نوشته شده در دیدگاه‌تان را بنویسید

جنین‌ مخلوط انسان و خوک

مقدمه: محققان به تازگی موفق به انتشار اطلاعاتی در مورد جنین هیبرید انسان ـ خوک شدند که به نوبه خود می تواند گام موثری در پرورش حیوانات با ارگان‌های داخلی انسانی بوده و برای پیوند عضو بسیار کاربردی باشد.

گروه محققان بر طبق گزارشی منتشر شده در مجله Cell در سال 2016 کایمراهای هیبرید موش آزمایشگاهی- موش صحرائی و انسانی- گاوی را گزارش نمودند. این حیوانات علاوه بر مورد فوق به عنوان مدل های آزمایشگاهی در تحقیقات بر روی داروها و مراحل ابتدایی تکوین انسان نیز مثمر ثمر بوده اند.

برای خلق کایمراها پژوهشگران سلول‌های بنیادی پرتوان را که قابلیت تولید هرگونه بافتی را دارند از یک گونه به جنین گونه دوم که در مراحل بسیار ابتدایی به سر می برد تزریق می کنند. از لحاظ تئوری سلول‌های خارجی باید در تمام بدن تکثیر و تمایز یابند اما در حالت آزمایشگاهی تولید هیبریدهای جنین بسیار مشکل است.

جهت فائق آمدن بر مشکل مذکور پژوهشگران از تکنولوژی ویرایش ژن بنام CRISPR استفاده نمودند تا بتوانند جنین موش آزمایشگاهی تولید کنند که فاقد ژن‌های کد کننده اندام باشند. دانشمندان پس از این مرحله سلول‌های بنیادی موش صحرائی را به جنین‌های موش آزمایشگاهی تزریق و پس از آن جنین‌ها را به رحم موش آزمایشگاهی انتقال دادند.

بدلیل اینکه سلول‌های موش صحرائی همچنان حاوی ژن‌های القاء‌کننده شکل‌گیری بافت‌ها بودند، کایمرای بوجود آمده دارای ارگان‌هایی بود که تعداد کثیری از سلول‌های موش صحرائی را با خود به همراه داشتند. حیوان حاصل از این آزمایش به مدت ۲ سال زندگی کرد که کاملا مطابق با متوسط طول عمر یک موش آزمایشگاهی بود.

ترکیب و تطابق

در مرحله بعدی دانشمندان تصمیم گرفتند دو گونه‌ای که دور از هم می‌باشند را برای هیبریدیزاسیون مورد هدف قرار دهند که درنهایت بر روی مطالعه انسان و خوک به تفاهم رسیدند. گروه محققان به ۱۴۰۰ جنین خوک، یکی از سه نوع سلول‌های انسانی که شامل سلول‌های انسانی نرمال، سلول‌های بنیادی پرتوان و سلول‌هایی که انتظار می رفت به بافت‌ها تمایز یابند(سلول‌های میان‌رده) تزریق نمودند . در این مطالعه برای اینکه سلول‌های انسانی قابلیت تشخیص را داشته باشند محققان آنها را جهت اتساع رنگ فلورسنت دستکاری کردند.

پس از مرحله فوق در بهترین شرایط فقط ۱ سلول از هر ۱۰۰۰۰۰ سلول در کایمرا متعلق به انسان بود. یکی از محققان در این مورد گفت: اکنون تمام پژوهشگران می توانند وجود سلول انسانی در خوک را دریابند و مشاهده کنند که یک سلول در خوک دارای ژنوم طبیعی یک انسان است. با این حال عده ای دیگر بر این اعتقادند که تعداد کم سلول‌های انسانی در کایمرای انسانی- خوکی مبین یک نتیجه منفی در این راستاست و با این حال فاصله زیادی از کایمراها تا اهدا عضو به انسان وجود دارد.

امید به پیوند

گروه دیگری از محققان راهکار مشابهی را برای کایمرای انسان- گوسفند آزمایش می کند، و تصور آنها بر این است که جنین گوسفند می تواند توانایی بیشتری نسبت به جنین خوک در نگهداری سلول‌های انسانی داشته باشد. اما، به گفته یکی از اعضای این گروه به احتمال زیاد خوک بهترین گزینه برای اهدا عضو خواهد بود به این دلیل که طول زمان زایمان خوک منجر به رشد سریع ارگان‌ها می شود، همچنی ارگان‌های خوک از لحاظ اندازه بسیار شبیه به ارگان‌های انسان می باشد.

