نوشته شده در

استرس اکسیداتیو وناباروری

تولید بیش از حد گونه‌های فعال اکسیژن (ROS) در علل ناباروری، به خصوص ناباروری مردان در گیرند. ناباروری مشکلی است که در سراسر جهان وجود دارد و جوامع مختلف را درگیر می­کند و پیامد­های روانی- اجتماعی آن گریبان­گیر مردان و زنان نابارور است. ناباروری باعلت مردانه، حدود نیمی‌از انواع ناباروری را به خود اختصاص داده است و یکی از معضلات فعلی جامعه بشری است. اولین قدم جهت تشخیص و درمان ناباروری، بررسی پارامتر­های اسپرم می­‌باشد که مهمترین آنها ارزیابی تعداد، تحرک و مورفولوژی اسپرم است. مطالعات متعددی نشان داده‌­اند که افراد نابارور با کاهش کیفیت پارامتر­های اسپرمی‌مواجه هستند. اگر چه، 15 درصد از بیماران نابارور با فاکتور مردانه، آنالیز مایع منی ­آنها نرمال است. بنابراین، می­توان نتیجه گرفت که این موضوع به تنهایی برای ارزیابی پتانسیل باروری مردان کارآمد نیست. لذا علاوه بر ارزیابی­های معمول، چند آزمون پیشرفته از جمله ارزیابی سطح قطعه قطعه شدن DNA اسپرم و تراکم DNA را می­توان برای یافتن علل ناباروری انجام داد. با توجه به شواهد، قطعه قطعه شدن DNA اسپرم با تغییر در پارامتر­های اسپرمی‌در ارتباط است. علاوه بر این، با توجه به افزایش آسیب DNA اسپرم در مردان نابارور نسبت به مردان بارور می­توان نتیجه گرفت که این موضوع می­‌تواند قدرت باروری مردان را تحت تأثیر قرار دهد. از این رو ارزیابی محتوای DNA اسپرم ممکن است برای آنالیز مایع منی مفید باشد و پیش بینی باروری برای مردان را ممکن سازد. چند فاکتور در اختلال محتوای DNA اسپرم دخیل هستند که از جمله آن‌ها می­توان به عوامل محیطی و شیوه زندگی، دخانیات، واریکوسل و استرس اکسیداتیو، اشاره نمود. مطالعات نشان می‌دهد که غلظت بالای ROS، با ناباروری در 40 درصد از مردان در ارتباط است و مطالعات جدید، سطح ROS بالا را در 80 ـ 30 درصد از مردان نابارور نشان داده‌اند. غلظت بیش از حد ROS و استرس اکسیداتیو اثرات پاتولوژیکی را در دستگاه تناسلی مرد اعمال می‌کند که مخرب اسپرم هستند و ارتباط منفی با تغییر در غلظت، تحرک و مورفولوژی اسپرم دارد و می‌تواند منجر به ضعف اسپرم و در نهایت ناباروری آن شود. اگر چه ROS برای عملکردهای مختلف فیزیولوژیک مهم است اما مقادیر بیش از حد آن به استرس اکسیداتیو کمک می‌کند. مکانیسم عمل ROS شامل پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم است که به دلیل وجود مقدار زیاد اسیدهای چرب غیر اشباع در غشاء خود، بسیار مستعد ابتلاء به آسیب‌های اکسیداتیو است و این موضوع می‌تواند روی تحرک اسپرم، سیالیت غشا و توانایی لقاح آن اثر منفی گذارد. علاوه بر این ROS می‌تواند به پروتئین‌های اکسونم اسپرم صدمه بزند و باعث تسریع و شتاب مصرف ATP گردد و در عملکرد میتوکندری و DNA اختلال ایجاد کند.

همچنین قرار گرفتن در معرض استرس روانی اجتماعی با افزایش استرس اکسیداتیو و التهاب در پلاسمای مایع منی همراه است که در نهایت منجر به کاهش کیفیت اسپرم می­شود. لذا احتمال کاهش باروری در این افراد بیشتر گزارش شده است و جهت درمان آنها از تکنیک‌های کمک باروری استفاده می‌گردد.
در روش کمک باروری از تکنیک‌هایی مانند: تلقیح داخل رحمی‌اسپرم (IUI)، لقاح آزمایشگاهی (IVF) و تزریق درون سیتوپلاسمی ‌اسپرم (ICSI)(Intracytoplasmic0Sperm-Injection) استفاده می‌شود. در حقیقت هدف از ART افزایش شانس باروری از طریق نزدیک کردن یا حتی وارد کردن اسپرم به تخمک است که بدین وسیله می‌توان از برخی نواقص عملکردی گامت نر گذر کرد. نکته مهمی‌که باید به آن توجه داشت این است که کیفیت پارامترهای اسپرم در طی آماده سازی جهت استفاده برای این تکنیک‌ها باید حذف شود و اسپرم‌های عملکردی از اسپرم‌های غیر‌طبیعی که قادر به باروری تخمک نیستند، باید جدا شوند. دو روش معمول آماده سازی اسپرم که بیشتر در مراکز درمانی ناباروری استفاده می‌شوند که  DGC (Density Gradient Centrifugation) و Swim up نام دارد که در طی آن پلاسمای منی که 90 درصد از منی را تشکیل می‌دهد، باید حذف گردد، یکی از این ترکیبات بسیار مهم پلاسما، آنتی‌اکسیدان‌هاا هستند که با حذف پلاسما در حین شستشو از اسپرم حذف می‌شوند، پس حذف این آنتی‌اکسیدان‌ها و انجام سانتریفوژ در حین شستشو می‌تواند سبب تولید ROS گردد. علاوه بر این فریز- ذوب اسپرم، آسیب مکانیکی، شوک سرد و قرار گرفتن در معرض اتمسفر اکسیژن، به نوبه خود حساسیت به پراکسیداسیون لیپیدی را افزایش و سبب تولید ROSبیشتر می‌شود. همچنین این موضوع را نیز باید در نظر گرفت که نمونه‌های بیمارانی که برای درمان IVF یا  ICSI به مرکز درمانی مراجعه می‌کنند، در صورتی که در مدت زمان بیش از یک ساعت بمانند، به دلیل حذف پلاسما که حاوی آنتی‌اکسیدان است، در معرض ROS تولید شده توسط سلول ها قرار گرفته و با افزایش میزان آسیب DNA نسبت به اسپرم افراد بارور رو به رو خواهند شد و در کمک باروری، اسپرم با DNA آسیب دیده، نرخ لقاح و حاملگی را کاهش می‌دهد و در رشد جنین اختلال ایجاد می‌کند و خطر سقط جنین خود به خود، تولد نوزاد ناقص و بیماری‌های دوران کودکی مانند سرطان را افزایش می‌دهد.

منابع:

 

 

    1. Mehta, A., Esteves, S.C., Schlegel, P.N., Niederberger, C.I., Sigman, M., Zini, A. and Brannigan, R.E., 2018. Use of testicular sperm in nonazoospermic males. Fertility and sterility, 109(6), pp.981-987.
    2.  , M. Amirzadegan  M. Tavalaee  , M.H. Nasr-Esfahani, Oxidative Stress and Its Effects on Male InfertilityM. Arbabian

 

نوشته شده در

گلوتاتیون در درمان سرطان

یکی از بزرگترین مشکلات در درمان فعلی سرطان این است که عوامل مؤثر در از بین بردن سلول‌های تومور ، در عین حال برای بقیه سلول‌ها و بافت‌های سالم بیمار بسیار سمی هستند.

برای حل این مشکل ، دانشگاه کشور باسک (UPV / EHU) به دنبال درمان‌های خاص‌تر و بررسی تفاوت‌های بین سلول‌های توموری و سلول‌های سالم است.

