان وجود دارد که نشان می‌دهد واکنش اکسایشی ناشی از رادیکال‌های آزاد (ROS) درایجاد بیماری‌های مختلف، تسریع پیری و فساد موادغذایی دخالت دارد. به دلیل خاصیت آنتی اکسیدان‌ها در ممانعت از اثرات رادیکال آزاد در ایجاد بیماریها و فساد مواد غذایی، نقش و اثر آنتی اکسیدانها مورد توجه محققین، پزشکان وعموم مردم قرار گرفته است و مطالعات ارزیابی ظرفیت آنتی اکسیدانی یکی از متداولترین موضوعات مورد بررسی در سالهای اخیر بوده است.روشهای تعیین ظرفیت آنتی اکسیدانی بر اساس ساز و کار انتقال اتم هیدروژن شامل  TRAP،ORAC  و CBA و بر اساس سازوکار روش انتقال الکترون شاملFRAP , TEAC  و DPPH میباشد. در کنار این روشهای تقریبا سنتی در سالهای اخیر روشهای دستگاهی مانند DSC نیز در تعیین ظرفیت آنتی اکسیدانی و پیشرفت اکسیداسیون مطرح شده است.در اینجا به بررسی معایب و مزایای روش TRAP می پردازیم.TRAP یکی از روش‌های متداول تعیین ظرفیت آنتی اکسیدانی پلاسمای خون می‌باشد. در این روش نیز سرعت پراکسیداسیون القا شده توسط AAPH (2’-Azobis (2-AmidinoPropane) Hydrochloride) از طریق کاهش شدت فلوئورسنس پروتئین آر فیکواریترین اندازه گرفته می‌شود. روش TRAP به طرق متعددی انجام میشود روش اولیه آزمون TRAP به این ترتیب است که بعد از اضافه کردن AAPH به پلاسما مقدار اکسیداسیون مواد قابل اکسید شدن از طریق اندازه‌گیری مقدار اکسیژن مصرفی در طول واکنش توسط الکترودهای اکسیژن اندازه گرفته می‌شود. در حضور آنتی اکسیدان‌ها در پلاسما زمان آغاز واکنش اکسیداسیون و یا مصرف اکسیژن به تاخیر میافتد. مدت زمان فاز تاخیری پلاسما با زمانی که مقادیر خاصی از استاندارد یا Trolox به پلاسمای خون اضافه شده است (استاندارد داخلی) مقایسه شده و به این ترتیب مقدارظرفیت آنتی اکسیدانی خون محاسبه می‌شود.

مزايا و معايب روشTRAP

این روش را می‌توان جهت ارزیابی ظرفیت آنتی اکسیدانی سرم و یا پلاسما (به طور کلی شرایط داخل بدن) بکار برد و میزان ظرفیت آنتی اکسیدان‌های غیرآنزیمی مانند گلوتاتیون و آسکوربیک اسید را اندازه گرفت اما از آنجایی که نقطه پایانی متفاوتی را می‌توان برای این روش در نظر گرفت بنابراین امکان مقایسه نتایج در تحقیقات مختلف وجود ندارد. این روش نسبتا پیچیده و زمان‌بر بوده و علاوه بر این اجرای آن نیاز به تخصص و تجربه دارد.

در بخش بعدی به بررسی روش ORAC در سنجش ظرفیت آنتی اکسیدانتی می‌پردازیم. برای مطالعه ادامه مطلب کلیک کنید.

منبع:

حسینی سپیده، قراچورلو مریم، غیاثی طرزی بابک و قوامی مهرداد. مروری بر روشهای تعیین ظرفیت آنتی اکسیدانی (اساس واکنش، روش کار، نقاط قوت و ضعف). Food Technology and Nutrition.