محققان روش های بسیاری را برای تبدیل خوک به بک اهدا کننده عضو انسان‌ها مد نظر قرار داده‌اند که یکی از آنها استفاده از  CRISPR برای عدم فعالیت پروتئین‌های خوک است که می‌تواند منجر به پاسخ ایمنی در پریمات‌ها شود. با وجود کایمرا پزشکان می‌توانند برای بیماران نیازمند اهدا عضو با اخذ سلول از خود فرد و تولید عضو توسط کایمرا، ارگان مد نظر را که حاوی سلول‌های خود فرد است به وی منتقل کنند.

منبع:

Jun Wu, Aida Platero-Luengo, Masahiro Sakurai, Atsushi Sugawara, Maria Antonia Gil, Takayoshi Yamauchi, Keiichiro Suzuki, Yanina Soledad Bogliotti, Cristina Cuello, Mariana Morales Valencia, Daiji Okumura, Jingping Luo, Marcela Vilariño, Inmaculada Parrilla, Delia Alba Soto, Cristina A. Martinez, Tomoaki Hishida, Sonia Sánchez-Bautista, M. Llanos Martinez-Martinez, Huili Wang, Alicia Nohalez, Emi Aizawa, Paloma Martinez-Redondo, Alejandro Ocampo, Pradeep Reddy, Jordi Roca, Elizabeth A. Maga, Concepcion Rodriguez Esteban, W. Travis Berggren, Estrella Nuñez Delicado, Jeronimo Lajara, Isabel Guillen, Pedro Guillen, Josep M. Campistol, Emilio A. Martinez, Pablo Juan Ross, Juan Carlos Izpisua Belmonte, Interspecies Chimerism with Mammalian Pluripotent Stem Cells, Cell, Volume 168, Issue 3, 26 January 2017, Pages 473-486.e15

 

نوشته شده در دیدگاه‌تان را بنویسید

برنامه ریزی برای سلول های بنیادی به وسیله میکروRNA

محققان دانشگاه کالیفرنیا، به تازگی روشی را کشف کردند تا سلول های بنیادی موش را مجددا برنامه ریزی کنند، بر این اساس آنها توانستند ویژگی های رشد و نمو را در سلول های بنیادین که شبیه به سلول تخم بارور شده(زیگوت) بود را در این سلول ها نشان دهند.

این سلول های بنیادین شبه- همه توان (totipotent-like) نه تنها توانایی تبدیل و تولید انواع مختلف سلول را دارا می باشند بلکه می توانند سلول هایی که در تبادل مواد غذایی بین مادر و جنین دخیل می باشند را نیز تولید کنند.

تصور بر این است که سلول تخم بارور از توانایی تمایز و تولید انواع سلول های مورد نیاز برای جنین من جمله تغذیه و رشد آن که تشکیل دهنده توده سلولی خارجی (تروفوبلاست) است، بهره مند می باشد. یکی از ویژگی های منحصر به فرد پستانداران دارای جفت تشکیل کیسه زرده و خود جفت از توده سلولی خارجی جنین (تروفوبلاست) می باشد که موجب تبادل مواد غذایی و رشد جنین در روند تکاملی آن خواهد شد.

از سویی دیگر بسیاری از سلول های بنیادین جنینی و بنیادین پرتوان قادر به تولید و تکثیر سلول های بنیادین جنینی می باشند در حالیکه از تمایز به توده سلولی خارجی جنین ناتوان هستند. توانایی سلول تخم بارور شده در تکثیر و تمایز به توده سلولی داخلی و خارجی (اپی بلاست و تروفوبلاست) بسته به همه توانی آن دارد که فقط در مراحل ابتدایی جنینی به چشم می خورد و پس از آن وجود نخواهد داشت.

تحقیقات صورت گرفته اخیر بر روی تکثیر و تمایز سلول های بنیادین جنینی بر پایه سیستم های کشت سلول و سلول های بنیادین پرتوان استوار است که این روش های آزمایشی نمایانگر مسیرهای مولکولی اختصاصی در تعیین سرنوشت تمایز سلول های بنیادین جنینی است. اما توانایی تمایز منحصر به فرد زیگوت که بلافاصله پس از تماس تخمک و اسپرم آغاز می شود و با توجه به محدودیت امکانات و تجهیزات آزمایشگاهی باعث دشواری بیش از حد سیر مطالعات پیرامون نحوه تمایز آن می شود.