یک تیم تحقیقاتی از دانشکده پزشکی در تلاشند تا عوامل دارویی را افزایش دهند که باعث افزایش مزیت درمانی ترکیبات شیمی درمانی ، ایمنی و رادیوتراپی در معالجه بیماری‌های سرطانی می‌شود.

هدف تیم تحقیقاتی شناسایی ترکیباتی است که در مسیرهای متابولیک و فرآیندهای مختلفی بسته به اینکه آیا یک بافت بیمار یا یک بافت سالم درگیر است ، شناسایی شود. از این طریق میتوان اقدامات انتخابی را انجام داد ، افزایش حساسیت به درمان برای بافت‌های بیمار بدون آسیب رساندن به سلول‌ها یا بافت‌های سالم در همان زمان.

محققان با این هدف کلی ، مواد بیولوژیک مختلف را در تعدادی از ماژول‌های مختلف توموری مانند ملانوما ، سارکوم و سرطان روده بزرگ آزمایش کردند. از یک سو ، آن‌ها عوامل مؤثر در سطح گلوتاتیون (GSH) را مورد مطالعه قرار دادند. گلوتاتیون عنصر اصلی در فرآیندهای بیولوژیکی سلول‌ها ، سالم و توموری است. سلول‌های تومور با سطح GSH بالا از رشد و ظرفیت متاستاتیک بیشتر و حساسیت کمتری نسبت به عوامل ضد توموری برخوردار هستند. از طرف دیگر ، یکی از ویژگی‌های سلول‌های توموری این است که سطح تمایز طبیعی خود را از دست می‌دهند و به جای انجام یک عملکرد مشخص ، شروع به تکثیر و تولید تعداد بیشتری سلول‌های توموری می‌کنند. به همین دلیل است که محققان هم‌چنین از عواملی استفاده کرده‌اند که باعث ایجاد تمایز می‌شوند ، مانند رتینوئیدها.

هر دو گروه تعدیل کننده با عوامل کلاسیک مورد استفاده در درمان‌های ضد توموری همراه بوده و مزایای ناشی از آن را دیده‌اند. آن‌ها نشان داده‌اند که عامل تعدیل‌کننده سطح GSH – oxothiazolidine-carboxylate   اثر ضدتورمی در سلول‌های ضدتورم را افزایش می‌دهد و در عین حال از بافت سالم محافظت می‌کند. در این روش می‌توان مزایای درمانی را افزایش داد. با این وجود ، هنگامی که عامل تعدیل کننده سطح GSH دیگری با عوامل ضد تومور ، به عنوان مثال ، buthionine-sulphoxamide  (BSO  ترکیب شود ، محققان مشاهده کردند که تأثیر داروی استاندارد افزایش یافته است اما افزایش آسیب به بافت سالم نیز رخ داده است.

همچنین ، با هدف بازگشت سلول‌ها به حالت متفاوت‌تر ، نزدیک‌تر به رفتار سلول سالم ، این تیم تحقیقاتی در مورد استفاده از رتینوئیدها به همراه ترکیبات استاندارد تحقیق می‌کنند. پاسخ سلول‌های توموری به رتینوئیدها به میزان تمایز این سلول‌ها بستگی دارد. به طور کلی سلول‌های توموری بسیار متمایز نسبت به سلول‌های نسبتاً متفاوت نسبت به رتینوئیدها حساس هستند. این دومی ، در پاسخ به رتینوئیدها ، ممکن است مکانیسم‌های دفاعی را افزایش دهد که سطح GSH را افزایش می‌دهد و از این طریق ، ظرفیت متاستاتیک را افزایش می‌دهد.

این یک نکته جالب است ، با توجه به این‌که تا به امروز این ظرفیت متفاوت که می‌تواند رده سلولی مختلفی در یک نوع تومور مشابه داشته باشد شرح داده نشده است. آنچه محققان UPV-EHU انجام داده‌اند پیوند دادن هر دو خط مدولاسیون GSH و تمایز است. آن‌ها پیوندی بین این دو پیدا کرده اند، القای تمایز با رتینوئیدها هم‌چنین سطح GSH سلول‌های توموری را تعدیل می‌کند.

محققان در حال تجزیه و تحلیل مدل غلظت و تجویز داروهای مورد استفاده هستند ، با توجه به اینکه در مدولاسیون بیولوژیکی ، هر دو عنصر برای موفقیت در درمان اساسی هستند. غلظت ماده مشخص نیست، زیرا خیلی کم یا زیاد ممکن است اثرات متضاد یا نامطلوب ایجاد کند.

به دنبال آزمایشات آزمایشگاهی و in vivo توسط محققان آزمایشگاههای UPV / EHU ، یکی از اهداف تیم تحقیق انتقال اطلاعات به دست آمده به سیستم‌های با مدیریت راحت‌تر برای تحقیق و آزمایش‌های بالینی است.

 

منابع:

Baulies, A., Montero, J., Matías, N., Insausti, N., Terrones, O., Basañez, G., Vallejo, C., de La Rosa, L.C., Martinez, L., Robles, D. and Morales, A., 2018. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox biology, 14, pp.164-177.

Bansal, A. and Simon, M.C., 2018. Glutathione metabolism in cancer progression and treatment resistance. The Journal of cell biology217(7), pp.2291-2298.

نوشته شده در

اسپرم‌ پس از ۹ ماه انجماد در فضا قدرت باروری دارد

اگر ناسا قصد ارسال انسان را به مریخ داشته باشد، احتمالا قبل از همه چیز باید نسبت به تست بافت‌های موجودات زنده در این مسیر اقدام کند. ذخیره متنوعی از اسپرم اسنان می‌تواند سلامت یک کلونی انسان را تضمین کند. این کلونی در جهت تشکیل جامعه انسانی سالم رشد خواهد کرد. اما هیچ‌کس نمی‌داند که سلول‌های تولیدمثلی می‌تواند در مقابل تشعشعات حطرناک فضایی سالم بماند. مطالعه جدیدی نشان داده است که اسپرم موش که بیش از ۹ ماه در ایستگاه بین‌المللی فضایی ISS نگهداری شده است، می‌تواند نوزادهای سالم و زایا تولید کند. سطوح تشعشعات در این ایستگاه بیش از ۱۰۰ برابر این مقادیر بر روی زمین است.

در این مطالعه که در سال ۲۰۱۳ توسط تروهیکو واکایاما، زیست‌شناس دانشگاه یاماناشی ژاپن رهبری شده، اسپرم منجمد ۱۲ موش به ایستگاه بین‌المللی فضایی فرستاده شد. فضانوردان نمونه‌ها را در فریزر ۹۵-  قرار داده و به مدت ۲۸۸ روز در آن‌جا نگهداری شدند. بر روی زمین نیز اسپرم گرفته شده از همان موش‌ها در دما و زمان یکسان نگهداری شد.

هنگامی که نمونه‌های فضایی به زمین باز گشتند، واکایاما و همکاران به مطالعه اثرات صدمه احتمالی به DNA در اثر تشعشعات پرداختند. همانطور که انتظار می‌رفت اسپرم‌های ISS نسبت به اسپرم‌های زمینی قطعات DNA بیشتری داشتند. این صدمات DNA که به‌صورت عادی در اسپرم‌های منجمد غیرقابل ترمیم است، عامل کاهش باروری محسوب می‌شود. اما وقتی محققین اسپرم‌های نگهداری شده در فضا را به تخمک‌های تازه گرفته شده تزریق کردند و سپس آن‌ها را به مادرهای جایگزین انتقال دادند با یک اتفاق غیرمنتظره مواجه شدند. تقریبا ۳ هفته بعد، مادرهای جایگزین ۷۳ نوزاد به‌دنیا آوردند. این تعداد نوزاد تقریبا به اندازه نرمال آن بر روی زمین است. نتایج این تحقیق در مجله Proceedings of the National Academy of Sciences منتشر شده است. واکایاما عنوان کرده است که این تحقیق برای اولین بار است که بر روی یک پستاندار انجام می‌شود.