نوشته شده در

سوپراکسید دیسموتاز در تحقیقات زخم

ترمیم زخم متشکل از پروسه‌ها و واکنش‌های بسیار زیادی است. به‌صورت کلاسیک ترمیم زخم به ۴ فاز تقسیم می‌شود:

۱. فاز هوموستاز

۲. فاز التهابی

۳. فاز پرولیفراسیون

۴. فاز بلوغ و Remodeling

با وجود این دسته‌بندی، این فازها کاملا جدا از هم نیستند و بعضا همپوشانی در آن‌ها دیده می‌شود. بلافاصله بعد از هر آسیب، پلاکت‌ها شروع به تجمع کرده، پلاک‌ها را تشکیل می‌دهند و در عروق آسیب‌دیده مانع از خون‌ریزی می‌شوند. همزمان، پروسه‌های التهابی شروع می‌شوند و طیفی از سلول‌های التهابی به محل ضایعه جذب می‌شوند.

درحالی که این سلول‌های ایمنی سایتوکاین‌های پیش‌التهابی ترشح می‌کنند، سلول‌های التهابی (به‌ویژه نوتروفیل‌ها) مقادیر زیادی گونه‌های فعال اکسیژن (ROS) تولید می‌کنند. این مواد برای حفاظت بدن در مقابل یک عفونت ضروری هستند اما در صورت تولید بیش از حد می‌توانند به بافت‌های اطراف صدمه بزنند. در پروسه عادی ترمیم زخم، سایتوکاین‌های التهابی و سلول‌های ایمنی طی چند روز پس از آسیب کاهش می‌یابند. درست در این زمان، کراتنوسیت‌ها، فیبروبلاست‌ها و سلول‌های اندوتلیال شروع به ترشح فاکتورهای رشد متعدد می‌کنند.

 

 

در فاز پرولیفراتیو، به‌همراه بازسازی اپیتلیال و رگ‌زایی (آنژیوژنز)، سنتز کلاژن و ترکیب ماتریکس انجام گرفته و باعث تولید بافت گرانوله می‌شود. سلول‌های اپیتلیال به‌صورت افقی حرکت می‌کنند تا به همتایان خود از طرف مقابل برسند. فیبروبلاست‌ها از لبه‌های زخم فراخوانده می‌شوند تقسیم شده و باعث تحریک کراتینوسیت‌ها به مهاجرت و تقسیم می‌شوند. رگ‌زایی جدید (Neovascularization) اتفاق می‌افتد و شروع به تغذیه و اکسیژن‌رسانی بافت در حال اتصال می‌کند. سپس فیبروبلاست‌های تقسیم شده پروتئین‌های ماتریکس از جمله کلاژن را برای ساخت ماتریکس خارج سلولی (ECM) ترشح می‌کنند، که در مجموع باعث ساخت بافت پیوندی می‌شود.

هدف در این مطلب تشریح نحوه ترمیم زخم نیست و صرفا جهت مقدمه و آماده‌سازی موضوع مطالب ذکر شد. اکنون به نقش مهم آنزیم آنتی اکسیدانتی سوپراکسید دیسموتاز در این مورد می‌پردازیم.

سوپراکسید دیسموتاز و نقش آن در ترمیم زخم

آنیون‌های سوپراکسید ROSهای اولیه‌ای هستند که از اکسیژن مولکولی به‌وجود می‌آیند. اگر نیتریک اکساید (NO) که در اثر فعالیت آنزیم نیتریک اکساید سنتاز تولید می‌شود، در محیط موجود باشد، آنیون‌های سوپراکسید با آن واکنش داده و پراُکسی نیتریت‌ها را تولید می‌کنند. پراکسی نیتریت ماده‌ای برای از بین بردن باکتری و حفظ محیط زخم از عفونت‌ است، اما در عین حال ماده‌ای سمی و بسیار اکسید‌کننده نیز هست. برای جلوگیری از واکنش‌های آسیب‌رسان، آنیون‌های سوپراکسید اضافی تولید شده توسط آنزیم سوپراکسید دیسموتاز یا SOD به‌سرعت به H2O­2 تبدیل می‌شوند. خانواده آنزیم سوپراکسید دیسموتاز ۳ عضو دارد: SOD1 که در سیتوپلاسم و فضای بین‌غشایی میتوکندری موجود است. SOD2 که در ماتریکس میتوکندری وجود دارد و SOD3 که در فضای خارج سلولی موجود است و اولین خط دفاعی در مقابل استرس اکسیداتیو در فضای خارج سلول را تشکیل می‌دهد.