مطالعه اخیر پژوهشگران نه تنها موجب آشکار شدن مکانیسم جدیدی در کنترل سطوح سلول های بنیادین شبه- همه توان می گردد بلکه موجب تدارک سیستمی کارآمد در مطالعات بعدی بر روی همه توانی خواهد بود.

میکروRNA و سلول های بنیادین

سلول های بنیادی جنینی که از جنین های سه نیم روزه موش یا جنین های پنج و نیم روزه انسان بدست می آیند در دسته سلول های بنیادی پرتوان طبقه بندی می شوند چرا که از توانایی تمایز به هزاران نوع سلول برخوردارند. شناسایی این سلول ها در دهه های اخیر اشتیاق دانشمندان را در پی داشته است چراکه با مطالعه و کشت آنها در محیط آزمایشگاه توانایی کشف بیان و خاموشی ژنهای دخیل در تکثیر و تمایز آنها به بافت های تخصصی از جنین و رویان، و نیز به دلیل توانایی آنها در جایگزینی به جای سلول های بافت های آسیب دیده در بیماران دیابتی یا دارای سابقه اختلالات قلبی در پی داشته است. این سلول ها حتی می توانند به محققان اجازه دهند تا در مورد مراحل ابتدایی اختلالات ژنتیکی مطالعه کنند.

علاوه بر استخراج سلول های بنیادی جنینی،  دانشمندان می توانند با دستکاری سلول های بالغ پیکری بوسیله فاکتورهای رونویسی برای برگرداندن آنها به سلول های جنین پرتوان تلاش کنند، از این رو سلول های حاصله همانند سلول های بنیادی جنینی قادر به تمایز و انعطاف خواهند بود. این سلول ها که بصورت مصنوعی تبدیل به سلول های بنیادی می شوند سلول های بنیادی پرتوان تحت تاثیر یا(Induced pluripotent stem cells) iPS  نامیده شده اند.

میکروRNAها، RNAهای کوچک غیر کننده ای می باشند که به پروتئین ها ترجمه نمی شوند و همچنان دارای تاثیرات شگفت انگیزی در بیان و خاموشی ژن ایفا می کنند. محققان به تازگی میکروRNA کشف کرده اند که در سلولهای جنینی پرتوان (ES) و (iPS) مانع از تولید و تمایز توده سلولی خارجی(تروفوبلاست) می شود و آنرا miRNA-34a نامیده اند. زمانی که miRNA-34a بصورت ژنتیکی حذف شد هر دونوع سلول های بنیادی (ES) و (iPS) توانستند تکثیر و تمایز خود را گسترش داده و  سلول های جنینی را به صورت سلول های جنینی کیسه زرده و جفت پدیدار آورند. در مطالعه صورت گرفته 20 درصد از سلول های جنینی فاقد miRNA-34a توانایی تکثیر گسترده ای از خود نشان دادند، بعلاوه این اثر تا یک ماه در محیط کشت قابل رویت بود. این یافته نه تنها مکانیسم جدیدی از همه توانی سلول های بنیادین را نمایش داد بلکه بیانگر نقش RNAهای غیر کد کننده در سرنوشت سلول های بنیادین نیز بود.

علاوه بر موارد فوق، در این مطالعه، ارتباط عجیبی بین کلاس خاصی از رتروترانسپوزون های موش و miRNA-34a کشف شد. از زمانهای گذشته اعتقاد بر این بود که رتروترانسپوزون های  junk DNA قسمتی از DNA خارجی باستانی می باشند که موجب شکستگی ژنوم پستانداران می شوند. برای سال های متمادی زیست شناسان معتقد بودند این رتروترانسپوزون ها فاقد هرگونه نقش و عملکردی در تکثیر و تمایز پستانداران می باشند، در حالیکه یافته های حاصل از مطالعه اخیر بیانگر ارتباط پیوسته و بسیار نزدیکی بین آنها و سرنوشت سلول ها در مراحل ابتدایی جنینی است.