نتاج (نوزادان) نر حاصل از این آزمایش اسپرمی همگی سالم و بارور بودند و بین نوزادان فضایی و برادران کنترل آن‌ها هیچ تفاوت ژنتیکی واضحی دیده نشد. واکایاما و همکاران عنوان کرده‌اند که صدمه DNA پس از لقاح ترمیم شده و تاثیری در نتاج نداشته است.

این خبر برای نوزادان فضایی و نیز برای انسان‌های فضانوردی که پس از مدتی زندگی در فضا، تصمیم می‌گیرند صاحب فرزند شوند، خوب است. اما تیم انجام دهنده این تحقیق عنوان می‌کند که هنوز برای تعمیم این نتایج به انسان زود است. محققین می‌بایست اسپرم حاصل از سایر پستانداران را نیز برای مدت طولانی‌تر در فضا مورد بررسی قرار دهند. همچنین به‌نظر می‌رسد می‌بایست در سایر نقاط فضا نیز این آزمایش تکرار شود، چرا که بیشتر تشعشات خطرناک فضایی خارج از حفاظ ژئومغناطیسی زمین قرار دارند که با مدار چرخش ایستگاه بین‌المللی فضایی فاصله دارد.

 

منبع:

Wakayama S, Kamada Y, Yamanaka K, Kohda T, Suzuki H, Shimazu T, Tada MN, Osada I, Nagamatsu A, Kamimura S, Nagatomo H. Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. Proceedings of the National Academy of Sciences. 2017 Jun 6;114(23):5988-93.

نوشته شده در

بیومارکرهای اکسیداتیو

استرس اکسیداتیو / نیتروژنی، که منجر به افزایش گونه‌های فعال اکسیژن / نیتروژن می‌شود، درحال حاضر به عنوان یکی از ویژگی‌های برجسته بسیاری از بیماری‌های حاد و مزمن و حتی فرایند پیری طبیعی شناخته شده است. با این حال، شواهد قطعی برای این ارتباط به علت محدودیت روش‌های شناسایی نشانگرهای زیستی برای ارزیابی وضعیت استرس اکسیداتیو در انسان‌ها کم است. در حال حاضر بر شناسایی بیومارکرهای زیستی در استرس اکسیداتیو که به صورت عینی اندازه گیری و ارزیابی می‌شوند تاکید می‌گردد. این بیومارکرها به ‌عنوان شاخص فرآیندهای بیولوژیکی طبیعی، فرآیندهای بیماری‌زا و یا پاسخ‌های دارویی به تیمارهای درمانی شناخته شده‌اند. برای پیش‌بینی بیماری، یک نشانگر زیستی باید مورد شناسایی، تشخیص و سنجش قرار گیرد. مهمترین عوامل درسنجش و اندازه‌گیری این بیومارکرها اختصاصی بودن و حساسیت می باشد. علاوه براین، شرایط نمونه‌گیری و روش های تحلیلی و برخی محدودیت‌ها مانند شرایط نمونه‌برداری، پایداری بیومارکرها، حساسیت و سادگی تحلیل نتایج باید مورد توجه قرار گیرد.

در این بخش ما به بررسی بیومارکرهای شناخته شده که بیشتر از سایر بیومارکرها در تشخیص بیماری‌ها و آزمایشات کلینیکی و تحقیقاتی مورد توجه قرار گرفته‌اند پرداخته‌ایم. سنجش هرکدام از بیومارکرهای زیستی دارای مزیت‌ و محدودیت‌های به خصوص بوده که در طی بررسی و سنجش باید مورد توجه قرار گیرد. هم‌چنین دسترسی به امکانات و دستگاه‌های آزمایشگاهی از مهم‌ترین عوامل انتخاب روش سنجش مناسب بیومارکرهای زیستی می‌باشد.

 

 

[table id=5 /]

 

ایزوپروستان‌ها (IsoPs)

IsoPs ترکیب پروستاگلاندینی است که از پراکسیداسیون اسیدچرب ضروری (به طور عمده اسید آراکیدونیک) بدون کاتالیزور و بدون اثر مستقیم آنزیم‌های سیکلوکوکسیژناز (COX) تولید می‌‌شود. این ترکیبات در سال 1990 توسط L. Jackson Roberts و Jason D. Morrow در بخش فارماکولوژی بالینی در دانشگاه واندربیلت کشف شد. این ایکوسانوئید دارای فعالیت بیولوژیکی قوی به عنوان واسطه‌های التهابی است که باعث درک درد شده و نشانگر دقیق پراکسیداسیون لیپید در هر دو مدل حیوانی و انسان می‌باشد. افزایش سطح ایزوپروستان‌ها مشکوک به افزایش خطر ابتلا به حمله قلبی است و متابولیت‌های آن‌ها در ادرار افراد سیگاری افزایش یافته است و به عنوان نشانگر بیولوژیک استرس اکسیداتیو در سیگاری‌ها پیشنهاد شده است.

 

تولید کنندگان تجاری کیت‌های سنجش ایزوپروستان : cayman و abcam

 

مالون دی آلدهید (MDA)

MDA بیومارکر استرس اکسیداتیو در بسیاری از بیماری‌ها مانند سرطان، بیماری‌های روانی، بیماری مزمن انسدادی ریوی، آسم یا بیماری های قلبی عروقی است. تست تيوباربيتوريک اسيد (TBA) روشي است که بيشترين استفاده را براي تعيين MDA در مايعات بيولوژيک دارد. مالون‌دی‌آلدئید به عنوان محصول اصلی برای ارزیابی پراکسیداسیون لیپید است. اکثر آزمایش‌ها با سنجش توسط اسید تيوباربيتوريک انجام می‌گیرد که توسط روش‌های غیرمستقيم (اسپکترومتری) و روش‌های مستقیم (کروماتوگرافی) اندازه‌گیری می‌شود. اگر چه در میان روش‌ها اختلاف نظر وجود دارد، آزمون های مبتنی بر HPLC انتخابی یک روش قابل اندازه‌گیری پراکسیداسیون لیپید را فراهم می کند.

تولید کنندگان تجاری کیت‌های سنجش مالون دی آلدهید: sigmaaldrich و نوند سلامت. (چرا کیت‌های آزمایشگاهی نوند سلامت؟)

نیتروتایروزین (Nitrotyrosine)

Nitrotyrosine محصول نیترات تیروزین است که به وسیله گونه‌های فعال نیتروژن مانند پروتئین نیترات و دی اکسید نیتروژن تولید می‌شود. نیتروتیروسین به عنوان شاخص یا نشانگر آسیب سلول، التهاب و تولید NO (نیتریک اکسید) شناخته می‌شود. نیتروتیروسین در حضور متابولیت فعال NO تشکیل شده است. تولید ONOO قادر به اکسیداسیون چند ليپوپروتئين و نيتروژن باقي‌مانده تيروزين در بسياری از پروتئين‌ها است. نیتروتیروسین در مایعات بیولوژیکی نظیر پلاسما، ریه، BALF و ادرار تشخیص داده می‌شود. افزایش سطح نیتروتیروستین در آرتریت روماتوئید شوک سپتیک و بیماری سلیاک مشاهده می‌شود. نیتروتیروستین هم‌چنین در بسیاری از انواع دیگر بیماری ها مانند آسیب قرنیه در کراتوکونوس و دیابت سنجیده می شود.