 

 

از آن‌جایی که پوست به‌نسبت سایر بافت‌ها بیشتر در معرض سمیت ناشی از اکسیژن قرار می‌گیرد، سوپراکسید دیسموتاز نیز در تحقیقات زخم بسیار مورد پرس‌وجو قرار گرفته است. آنزیم‌های SOD1 و SOD2 در سطح RNA در زخم‌ها به مقدار بسیار زیادی تشخیص داده شده‌اند. با این وجود فعالیت SOD در هنگام ترمیم زخم در رت‌ها کاهش می‌یابد. اما ممکن است این سوال پیش آید که آیا فعالیت SOD برای ترمیم زخم لازم است؟ پاسخ این سوال در موش‌های فاقد ژن کد کننده SOD1 کمی پیچیده است. در موش‌های ۲۰ هفته‌ای، نبود SOD1 باعث تاخیر در ترمیم می‌شود اما در موش‌های جوان‌تر (۵-۶ هفته) تفاوتی در زمان ترمیم در گروه فاقد SOD1 گزارش نشده است. شاید این نتایج اهمیت وجود SOD را در ترمیم زخم در پیری بیشتر بارز کند. چرا که گزارش شده است نبود SOD1 در فیبروبلاست‌های انسان باعث پیری سلول می‌شود. همچنین برای نگهداری سلول‌های فیبروبلاست جنینی موش (MEFs) نیز وجود SOD1 ضروری است. از این رو موش‌های فاقد SOD1‌ در سم‌زدایی و خنثی کردن آنیون‌های سوپراکسید تولید شده در متابولیسم سلولی، ناتوان هستند. علاوه بر این بافت آسیب‌دیده زخم در معرض اکسیژن اتمسفریک قرار می‌گیرد و این مورد با تاثیر بر چرخه ردوکس سلولی بر روند ترمیم تاثیر خواهد گذاشت.

در نهایت، اهمیت آنزیم‌های کنترل کننده اکسیدان‌ها بر کسی پوشیده نیست و شما می‌توانید در تحقیقات خود نیز برای سنجش سوپراکسید دیسموتاز اقدام کنید

 

 

 

منابع:

-Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014, 346, 941–945.

-Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112.

-Steiling, H.; Munz, B.; Werner, S.; Brauchle, M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 1999, 247, 484–494.

-Shukla, A.; Rasik, A.M.; Patnaik, G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 1997, 26, 93–101.

-Iuchi, Y.; Roy, D.; Okada, F.; Kibe, N.; Tsunoda, S.; Suzuki, S.; Takahashi, M.; Yokoyama, H.; Yoshitake, J.; Kondo, S.; et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 2010, 341, 181–194.

-Tsunoda, S.; Kibe, N.; Kurahashi, T.; Fujii, J. Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch. Biochem. Biophys. 2013, 537, 5–11.

نوشته شده در

استفاده از پروتئین های Bromodomain در درمان فیبروز کبدی

برای بیماری فیبروز کبدی پاتوفیزیولوژی‌های مختلفی بیان شده که در اثر عوامل مختلف باعث نارسایی می‌شود. از این عوامل می‌توان به بیماری‌های ویروسی، خودایمن، متابولیک و سموم اشاره نمود. در بیشتر موارد آسیب‌های حاد، با از بین رفتن عامل، عملکرد کبد دوباره به حالت نرمال برمی‌گردد ولی در بیماری‌های مزمن در نهایت به سیروز و یا نارسایی کبدی منتهی می‌شود که روند تشخیص و تخمین دقیق میزان فیبروز کبد در ارزیابی پیش آگهی بیماری می‌تواند مفید واقع شود. امروزه به دلیل گسترش جهانی این بیماری، محققان روش‌های مختلف درمانی را پیشنهاد می‌دهند که یکی از این درمان‌ها که توسط Ding و همکارانش در سال 2015 پیشنهاد داده شده، استفاده از (Bromodomain protein 4 (BRD4 که از خانواده Bromodomainها می‌باشد که نقش اساسی در بیماری های قلبی عروقی و دیابت می توانند داشته باشد. این پروتئین نقس اساسی را در بیان ژنهای پروفیبروتیک ایفا می‌کند.