منبع:

Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells, Yong Jin Choi, Chao-Po Lin, Davide Risso, Sean Chen, Thomas Aquinas Kim, Meng How Tan, Jin B. Li, Yalei Wu, Caifu Chen, Zhenyu Xuan, Todd Macfarlan, Weiqun Peng, K. C. Kent Lloyd, Sang Yong Kim, Terence P. Speed, Lin He, Science, doi: 10.1126/science.aag1927, published 12 January 2017

نوشته شده در دیدگاه‌تان را بنویسید

همیشه DNA مقصر نیست

در بسیاری از موارد RNA پیامبر یا mRNA می‌تواند ماشین‌های سلولی تولیدکننده پروتئین را از کار بیاندازد. مشکل در تصفیه این ماشین‌های سلولی از کار افتاده و mRNAهای ناکارآمد است که موجب بیماریهای نورودژنراتیوی چون آلزایمر می‌شود.

آسیب به DNA تقریبا موردی است که تمامی سلول‌ها با آن مواجه هستند. این آسیب بیشتر در سرطان نمود پیدا می‌کند، چرا که مکانیسم‌های ترمیم‌کننده این آسیب‌ها از کار می‌افتند. موادی که باعث آسیب به DNA می‌شوند، می‌توانند مولکول خواهر همان DNA که mRNA است را نیز تخریب کنند. وظیفه mRNA انتقال رونوشت‌های ژن به هزاران ریبوزوم در هر سلول است، اما به تخریب در این ابعاد توجه بسیاری کمی شده است.

یکی از نشانه‌های بیماری آلزایمر استرس اکسیداتیو است و مطالعات نشان داده‌اند که در بیماران مبتلا به آلزایمر پیشرفته، نیمی از مولکول‌های RNA در سلولهای عصبی اکسیده شده‌اند.

ظاهر، سیمز و همکاران در مطالعه‌ای که اخیرا چاپ شده است عنوان کرده‌اند که وقتی mRNA اکسید شده را در مجاورت ریبوزوم قرار می‌دهند، ریبوزوم‌ها تخریب شده و از کار می‌افتند.

یک ریبوزوم معیوب (Stuck Ribosome) می‌تواند با فاکتورهایی که آن‌را از mRNA جدا می‌کند و بخش معیوب mRNA را می‌جود، احیا شود اما در صورتی که این سیستم کنترل کیفیت وجود نداشته باشد، مولکول‌های mRNA آسیب دیده در سلول تجمع پیدا می‌کنند. دقیقا همانند آن‌چه در بیماری آلزایمر شاهد آن هستیم.

مواردی وجود دارد که mRNA به اندازه DNA در رخداد یک بیماری دخالت داشته باشند. بوضوح آسیب اکسیداتیو به RNA‌ در بسیاری از بیماری‌های نورودژنراتیو دخیل است. درست است که عامل اصلی ایجاد بیماری RNA نیست اما در خلل این مسیر پاتولوژیک تولید شده و بعنوان یک محصول فرعی تاثیرگذار است. در حالت عادی فقط حدود یک درصد از کل mRNAهای سلولی اکسید شده‌اند، اما در شرایط استرس اکسیداتیو، به هر دلیلی که ایجاد شده باشند، درصد بالای از mRNAها تخریب می‌شوند.

برای سنجش صحت و استحکام ترجمه، نویسندگان این مقاله mRNA آسیب دیده به ریبوزوم‌ها معرفی کردند. آن‌ها یکی از حروف در واحد‌های سه حرفی mRNA‌ را تخریب کردند و با اکسیده کرده باز گوانین G محصولی تحت عنوان 8-oxo-G تولید کردند. چرا که یک باز G اکسید شده در زمان رونوشت برداری باعث یک خطا می‌شود و بجای جفت شدن با باز C، با باز A جفت می‌شود. در حقیقت بجای اینکه ریبوزوم توالی DNA‌ مورد نظر که بصورت C[8-oxo-G]C است را بصورت CAC می‌خواند و با قرار دادن اسیدآمینه اشتباه، زنجیره پروتئین اشتباه تولید می‌کند.

نقطه شگفت‌انگیز این مطالعه اینجاست که انتظار می‌رفت با تفاسیری که شد، هنگامی که mRNA معیوب در مجاورت ریبوزوم قرار گیرد، محصول اشتباه تولید شود اما برخلاف انتظار ریبوزوم از کار باز ایستاد و نتوانست تعاملی با mRNA معیوب برقرار کند. برای جلوگیری از هرگونه شک و شبهه، دانشمندان هر یک از ۳ جایگاه کدون را با این ترکیب معیوب جایگزین کردند و هربار ریبوزوم واکنش یکسان نشان داده و از کار ایستاد.