تولید کنندگان تجاری کیت‌های سنجش نیتروتایروزین: merck و abcam 

 

s-گلوتاتیونیلاسیون (s-gluthathionylation)

S-glutathionylation  وسط استرس اکسیداتیو یا نیتراتیک تولید می‌شود، اما در سلول‌های بدون استرس نیز قابل مشاهده است که این مساله می‌تواند به تنظیم انواع فرایندهای سلولی توسط تعدیل عملکرد پروتئین و جلوگیری از اکسیداسیون غیرقابل برگشت پروتئین‌های تیول کمک کند. یافته های اخیر نقش مهمی در کنترل مسیرهای سیگنالینگ S-glutathionylation سلولی مرتبط با عفونت های ویروسی و آپوپتوز ناشی از عامل ناباروری تومور ایفا می‌کند.

تولید کنندگان تجاری کیت‌های سنجش اس-گلوتاتیونیلاسیون: cayman و cellbiolabs

میلوپراکسیداز (Myeloperoxidase)

MPO آنزیمی است که در گرانول‌های آزورفیل از نوتروفیل‌ها و ماکروفاژهای چند هسته‌ای و در محیط پروتئین التهابی در مایع خارج سلولی ذخیره می‌شود. میلوپرکسیداز در استرس اکسیداتیو و التهاب دخیل است و عامل مهمی برای مطالعه میلوپوکسیداز به عنوان نشانگر احتمال بی ثباتی پلاک و ابزار بالینی مفید در ارزیابی بیماران مبتلا به بیماری قلبی عروقی است.

تولید کنندگان تجاری کیت‌های سنجش میلو پراکسیداز: sigmaaldrich و cayman و نوند سلامت

 

اکسی ال دی ال (OxLDL)

OxLDL چربی لیپوپروتئین با چگالی کم (LDL) یکی از پروتئین های کلیدی در خون است و یکی از اجزای مهم سوخت و ساز بدن و مسئول حمل و نقل چربی‌ها در سراسر بدن است. اکسیداسیون LDL فرایند طبیعی درون بدن بوده و LDL اکسید شده ابزار مهمی در مطالعه اندوسیتوز توسط گیرنده رسپتور ماکروفاژها و سلول های اندوتلیال و همچنین تشکیل سلول‌های فوم است.

تولید کنندگان تجاری کیت‌های سنجش اکسی ال دی ال: cellbiolabs و biocompare

 

بیومارکر DNA

DNA biomarker : اکسیداسیون DNA به دلیل جهش‌زایی آن بسیار بااهمیت است، اگر چه دارای نقش های متعدد دیگری در پیری و سرطان است، اکسیداسیون DNA بسیار مورد توجه قرار قرار گرفته است که برای مقابله با ضایعات اکسید شده DNA، تعدادی از سیستم های زیستی پیرایش تکامل یافته‌است، از جمله BER (پیرایش اگزون)، Ligation، NER (تعمیر مجدد نوکلئوتیدی) که دارای خاصیت هم‌پوشانی هستند و ممکن است به عنوان سیستم پشتیبان به صورت تعاملی عمل کنند. حمله به DNA توسط گونه های فعال اکسیژن، به ویژه رادیکال های هیدروکسیل، می تواند منجر به شکستن رشته DNA-DNA و پروتئین متصل به DNA، کراسینگ اور، تغییر شکل بازها و جهش زایی شود.

تولید کنندگان تجاری کیت‌های سنجش بیومارکرهای دی‌ ان ای: abcam و cayman

 

 

منبع:

Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D. and Milzani, A., 2006. Biomarkers of oxidative damage in human disease. Clinical chemistry52(4), pp.601-62

 

 

نوشته شده در

نیتریک‌اکساید استنشاقی در پیوند قلب

نیتریک‌اکساید استنشاقی که به بیماران مبتلا به حمله قلبی داده می‌شود ممکن است دوره نقاهت را کمتر کند. با توجه به نتایجی که در ESC Congress 2014 ارائه شد، نیتریک‌اکساید استنشاقی که به بیماران مبتلا به حمله قلبی قبل و در طی درمان با مداخله عروق کرونری پوست (PCI) تحویل داده شد، میزان آسیب دیده بافت را کاهش داد، اما ممکن است دوره نقاهت بهبود یابد.

نیتریک‌اکساید استنشاقی، یک گشادکننده‌ی عروق ریوی در بیماران مبتلا به فشارخون ریوی ناشی از نارسایی قلبی است و ممکن است بیماران با واکسن انقباض ریوی برگشت‌پذیر را شناسایی کنند که در آنها عوامل مانند نیتروپروسید باعث فشارخون سیستمی می‌شوند. نیتریک‌اکساید استنشاقی موجب افزایش فشار پرشده بطن چپ توسط مکانیزم ناشناخته می‌شود.

طبق تحقیقات  Stefan Janssens، MD، PhD از بیمارستان دانشگاه Gasthuisberg of Leuven در بلژیک، آزمایش NOMI (نیتریک‌اکساید برای استنشاق برای کاهش آسیب مجدد مجدد در انفارکتوس میوکارد حاد سکته قلبی) بر اساس این فرضیه بود که استنشاق نیتریک‌اکساید می‌تواند آسیب به بافت قلب را در زمان رپرفیوژن (بازگرداندن جریان خون هنگامی که یک مجرای مسدود شده باز می شود) کاهش دهد. این مطالعه نشان می‌دهد که بین 48-72 ساعت پس از عمل هیچ تفاوتی در تعیین‌ نارسایی قلب و مرگ بین بیماران دریافت شده نیتریک‌اکساید و کسانی که در معرض اکسید قرار نگرفتند وجود ندارد.

با این حال، یک تجزیه و تحلیل فرعی از پیش تعیین شده بیماران مبتلا به نیتروگلیسرین intracoronary یا وریدی (IC / IV NTG) که تجویز آن به اختیارات محققان محلی محول شده بود، نشان دهنده تعامل قابل توجهی با استفاده از نیتریک‌اکساید استنشاقی، در میان افراد مبتلا، با انفارکت های مؤثرتری نسبت به بیمارانی که قبلا NTG دریافت کرده بودند همراه بود. در مجموع جمعیت، MRI در 48-72 ساعت نشان دهنده روند بهبود عملکرد با اکسیدنیتروژن بود که در 4 ماه قابل توجه بود. بهبود عملکرد به طور معنی داری با نیتریک‌اکساید در گروه زیر گروه مبتلایان به NTG بهتر بود.

نیتریک‌اکساید عوارض جانبی عمده ای را ایجاد نمی‌کند و برای یک نقطه ثانویه کامپوزیت نقطه پایانی مرگ، ایسکمی مکرر، سکته مغزی یا مجدد آن، نسبت به میزان رویداد کمتر همراه بود.

محقق NOMI اولین است که برای بررسی تاثیر استنشاق اکسید نیتریک بر آسیب های مجدد میوكارد، اندازه انفاركت و بهبودی قلب، گفت: “در حالی که این مقدار کاهش میزان نارسایی قلب را در جمعیت کلی مطالعه نشان نداد، یافته‌های این تحقیق نشان می‌دهد که استنشاق نیتریک‌اکساید تحقیقات بیشتری را در بیماران STEMI نیاز دارد.”

افزایش فشار دهلیزی چپ در نارسایی مزمن قلبی با افزایش ضروری در فشار خون ریه همراه است تا یک گرمای فشار برای جریان رو به جلو در گردش خون ریخته شود. افزایش بیشتر فشار خون شریانی ریه از عوارض واکسن ریه است. حضور پرفشاری خون ریوی برای بیماران تحت پیوند قلب اهمیت دارد، زیرا عامل خطر برای مرگ زودرس در دوره پس از عمل است. بطن راست قلب اهداکننده آسیب ایسکمیک در طول روش‌های برداشت و لانه گزینی را ایجاد می‌کند، و این باعث می‌شود که بعلت اختلال حاد و شکست در مواجهه با افزایش پس از بارگذاری آسیب‌پذیر باشد. به این ترتیب، بیماران با افزایش پایدار مقاومت به عروق ریه به طور کلی به عنوان کاندیدای پیوند قلب به علت میزان مرگ و میر اولیه بسیار بالا پس از عمل حذف می‌شوند.