برای مشخص کردن اثرات این پروتئین بر روی بیماری فیبروز کبدی، از تکنیک‌های RT-PCR، IHC، TUNEL در مدل تجربی (ایجاد شده با CCL4) و کشت سلول (رده سلولی LX-2 cells) استفاده شده که نتایج نشان می‌دهند BRD4 می‌تواند یک هدف درمانی خوب در بیماران با فیبروز کبدی باشد.

 

post-1

منبع:

Ding N, Hah N, Ruth TY, Sherman MH, Benner C, Leblanc M, He M, Liddle C, Downes M, Evans RM. BRD4 is a novel therapeutic target for liver fibrosis. Proceedings of the National Academy of Sciences. 2015 Dec 22;112(51):15713-8.

نوشته شده در

آنتی‌اکسیدان قهوه، موثرتر از ویتامین C

بر اساس مطالعه انجام شده توسط محققان دانشگاه گرانادا، دانه‌های قهوه دارای فعالیت آنتی‌اکسیدانی 500 برابر بیشتر نسبت به ویتامین C هستند و به عنوان آنتی‌بیوتیک و ضد میکروبی قوی عمل می‌کنند. دانه‌های قهوه به عنوان آنتی‌اکسیدان قدرتمند و تقویت‌کننده ایمنی شناخته شده است.
تحقیقات جدید نشان داد که فلفل و ترکیبات فنلی دارای خواص آنتی‌اکسیدانی و ضد میکروبی بسیار زیاد هستند. اما قهوه 500 برابر قدرت آنتی اکسیدانی بیشتری نسبت به ویتامین C دارد. دانه‌های قهوه هم‌چنین حاوی مقادیر بالایی از ملانوئیدین‌ها هستند که به قهوه رنگ قهوه ای می‌دهند. ملانوئیدین‌ها ضدمیکروب قوی هستند. خواص بیولوژیکی این ملانوئیدین‌ها می‌تواند برای طیف وسیعی از کاربردهای علمی مانند جلوگیری از پاتوژن‌های مضر در محصولات غذایی استفاده شود.
استخراج آنتی‌اکسیدان قهوه و کاربرد آن در صنعت غذایی می‌تواند در کاهش آسیب‌های حاصل از استرس اکسیداتیو مفید باشد که در این راستا ملانوئیدین به عنوان ضدمیکروب قوی نقش اساسی را ایفا می‌کند. هم‌چنین قهوه دارای کافئین بوده که در رفع خستگی بسیار موثر است. خستگی آدرنال به مجموعه‌ای از نشانه‌ها گفته می‌شود که در اثر استرس اکسیداتیو به وجود آمده و در دراز مدت سلامت فرد را تهدید می‌کند.

هورمون‌های تولید شده توسط غده فوق کلیه به ویژه هورمون استرس کورتیزول، نقش مهمی در تنظیم سیستم ایمنی بدن ایفا می‌کند. اگر سطوح کورتیزول خیلی پایین یا زیاد باشد، می‌تواند به عفونت ، التهاب مزمن، بیماری‌های خود ایمنی یا آلرژی‌ها منجر شود.

افرادی که از خستگی بیش از حد آدرنال رنج می‌برند ممکن است نیاز به قهوه داشته باشند، مطالعات نشان می‌دهند مصرف قهوه و کافئین، غده فوق کلیه را تحت تأثیر قرار داده و باعث رفع خستگی شده و در دراز مدت می‌تواند بر جلوگیری از بروز بیماری‌های حاصل از استرس اکسیداتیو تاثیرگذار باشد.

منابع:

Svilaas, A., Sakhi, A.K., Andersen, L.F., Svilaas, T., Ström, E.C., Jacobs, D.R., Ose, L. and Blomhoff, R., 2004. Intakes of antioxidants in coffee, wine, and vegetables are correlated with plasma carotenoids in humans. The Journal of nutrition, 134(3), pp.562-567.

Nicoli, M.C., Anese, M., Manzocco, L. and Lerici, C.R., 1997. Antioxidant properties of coffee brews in relation to the roasting degree. LWT-Food science and Technology30(3), pp.292-297.