چنین سیستم محافظت‌کننده نشان می‌دهد که وجود عیوب در mRNA تنها دلیل بر تجمع پلی‌پپتید‌های ناقص در داخل سلول نیست و احتمالا مشکلی در سیستم‌های کنترل کیفی نیز بوجود می‌آید.

 

منبع:

Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS. An active role for the ribosome in determining the fate of oxidized mRNA. Cell reports. 2014 Nov 20;9(4):1256-64.

نوشته شده در دیدگاه‌تان را بنویسید

آیا آنتی‌اکسیدان‌ها می‌توانند باعث تشدید سرطان شوند؟

علیرغم اینکه آنتی‌اکسیدان‌ها در صنعت مکمل‌های غذایی بسیار درآمدزا می‌باشند، اما بسیاری از افراد از اطلاعات کافی در مورد آنتی‌اکسیدان‌ها و فواید آنها برای انسان غافل‌اند. اعتقاد رایج بر‌این‌است که آنتی اکسیدان‌ها قادر به پیشگیری از سرطان بوده و سلول‌ها را در برابر”گونه‌های فعال اکسیژن” یا “رادیکال‌های آزاد” محافظت کنند. رادیکال‌های آزاد در سلول‌ها تولید و قادر به تخریب ساختارهای سلولی و ژنوم آن می‌باشند که نتیجه آن بروز سرطان خواهد بود.

با این حال سلول‌ها انواع مختلفی از سطوح رادیکال‌های آزاد را تولید می‌کنند، مانند برخی سلول‌های  سیستم ایمنی که برای تخریب پاتوژن‌ها مورد استفاده قرار می‌گیرند. بنابراین بایستی از مزایا و معایب حذف رادیکال‌های آزاد با کمک آنتی‌اکسیدان‌ها آگاه بود. چنانچه همه رادیکال‌های آزاد حذف شوند، ممکن‌ است از اقدامات مفید آن‌ها جلوگیری گردد. دلیل این امر می‌تواند عدم وجود  اطلاعات جامع در مورد نقش آنتی اکسیدان‌ها به عنوان اجازه دهنده یا ممانعت کننده از بروز سرطان و درمان آن بوسیله آنتی‌اکسیدان‌ها باشد.

محققان در کالج کینگ لندن اخیرا تحقیقاتی در مجله موسسه ملی سرطان منتشر کرده‌اند که نشان می‌دهد رادیکال‌های آزاد تنها به عنوان عوامل مضر شناخته نمی‌شوند. مکمل‌های آنتی‌اکسیدان می‌توانند در برخی موارد آسیب بیشتری در مقایسه با فواید خود در سلول‌ها از خود برجای گذارند.

شکل دادن به سلول‌های سرطانی

در سال 2008 این مطلب بیان شد که سلول‌های ملانوم – جدی‌ترین شکل سرطان پوست – می‌توانند شکل خود را بسته به مقدار دو مولکول کلیدی مخالف هم به نام‌هایRac و Rho که مانند یک سوئیچ عمل می‌کنند، تغییر دهند. اگر Rac بیشتر و Rho کمتر وجود داشته باشد، سلول‌ها به حالت کشیده Spindly تبدیل می‌شوند و در حالت عکس سلول‌ها کروی می‌شوند. به تازگی روشن شده است سلول‌های کروی به راحتی قادر به مهاجرت و در نتیجه متاستاز خواهند بود.

 

به منظور بررسی این‌که چگونه Rac و Rho در مسیر تاثیر رادیکال‌های آزاد بر سرطان دخالت دارند، سلول‌های ملانوم در آزمایشگاه رشد داده و با استفاده از آنتی‌اکسیدان‌ها برای حذف گونه‌های فعال اکسیژن تیمار شدند. در نتیجه سلول‌ها شکل کروی به خود گرفته ، سریع‌تر مهاجرت کرده و باعث گسترش سریع توده‌های سرطانی در سطح بدن شدند.