منابع:

 

Semigran, M.J., Cockrill, B.A., Kacmarek, R., Thompson, B.T., Zapol, W.M., Dec, G.W. and Fifer, M.A., 1994. Hemodynamic effects of inhaled nitric oxide in heart failure. Journal of the American College of Cardiology, 24(4), pp.982-988

Blanch, L., Joseph, D., Fernandez, R., Mas, A., Martinez, M., Valles, J., Diaz, E., Baigorri, F. and Artigas, A., 1997. Hemodynamic and gas exchange responses to inhalation of nitric oxide in patients with the acute respiratory distress syndrome and in hypoxemic patients with chronic obstructive pulmonary disease. Intensive care medicine, 23(1), pp.51-57.

نوشته شده در

استرس اکسیداتیو و سرکوب تومور

مطالعه‌ی جدیدی در شماره فوریه مجله سرطان سلول ( Journal of Cancer Cell) منتشر شده است که نشان می‌دهد P38-آلفا  MAPK در حضور استرس اکسیداتیو فعال شده و باعث مهار تشکیل تومور می‌شود. این مطالعه رویکرد جدیدی را در مطالعه‌ی مکانیسم‌های خاصی که منجر به سرکوب سرطان می‌شوند، فراهم می‌سازد. شناسایی این مکانیسم‌ها برای توسعه داروهای ضد سرطان جدید مناسب خواهد بود.

P38-آلفا MAPK یک پروتئین نشانگر است که نقش مهمی در هماهنگی پاسخ‌های سلولی به استرس، از جمله استرس اکسیداتیو (که توسط افزایش تجمع گونه های اکسیژن فعال (ROS) در داخل سلول ایجاد می‌شود) دارد با این وجود هنوز مسیر‌ فعالیت P38-آلفا MAPK و مکانیسم‌های درگیر که در سرکوب سرطان نقش دارند به خوبی شناخته نشده‌اند. دکتر  نِبرادا از مرکز ملی سرطان اسپانیادر مادرید و همکارانش با مطالعه‌ی تغییرات بدخیمی که در سلول‌های موش های فاقد P38-آلفا نسبت به موش‌های گروه کنترل ایجاد شده بود به اهمیت مطالعه‌ی P38 -آلفا در سرکوب تومور پی بردند. کمبود P38-آلفا باعث افزایش تکثیرسلولی، مرگ سلولی از طریق آپوپتوز و افزایش تغییرات بدخیم در سلول می‌شوند. محققان مشاهده کردند که سطح ROS در سلول‌های فاقد P38-آلفا، نسبت به سلول‌های کنترل بسیار بالا است و علاوه بر این ، فعال شدن P38-آلفا در اثرROS در سلول‌های کنترل، آپوپتوز را تحریک می‌کند.در حالی که سلول‌های فاقد P38-آلفا به آپوپتوز ناشی از ROS مقاوم هستند. محققان یافته‌‌هایی به دست آوردند که از لحاظ بالینی بسیار اهمیت داشتند. آن‌ها با بررسی چند رده سلول سرطانی انسان مشاهده کردند که افزایش سطح ROS باپتانسیل تومورزایی در ارتباط هست. دانشمندان پیشنهاد می‌کنند که ممکن است سلول‌های سرطانی برای رهایی از سرکوب تومور، عملکرد P38-آلفا را از طریق کاهش حساسیت به استرس اکسیداتیو کم می‌کنند. در واقع بسیاری از سلول‌های تومور سبب افزایش بیان پروتیئن GST (پروتئین گلوتاتیون- اس- ترانسفراز) می‌شوند که این پروتیئن نیز مانع از فعال‌سازی P38-آلفا توسط ROs می‌گردد. بیان کاهش GST در سلول‌های سرطانی با افزایش فعالیت P38 -آلفا و آپوپتوز همراه است در حالی که افزایش بیان GST منجر به کاهش فعالیت P38 –آلفا، سطوح بالای ROS، و افزایش بدخیمی سلول‌های سرطانی می‌شود. روی هم رفته یافته‌ها نشان می‌دهد که P38-آلفا نقش مهمی در تنظیم منفی تشکیل تومور در پاسخ به انکوژن ناشی از ROS با تحریک آپوپتوز دارد و سلول‌های سرطانی ممکن است از این سیستم حفاظتی با جدا کردن ROS از P38-آلفا  فرار کنند! نتایج، مکانیسم‌های استفاده شده در مسیر‌های سرکوب تومور به وسیله‌ی سلول‌های سرطانی را نشان می‌دهد و پیشنهاد می‌کند که بازگرداندن فعالیت P38-آلفا ناشی از ROS برای مثال با هدف قرار دادن پروتیئن GST ممکن است یک راه درمانی بالقوه در سرکوب تومور باشد.

منبع :

Dolado et al.: “p38-alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis.” Publishing in Cancer Cell 11, 191-205, February 2007. DOI 10.1016/j.ccr.2006.12.013

 

نوشته شده در

آیا با کاهش رادیکال‌های آزاد در زخم‌های دیابتی می‌توان به روند درمان آن‌ها کمک کرد؟

زخم‌های مزمن از جمله زخم‌های دیابتیک که معمولا پا و ساق پا را درگیر می‌کنند. در آمریکا سالانه 6.5 میلیون نفر را درگیر و ضرر مالی که برای آمریکا دارد در حدود 25 میلیارد دلار می‌باشد. سوال اینجاس که چرا این زخم‌ها هزینه زیادی را دربر دارند؟

پروفسور مانولا مارتینز-گرینز از دانشگاه کالیفرنیا در این مورد دو فرضیه را بیان می‌کند که یکی مربوط به عدم تعادل بین رادیکال‌های آزاد و سیستم آنتی اکسیدانتی می‌باشد ودیگری اینکه باکتری‌ها با ساخت بیوفیلم مانع از تاثیر آنتی‌بیوتیک و یا داروها  بر روی زخم شده و آنها را به سمت مزمن شدن می‌برد.

همانطور که میدانید رادیکال‌های آزاد در هوموستاز و انتقال پیام‌ها نقش داشته و به صورت طبیعی در بدن تولید می‌شوند، ولی افزایش نامتعارف آنها باعث التهابات مزمن می‌شود که در زخم‌های دیابتیک هم مزمن بودن زخم هست که درمان را مشکل می‌کند.

در تحقیقی که این پروفسور و همکارانش بر روی موش‌های دیابتی انجام داده‌اند متوجه شده‌اند که با کاهش گونه‌های فعال اکسیژن (ROS) زخم‌های دیابتی روند ترمیم بهتری را نشان می‌دهند. برای دستیابی به این نتیجه، تیم تحقیقاتی آنها دو آنزیم کاتالاز و گلوتاتیون پراکسیداز را که نقش اصلی در تعادل ROS در سلول را دارند را در موش‌های دیابتی مهار کرده و در این حیوانات زخم‌ها با سرعت کمتری بهبود یافت و در ادامه برای نشان دادن نقش آنتی‌اکسیدانت‌ها، ویتامین E و ان استیل سیستئین را به گروه‌ها اضافه نمودند که نتایج حاکی از روند سریع بهبود زخم‌ها نسبت به گروه‌هایی که آنزیم‌ها مهار شده بودند، را نشان می‌داد. با کاهش ROS، بیوفیلم باکتری نیز از هم می‌پاشد و همه اینها در کنار هم بهبود زخم را می‌تواند تسریع کند. محققین بر این باورند که برای دستیابی به درمان موفق در زخم‌های مزمن باید به ظرفیت آنتی اکسیدانتی بدن توجه ویژه‌ایی داشته و در طول درمان تعادل را بین میزان ROS و ظرفیت آنتی اکسیدانتی برقرار نمود. این تحقیق با توجه به اینکه برای اولین بار هست که با حذف آنزیم‌های آنتی‌اکسیدانتی توانسته زخم‌های مزمن را ایجاد کند در نتیجه مسیر جدیدی برای تحقیق بر روی درمان زخم‌های مزمن را برای دانشمندان و محققین جوان فراهم کرده است.