Borrelli, R.C., Visconti, A., Mennella, C., Anese, M. and Fogliano, V., 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry50(22), pp.6527-6533.

نوشته شده در

TEMPO قوی‌ترین آنتی‌اکسیدان مصنوعی

آنتی‌اکسیدان مصنوعی تا 100 برابر قوی‌تر از آنتی‌اکسیدان طبیعی است

آنتی‌اکسیدان‌های طبیعی به دست آمده به عنصر سلامتی تبدیل شده‌اند که باید در آن به دنبال مواد‌غذایی باشید. اما محققان UBC Okanagan و دانشگاه بولونیا دریافته‌اند که TEMPO  یک آنتی‌اکسیدان مصنوعی شناخته شده تا 100 برابر قوی‌تر از بهترین آنتی‌اکسیدان طبیعی است و می‌تواند در مقابله با همه چیز از آسیب‌های پوستی تا بیماری آلزایمر کمک کند.

به گفته UBC Okanagan رادیکال‌های آزاد، مولکول‌های بسیار واکنشی هستند که به طور طبیعی در بدن وجود دارند و در طی فرآیندهای طبیعی معمول مانند تنفس ایجاد می‌شوند.

رادیکال‌های آزاد بخشی طبیعی از متابولیسم انسان است. اما وقتی مقدار آن در بدن ما خیلی زیاد باشد ، مثل وقتی که در معرض اشعه ماوراء بنفش خورشید قرار می‌گیریم ، یا سیگار می‌کشیم یا حتی وقتی الکل می‌نوشیم ، می‌تواند مشکل ایجاد کند یامنجر به آسیب به  DNA شود و در بسیاری از بیماری‌های مختلف مانند آلزایمر نقش داشته باشد ، و برخی از محققان فکر می‌کنند حتی ممکن است مسئول پیری نیز باشند.

در حالی که بدن در حال حاضر از طریق ویتامین C و ویتامین E از سیستم دفاعی شیمیایی خود در برابر رادیکال‌های آزاد استفاده می‌کند ، DiLabio  و همکارانش می‌خواستند بدانند که چگونه یک آنتی‌اکسیدان ساخته شده توسط انسان به نام TEMPO عمل می‌کند.

محققان برای کشف این ایده از یک محیط سلول تقلید شده استفاده کردند تا آزمایش کنند که TEMPO در تبدیل رادیکال‌های آزاد به مولکول‌های غیر مضر در مقایسه با ویتامین E چقدر مؤثر است.

Dilabio می‌گوید: “ما از نتایج شگفت زده شدیم كه TEMPO در تبدیل رادیكال‌های آزاد نسبت به ویتامین E در محیط‌های چربی 100 برابر سریع‌تر بود.” “این بدان معنی است که می‌تواند وسیله‌ای ویژه موثر برای محافظت از بافت‌های پوستی یا حتی دیواره‌های سلول‌ها در برابر آسیب‌های رادیکال باشد.” این مطالعه ممکن است منجر به ایجاد یک دارو درمانی برای جلوگیری از آسیب رادیکال‌های آزاد شود.

این امر می‌تواند منجر به ایجاد یک کرم موضعی برای محافظت از پوست بعد از قرار گرفتن در معرض آفتاب یا حتی قرصی شود که می‌تواند سلول‌های عصبی را از آسیب‌دیدگی محافظت کند. ممکن است آنتی‌اکسیدان‌های مصنوعی دیگر نیز دارای خاصیت مشابه و حتی قوی‌تری باشند که نیاز به مطالعه و بررسی بیشتر دارد.

 

منابع:

Acosta, A.S., Vargas, S.E., Cuya, M.V., González, J.R. and Gutiérrez, R.S., 2013. Effect of the addition of two superoxide dismutase analogues (Tempo and Tempol) to alpaca semen extender for cryopreservation. Theriogenology79(5), pp.842-846.

Piehl, L.L., Facorro, G.B., Huarte, M.G., Desimone, M.F., Copello, G.J., Díaz, L.E. and de Celis, E.R., 2005. Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance. Clinica chimica acta359(1-2), pp.78-88.