مهار سیگنال‌های Rho و افزایش Rac ، مقدار رادیکال‌های آزاد را افزایش و در‌نتیجه سلول ها را کشیده‌تر و حرکت آنها را کندتر می‌سازد. از سوی دیگر افزایش رادیکال‌های آزاد، موجب بیان برخی ژن‌های سلولی مانند p53 می‌شود که موجب محافظت سلول در مقابل سرطان می‌گردد،لکن در خود سلول در طول سرطان این اثر از بین می‌رود. ژن دیگر PIG3 است که به ترمیم DNA کمک و به طور غیرمنتظره‌ای منجربه سرکوب فعالیت Rho  می‌شود.

این مطالعه با بررسی تومور‌های پوستی موش تایید شد. اگر سلول‌های سرطانی سطوح بالاتری از PIG3  داشته باشند، به‌ علت افزایش رادیکال‌های آزاد، حیوانات زنده‌مانی بیشتری دارند. این تومورها به آرامی رشد می‌کنند و سلول‌های سرطانی به اندازه زیاد گسترش نمی‌یابند.

در مقابل، بیماران انسانی که سطوح پایین PIG3 داشتند، سلول‌های سرطانی کروی بیشتری دارا بودند و سریعا در سطح بدن گسترش یافتند. در عین حال، پرونده‌های ژنتیکی بیماران سرطانی نشان داد افرادی که مبتلا به ملانوم گسترش یافته‌اند مقادیر کم PIG3، اما سطح بالایی از پروتئین‌ها تحت کنترل Rho را نشان می‌دهد.

 

بنابراین، به طور خلاصه، استفاده از داروها برای کاهش Rho و افزایش محصولات Rac  باعث افزایش رادیکال‌های آزاد و به همین ترتیب PIG3 می‌شود که باعث کاهش احتمال گسترش سلول‌های سرطانی می‌گردد. شواهد بدست آمده از این مطالعه قویا این فرضیه را که استفاده از آنتی‌اکسیدان‌ها قادر به مهار و درمان ملانوما می‌باشد را رد کرد.

 

احتیاط مصرف آنتی‌اکسیدان‌ها

از آنجائیکه اکثر تحقیقات برروی سلول‌های ملانوم در محیط‌های آزمایشگاهی انجام شده است نتیجه گیری قطعی مستلزم مطالعات بیشتری مبنی بر نقش داروهای مهار کننده مسیر سیگنالینگ  Rho بر روی سلول‌های سرطانی می‌باشد. از سویی دیگر داروهای مشابهی در تحقیقات بالینی برای گلوکوم، فشارخون بالا و بیماری‌های قلبی مورد آزمایش قرارگرفته‌ و ایمنی مصرف آن‌ها در بیماران تایید شده است. تحقیقات رو به رشد نشان می‌دهد این خانواده از داروها می‌تواند به کاهش سرعت گسترش سرطان پوست کمک کند.

مطالعات دیگر نشان می‌دهد که آنتی‌اکسیدان‌ها می‌توانند خطر ابتلا به سرطان را بالا ببرند و سرعت پیشرفت آن‌را افزایش دهند. دوزهای بالایی از آنتی‌اکسیدان‌ها هم‌چنین می‌توانند در برخی از درمان‌های سرطانی مانند شیمی‌درمانی دخالت داشته باشند که بر رادیکال‌های آزاد تأثیر می‌گذارند و در نهایت باعث کشتن سلول‌های سرطانی می‌شوند.

در حالی که نتایج به طور قطع از آسیب‌های آنتی‌اکسیدان‌ها به سلول‌های سالم عاجز هستند اما استفاده از آنتی‌اکسیدان‌ها در بیماران مبتلا به سرطان از توجه ویژه‌ای برخوردار است. آگاهی کامل از مزایا و معایب مصرف مکمل‌های آنتی‌اکسیدانی، مستلزم مطالعات تکمیلی برای ارائه راهکاری جهت مهار رادیکال‌های “بد” و تفکیک آن‌ها از رادیکال‌های “خوب” می‌باشد.

 : منبع

Herraiz, C., Calvo, F., Pandya, P., Cantelli, G., Rodriguez-Hernandez, I., Orgaz, J.L., Kang, N., Chu, T., Sahai, E. and Sanz-Moreno, V., 2016. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination. JNCI: Journal of the National Cancer Institute, 108.1.