منبع:

17 in New Orleans, La., at the 53rd annual meeting of the American Society for Cell Biology. (Article)

نوشته شده در

سوپراکسید دیسموتاز در تحقیقات زخم

ترمیم زخم متشکل از پروسه‌ها و واکنش‌های بسیار زیادی است. به‌صورت کلاسیک ترمیم زخم به ۴ فاز تقسیم می‌شود:

۱. فاز هوموستاز

۲. فاز التهابی

۳. فاز پرولیفراسیون

۴. فاز بلوغ و Remodeling

با وجود این دسته‌بندی، این فازها کاملا جدا از هم نیستند و بعضا همپوشانی در آن‌ها دیده می‌شود. بلافاصله بعد از هر آسیب، پلاکت‌ها شروع به تجمع کرده، پلاک‌ها را تشکیل می‌دهند و در عروق آسیب‌دیده مانع از خون‌ریزی می‌شوند. همزمان، پروسه‌های التهابی شروع می‌شوند و طیفی از سلول‌های التهابی به محل ضایعه جذب می‌شوند.

درحالی که این سلول‌های ایمنی سایتوکاین‌های پیش‌التهابی ترشح می‌کنند، سلول‌های التهابی (به‌ویژه نوتروفیل‌ها) مقادیر زیادی گونه‌های فعال اکسیژن (ROS) تولید می‌کنند. این مواد برای حفاظت بدن در مقابل یک عفونت ضروری هستند اما در صورت تولید بیش از حد می‌توانند به بافت‌های اطراف صدمه بزنند. در پروسه عادی ترمیم زخم، سایتوکاین‌های التهابی و سلول‌های ایمنی طی چند روز پس از آسیب کاهش می‌یابند. درست در این زمان، کراتنوسیت‌ها، فیبروبلاست‌ها و سلول‌های اندوتلیال شروع به ترشح فاکتورهای رشد متعدد می‌کنند.

 

 

در فاز پرولیفراتیو، به‌همراه بازسازی اپیتلیال و رگ‌زایی (آنژیوژنز)، سنتز کلاژن و ترکیب ماتریکس انجام گرفته و باعث تولید بافت گرانوله می‌شود. سلول‌های اپیتلیال به‌صورت افقی حرکت می‌کنند تا به همتایان خود از طرف مقابل برسند. فیبروبلاست‌ها از لبه‌های زخم فراخوانده می‌شوند تقسیم شده و باعث تحریک کراتینوسیت‌ها به مهاجرت و تقسیم می‌شوند. رگ‌زایی جدید (Neovascularization) اتفاق می‌افتد و شروع به تغذیه و اکسیژن‌رسانی بافت در حال اتصال می‌کند. سپس فیبروبلاست‌های تقسیم شده پروتئین‌های ماتریکس از جمله کلاژن را برای ساخت ماتریکس خارج سلولی (ECM) ترشح می‌کنند، که در مجموع باعث ساخت بافت پیوندی می‌شود.

هدف در این مطلب تشریح نحوه ترمیم زخم نیست و صرفا جهت مقدمه و آماده‌سازی موضوع مطالب ذکر شد. اکنون به نقش مهم آنزیم آنتی اکسیدانتی سوپراکسید دیسموتاز در این مورد می‌پردازیم.

سوپراکسید دیسموتاز و نقش آن در ترمیم زخم

آنیون‌های سوپراکسید ROSهای اولیه‌ای هستند که از اکسیژن مولکولی به‌وجود می‌آیند. اگر نیتریک اکساید (NO) که در اثر فعالیت آنزیم نیتریک اکساید سنتاز تولید می‌شود، در محیط موجود باشد، آنیون‌های سوپراکسید با آن واکنش داده و پراُکسی نیتریت‌ها را تولید می‌کنند. پراکسی نیتریت ماده‌ای برای از بین بردن باکتری و حفظ محیط زخم از عفونت‌ است، اما در عین حال ماده‌ای سمی و بسیار اکسید‌کننده نیز هست. برای جلوگیری از واکنش‌های آسیب‌رسان، آنیون‌های سوپراکسید اضافی تولید شده توسط آنزیم سوپراکسید دیسموتاز یا SOD به‌سرعت به H2O­2 تبدیل می‌شوند. خانواده آنزیم سوپراکسید دیسموتاز ۳ عضو دارد: SOD1 که در سیتوپلاسم و فضای بین‌غشایی میتوکندری موجود است. SOD2 که در ماتریکس میتوکندری وجود دارد و SOD3 که در فضای خارج سلولی موجود است و اولین خط دفاعی در مقابل استرس اکسیداتیو در فضای خارج سلول را تشکیل می‌دهد.

 

 

از آن‌جایی که پوست به‌نسبت سایر بافت‌ها بیشتر در معرض سمیت ناشی از اکسیژن قرار می‌گیرد، سوپراکسید دیسموتاز نیز در تحقیقات زخم بسیار مورد پرس‌وجو قرار گرفته است. آنزیم‌های SOD1 و SOD2 در سطح RNA در زخم‌ها به مقدار بسیار زیادی تشخیص داده شده‌اند. با این وجود فعالیت SOD در هنگام ترمیم زخم در رت‌ها کاهش می‌یابد. اما ممکن است این سوال پیش آید که آیا فعالیت SOD برای ترمیم زخم لازم است؟ پاسخ این سوال در موش‌های فاقد ژن کد کننده SOD1 کمی پیچیده است. در موش‌های ۲۰ هفته‌ای، نبود SOD1 باعث تاخیر در ترمیم می‌شود اما در موش‌های جوان‌تر (۵-۶ هفته) تفاوتی در زمان ترمیم در گروه فاقد SOD1 گزارش نشده است. شاید این نتایج اهمیت وجود SOD را در ترمیم زخم در پیری بیشتر بارز کند. چرا که گزارش شده است نبود SOD1 در فیبروبلاست‌های انسان باعث پیری سلول می‌شود. همچنین برای نگهداری سلول‌های فیبروبلاست جنینی موش (MEFs) نیز وجود SOD1 ضروری است. از این رو موش‌های فاقد SOD1‌ در سم‌زدایی و خنثی کردن آنیون‌های سوپراکسید تولید شده در متابولیسم سلولی، ناتوان هستند. علاوه بر این بافت آسیب‌دیده زخم در معرض اکسیژن اتمسفریک قرار می‌گیرد و این مورد با تاثیر بر چرخه ردوکس سلولی بر روند ترمیم تاثیر خواهد گذاشت.

در نهایت، اهمیت آنزیم‌های کنترل کننده اکسیدان‌ها بر کسی پوشیده نیست و شما می‌توانید در تحقیقات خود نیز برای سنجش سوپراکسید دیسموتاز اقدام کنید

 

 

 

منابع:

-Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014, 346, 941–945.

-Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112.

-Steiling, H.; Munz, B.; Werner, S.; Brauchle, M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp. Cell Res. 1999, 247, 484–494.

-Shukla, A.; Rasik, A.M.; Patnaik, G.K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic. Res. 1997, 26, 93–101.

-Iuchi, Y.; Roy, D.; Okada, F.; Kibe, N.; Tsunoda, S.; Suzuki, S.; Takahashi, M.; Yokoyama, H.; Yoshitake, J.; Kondo, S.; et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 2010, 341, 181–194.

-Tsunoda, S.; Kibe, N.; Kurahashi, T.; Fujii, J. Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch. Biochem. Biophys. 2013, 537, 5–11.

نوشته شده در

آنتی‌اکسیدان‌ها و گسترش سرطان ؟

طبق یک مطالعه منتشر شده در آوریل و در مجله  Science Translational Medicine، دو نوع از داروهای مورد استفاده برای درمان دیابت نوع 2 می‌تواند متاستاز تومورهای انسان را در موش‌ها گسترش دهد.  این دو نوع ترکیب حاوی مهارکننده‌های دی‌پپتیدیل پپتیداز 4 (DPP-4) و  بازدارنده آلفالیپوئیک‌اسید (ALA) است که باعث سرعت بخشیدن به متاستاز ناشی از فعال شدن یک مسیر پاسخ آنتی‌اکسیدانی می‌شود. در این مسیر پروتئین‌های متاستاز فعال می‌شوند. نتایج این تیم نشان‌دهنده ارتباط بین آنتی‌اکسیدان‌ها و گسترش سرطان است.

مهم‌ترین یافته در این زمینه بیان می‌کند که متاستاز، سرطان‌های موجود را با فعال شدن پاسخ آنتی‌اکسیدانی ترویج می‌دهد.

زاکاری شافر، زیست‌شناس سلولی از دانشگاه نوتردام، گفت: “این اطلاعات محرمانه هستند و نتیجه تحقیق با مطالعات دیگر مطابقت دارد که فعالیت آنتی‌اکسیدانی می‌تواند برای متاستاز سلول‌های سرطانی مفید باشد.”

ژنگ و همکاران برای اولین بار از داروهای ضد دیابتی معمول استفاده کردند، از جمله متفورمین و آنالوگ‌های انسولین وتوانایی آن‌ها را برای افزایش تکثیر یا افزایش مهاجرت سلول‌های سرطانی در آزمایشگاه بررسی کردند. محققان نشان دادند که مهارکننده‌های DPP-4  از مهاجرت و تهاجم سلول‌ها جلوگیری می‌کند اما بر روی تکثیر سلول‌های سرطانی ملانوم، کبد، کولون، پستان، ریه و تخمدان تاثیرگذار نیست.

در موش‌ها، این داروها موجب انتشار بیشتر سلول‌های تومور کبدی و کولون و همچنین افزایش میکرومتاستاز در مقایسه با حیوانات با همان تومورهایی بود که هیچ داروهای ضددردی دریافت نکردند. آزمایش‌های بیشتر در آزمایشگاه نشان داد که اثرات مهار‌کننده DPP-4  بر روی انتقال تومور سلول با توانایی ترکیبات برای کاهش استرس‌اکسیداتیو سلول‌های سرطانی همراه است: داروها منجر به کاهش گونه‌های فعال اکسیژن (ROS) ، افزایش گلوتاتیون و افزایش آنتی‌اکسیدان آندوژنز می‌شود. محققان نشان می‌دهند که مهارکننده سنتز گلوتاتیون در سلول‌های سرطانی علاوه بر مهارکردن DPP-4 مانع از انتقال سلول‌های تومور می‌شود.

برای درک این‌که چگونه این ترکیبات بر روی مسیرهای استرس اکسیداتیو سلولی اثر می‌گذارند، محققان فاکتور رونویسی (NRF2) را که از طریق بازدارنده DPP-4 فعال می‌شوند، هم در کشت سلولی و هم در موش بررسی کردند.. پنج مهار‌کننده متفاوت DPP-4  همه در NRF2 فعال شده‌اند. هنگامی که محققان NRF2 را در پروتئین بازدارنده DPP-4 و سلول‌های سرطانی کبد از بین بردند، سلول‌ها کاهش مهاجرت سلول‌های تومور و بیان پروتئین‌های مرتبط با متاستاز را نشان دادند.

محققان اثر مشابهی را در in vivo مشاهده کردند. موش‌هایی که با سلول‌های نابودکننده NRF2 تلقیح شده بودند، متاستازهای ناشی از مهارکننده DPP-4 کمتری داشتند. محققان گزارش دادند که NRF2 هم‌چنین متاستازهای مستقل از هرگونه درمان دارویی دیابت را تحت تاثیر قرار داده است. فعال‌سازی فاکتور رونویسی باعث بیان پروتئین‌های متاستاز و مهاجرت سلولی در کشت شده و فعال‌سازی فارماکولوژیک NRF2 در موش، باعث افزایش میکرومتاستاز شد.

یکی دیگر از فعال کننده NRF2 شناخته شده، با نام ALA که برای درمان نوروپاتی دیابتی استفاده می‌شود، و اثرات مشابهی را به عنوان مهارکننده DPP-4 دارد، مورد مطالعه قرار گرفت. تجزیه و تحلیل داده‌های بیان اولیه تومور و متاستاتیک، نشان داد که در نمونه‌های با متاستاتیک بیشتر، احتمال افزایش بیان NRF2 را با متاستاز گره لنفاوی مرتبط می‌کند. مطالعات قبلی نشان داده است که NRF2 توسط آنکوژن‌ها فعال می‌شود، که تومورها را قادر می‌سازد تا ROS را خنثی کنند که مانع رشد آن‌ها می‌شود. شافر اشاره کرد که آیا سایر داروها با فعالیت آنتی‌اکسیدانی با یک مکانیزم مشابه کار می‌کنند یا اینکه سلول‌های سرطانی، خود نیز از مکانیسم‌های دیگر برای حفظ آنتی‌اکسیدان استفاده می‌کنند.

گام بعدی این است که مطالعه متاستاز تومور در موش‌های دیابتی داشته باشیم، که به اندازه کافی منعکس‌کننده کاربرد بالینی فعلی داروهای ضدویروسی خواهد بود.

برگئو تأکید کرد: “آنتی اکسیدان‌ها و داروهایی که NRF2 را فعال می‌کنند باعث ایجاد سرطان نمی‌شوند.” “در عوض، آن‌ها به سلول‌های سالم کمک می‌کنند سالم بمانند و به سلول‌های سرطانی کمک می کنند تا در بدن گسترش پیدا کنند.

 

منابع:

Caglayan, A., Katlan, D.C., Tuncer, Z.S. and Yüce, K., 2019. Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. Journal of Trace Elements in Medicine and Biology52, pp.254-262.

Shrivastava, A., Aggarwal, L.M., Mishra, S.P., Khanna, H.D., Shahi, U.P. and Pradhan, S., 2019. Free radicals and antioxidants in normal versus cancerous cells—An overview.

 

نوشته شده در

دفاع ایمنی بدون آسیب‌های جانبی

هنگامی که میکروب‌ها ناخواسته وارد بدن می‌شوند، گلبول‌های سفید خون وارد صحنه شده و شروع به مبارزه با آن‌ها می‌کنند. فرآیندی که در آن گلبول‌های سفید با مهاجمان به مبارزه می‌پردازند باید بسیار دقیق باشد، در غیر این صورت ممکن است بخش سالمی از بدن به وسیله یک نوع آسیب بیولوژیکال که بدن به خود وارد می‌کند، دچار آسیب گردد. محققان دانشگاه بازل سوئیس، نقش آنزیم مهمی را در این فرآیند کشف کرده‌اند که به گلبول‌های سفید خون اجازه می‌دهد تا با دقت بسیار بالا همانند یک تک تیرانداز ماهر به عوامل بیگانه حمله کنند.