نوشته شده در دیدگاه‌تان را بنویسید

تراریخته؛ آری یا خیر ؟! (قسمت اول)

تراریخته؛ آری یا خیر ؟! (قسمت اول)

ترراریخته چیست؟

ژن تراریخته (ترانس ژن‌ها) توالی‌های DNA خارجی هستند که به ژنوم یک ارگانیسم وارد می‌شوند. این ترانس‌ ژن‌ها ممکن است شامل ژن هایی از همان ارگانیسم یا ژن‌های جدید از یک ارگانیسم کاملا متفاوت باشند. که در گیاه، حیوان یا میکرو ارگانیسم رخ می‌دهد. این تبدیل به طور طبیعی در ارگانیسم‌هایی مانند باکتری‌ها رخ می‌دهد که می‌توانند DNA را از محیط اطرافشان بیرون بگیرند. علاوه بر این، تکنیک‌هایی برای معرفی و حفظ ترانس ژن‌ها در گیاهان، حیوانات و باکتری‌ها ایجاد شده‌است. ترانس ژن‌ها می‌توانند برای تجزیه و تحلیل یا تغییر عملکرد ژن شناخته شده مورد استفاده قرار گیرند. در موارد دیگر، معرفی DNA تراریخته برای افزودن توابع جدید به یک ارگانیسم مانند بیان پروتئینی که به طور معمول در آن ارگانیسم وجود ندارد استفاده شده‌است. علاوه بر کاربرد ژن‌های تراریخته در تحقیقات، DNA ژن تراریخته دارای بسیاری از کاربردهای پزشکی بالقوه است، از جمله ایجاد واکسن های مبتنی بر DNA و ژن درمانی.

ترانس‌ژنها همچنین برای بررسی رابطه بین ساختار و عملکرد یک مولکول مفید هستند. انتقال یک نسخه mutated از یک پروتئین که برای عدم داشتن یک دامنه خاص طراحی شده است می‌تواند نشان دهد که آیا این دامنه برای عملکرد ضروری است یا نه. ترانس‌ژنها نیز می‌توانند برای نابودی فنوتایپ‌ها استفاده شوند و بدین ترتیب ماهیت نقص اصلی را ارزیابی می‌کنند. به عنوان مثال، اگر یک جهش در یک فرایند تکاملی متوقف شود، از طریق بیان بیش از حد یک مولکول شناخته‌شده برای ترویج بقای سلولی نجات یافته، احتمال دارد که جهش اصلی پروتئین با نقش در بقا اثر گذارد. این پروتئین ممکن است کاملا متفاوت از محصول ترانس ژن باشد.

چرا تراریخته؟

براساس گزارش جهانی بحران غذا که در سال ۲۰۱۷ منتشر شد، در سال ۲۰۱۶، ۱۰۸میلیون نفر در ۴۸ کشور دچار نبود امنیت غذایی شدید بودند یا درمعرض خطر نبود امنیت غذایی قرار داشتند. تقریبا ۶۰درصد جمعیت گرسنه‌ی جهان در نوزده کشوری زندگی می‌کنند که با بحران‌های تغییرات اقلیمی مواجه هستند. جانداران دستکاری‌شده‌ی ژنتیکی (Genetically Modified Organism) یا جانداران مهندسی‌شده‌ی ژنتیکی (Genetically Engineered Organism) موجوداتی هستند که ساختار ژنتیکی‌شان به‌وسیله‌ی روش‌های مهندسی ژنتیک تغییر پیدا کرده‌ است. همچنین جمعیت جهان در سال ۲۰۱۷ به ۷.۶میلیارد نفر رسیده است و طبق گزارش سازمان‌ملل متحد در سال ۲۰۱۷، پیش‌بینی می‌شود این تعداد در سال ۲۰۳۰ به ۸.۶میلیارد نفر و در سال ۲۰۵۰ به ۹.۸میلیارد نفر و در سال ۲۱۰۰ به ۱۱میلیارد نفر برسد. سالانه تقریبا ۸۳میلیون نفر به جمعیت جهان اضافه می‌شود و تولید غذا برای تأمین نیاز جمعیت جهان باید ۷۰درصد افزایش یابد.

منابع:

Nass, R. and Przedborski, S. eds., 2011. Parkinson’s disease: molecular and therapeutic insights from model systems. Elsevier.

Mak, T.W. and Saunders, M.E., 2005. The immune response: basic and clinical principles. Academic Press.

تراریخته؛ آری یا خیر ؟! (قسمت دوم)