این آنزیم میلو پراکسیداز (MPO) نام دارد و ظاهر سبزرنگی که در مناطق عفونی بدن مشاهده می‌شود ناشی از این ترکیب است. هنگامی که یک گلبول سفید خون به یک باکتری حمله می‌کند، پراکسید هیدروژن (H2O2) آزاد شده و MPO این ماده را به HOCL یا هیپوکلریک اسید تبدیل می‌کند، که مانند یک انفجار کوچک عمل کرده و باکتری‌ها را در شعاع کمتر از 1 میکرومتر از طریق ایجاد سوراخ‌هایی در آنها از بین می‌برد.

پروفسور Dirk Bumann، سرپرست این تیم تحقیقاتی، در این‌باره توضیح می‌دهد که: “باکتری‌ها در برابر این بمب اسیدی ابزاری جهت مقاومت ندارند و از آنجایی که هیپوکلریک اسید بسیار واکنش پذیر است، بلافاصله با نزدیکترین بیومولکول‌ها واکنش داده و فقط به صورت موضعی عمل کرده و به محیط‌های اطراف گسترش نمی‌یابد، در نتیجه باکتری‌ها از بین رفته و بافت‌های اطراف آن مصون مانده و آسیبی نمی‌بینند.”

اساسا MPO به عنوان یک سیستم کنترلی-مهاری عمل کرده تا پراکسید هیدروژن تبدیل شده، تنها در یک منطقه کوچک آزاد شود.

محققان برای پاسخ به این سوال که عدم وجود آنزیم میلوپراکسیداز در بدن می تواند چه عواقبی بدنبال داشته باشد؟ به بررسی سلولهای افرادی که این آنزیم را به دلیل ژنتیکی نداشتند، پرداختند. در این افراد، گلبول های سفید خون همچنان H2O2 را در مواجهه با یک عامل خارجی آزاد می‌کردند، اما این هیدروژن پراکسید هرگز به هیپوکلریک اسید تبدیل نمی‌شد که ماحصل آن کشته‌شدن باکتری‌ها بهمراه آسیب رسیدن به بافت‌های اطراف بود. Nina Khanna، بعنوان عضوی از این تیم تحقیقاتی می‌افزاید: ” آسیب همزمان به سلول‌های خونی و بافت‌ها بدون حضور MPO، ممکن است ناشی از عواقب درازمدت پیری زودرس و سرطان باشد اما هنوز به طور سیستماتیک مورد بررسی قرار نگرفته است.”

علاوه بر این، محققان دریافتند که آزاد شدن H2O2 در موش‌هایی که MPO را نداشتند و با سالمونلا آلوده شده بودند، سبب آسیب بافتی همراه با «تشدید آسیب‌های اکسیداتیو در لیپیدها و DNA» شده بود.

محققان می‌گویند این یافته‌ها می‌تواند به ایجاد استراتژی‌های جدید درمانی برای مبارزه با عفونت‌های باکتریایی کمک کند.

جهت مطالعه بیشتر می‌توانید به مقاله این تحقیق که در مجله nature microbiology به چاپ رسیده مراجعه نمایید.

منبع:

Schürmann N, Forrer P, Casse O, Li J, Felmy B, Burgener AV, Ehrenfeuchter N, Hardt WD, Recher M, Hess C, Tschan-Plessl A. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature microbiology. 2017 Jan 23;2:16268.

نوشته شده در

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در

مصرف نمک یا سلامتی؟!

سدیم یک ماده مغذی ضروری است و از طریق طعم نمکی اشتها آور است. با این حال، مصرف زیاد سدیم به اثرات منفی سلامتی مانند فشار خون بالا، بیماری‌های قلبی عروقی و سکته مغزی مرتبط است. در کشورهای صنعتی، حدود 75 درصد سدیم در رژیم غذایی از غذاهای تولید شده و غذاهایی که از خانه خارج می‌شوند، می‌آید. با این وجود، کاهش سدیم در غذاهای فرآوری شده با توجه به قابلیت‌های خاص سدیم از لحاظ طعم و طعم غذای مرتبط با غذا (به عنوان مثال، افزایش نمکی، کاهش تلخ، افزایش شیرینی و سایر طعم های مشابه) به چالش کشید. در بررسی‌های اخیر پزشکی، نقش حسی سدیم در غذا، عوامل تعیین‌کننده طعم نمکی و انواع استراتژی‌هایی مانند جایگزین‌های سدیم (به عنوان مثال، نمک های پتاسیم) و کاهش تدریجی سدیم، برای کاهش سدیم در غذاهای فرآوری شده با حفظ سلیقه، بحث می‌شود.

کلرید سدیم (NaCl)  محرک پیش‌نمونه‌ای برای طعم شور است. سدیم باعث افزایش ویژگی‌های حساسیتی غذاها می شود، با افزایش شوری، کاهش تلخی و افزایش شیرینی و دیگر اثرات طعم مطابقت دارد. فاکتورهایی که میل فرد و پذیرش غذاهای شور را مشخص می‌کنند، درک شده اند، اما عوامل محیطی مانند سطح سدیم در غذاها و رژیم غذایی عادی نقش مهمی دارند. در حالی‌که سدیم برای عملکرد طبیعی انسان ضروری است، مصرف بیش از حد سدیم همراه با افزایش فشار خون است که علت اصلی بیماری های قلبی-عروقی است. برآورد شده است که 62 درصد سکته مغزی و 49 درصد بیماری قلبی عروقی ناشی از فشار خون بالا است. مصرف بیش از حد سدیم همراه با بسیاری از دیگر اثرات منفی سلامت، از جمله سرطان معده، کاهش تراکم استخوان  و احتمالا چاقی همراه است.

یک گزارش از Asaria و همکاران محاسبه شده است که یک کاهش 15 درصدی در مصرف سدیم جمعیت می تواند از 8.5 میلیون مرگ و میر ناشی از قلب و عروق در سراسر جهان بیش از 10 سال جلوگیری کند.  تجزیه و تحلیل فرایند تهیه شده توسط سازمان جهانی بهداشت نتیجه می‌گیرد که شواهد قوی برای تأثیر هزینه‌های راهبرد کاهش ملی سدیم وجود دارد؛ به عنوان مثال، بیماری‌های قلبی عروقی از گران‌ترین مشکلات بهداشت هستند که 11 درصد کل هزینه‌های بهداشتی در سراسر جهان را تشکیل می‌دهند. انتظار می‌رود میانگین استراتژی کاهش سدیم فقط 0.3٪ هزینه های جاری در برنامه کنترل فشار خون در مقایسه با سایر هزینه های مرتبط با قلب و عروق در سرتاسر دنیا باشد. کاهش مصرف سدیم برای افراد مبتلا به فشارخون بالا و فشار خون مفید است، گرچه افراد مبتلا به فشار خون بالا به میزان بیشتری تحت تاثیر قرار می گیرند.

علی‌رغم نتایج منفی بهداشتی و هزینه‌های مراقبت های بهداشتی مرتبط با مصرف زیاد سدیم، انسان در بیشتر کشورهای توسعه یافته بسیار بالاتر از سطوح توصیه شده مصرف می‌کند و باعث کاهش سدیم در سلامت عمومی می شود. به همین دلیل، طیف وسیعی از استراتژی‌های کاهش سدیم در غذاهای مختلف اعمال شده است. با این حال، موفقیت اغلب محدود می‌شود، زیرا کاهش میزان سدیم بر کیفیت ذوق و طعم تاثیر می‌گذارد.

منابع:

Liem, D.G., Miremadi, F. and Keast, R., 2011. Reducing sodium in foods: the effect on flavor. Nutrients, 3(6), pp.694-711.