نوشته شده در

استرس اکسیداتیو در بیماری SLOS

سندروم Smith Lemli Opitz)  SLOS) یک بیماری نادر است و زمانی اتفاق می‌افتد که بیماران از هردو والد نقص ژنتیکی Dhcr7، که آخرین آنزیم را در مسیر بیوسنتز کلسترول (۷دهیدروکلسترول‌ردوکتاز) رمزگذاری می‌کند، ارث می‌برند. SLOS یک اختلال ژنتیکی آتوزوم مغلوب است و طیف  گسترده‌ای از بیماران SLOS دارای رفتارهای اختلالی طیف اوتیسم نیز (ASD) هستند.  این سندروم با خصوصیات مشخص چهره، اندازه سر کوچک (میکروسفالی)، ناتوانی ذهنی یا مشکلات یادگیری و مشکلات رفتاری مشخص می‌شود. ضایعات قلب، ریه‌ها، کلیه‌ها، دستگاه گوارش و تناسلی نیز ممکن است در این بیماری مشاهده شود.

طبق مطالعات می‌توان علائم آسیب اکسیداتیو را در SLOS مشاهده کرد بنابراین درمان‌ آنتی‌اکسیدانی در برخی از جمعیت‌ موش‌های دارای این نقص انجام شده است. برای نشان دادن عدم تعادل اکسیداتیو در SLOS  بیومارکرهای  پراکسیداسیون لیپید مورد ارزیابی قرار گرفت.مالون‌دی‌آلدهید MDA به طور معنی‌داری در موش‌های جهش‌یافته نسبت به گروه‌های کنترلی تغییر یافته بود. MDA  از اکسیداسیون اسید آراشیدونیک حاصل می‌شود. سطوح پایین MDA در موش‌های سالم کنترلی در طی استرس اکسیداتیو افزایش یافته و هم‌چنین میزان کمتری در موش‌های موتانت هترو نسبت به گروه کنترلی مشاهده می‌شود.

این الگو از اثرات، با اندازه‌گیری ایزوپروستان‌ها و نوروپروستان‌ها نیز تأیید شدند. ایزوپروستان‌ها نیز از اسید آراشیدونیک مشتق شده‌اند و بیومارکر خاص و پایدار آسیب اکسیداتیو محسوب می‌شوند.  تمامی مطالعات نتایج مشابهی نشان دادند. در این موش‌ها تفاوت بین ايزوپروستان‌ها وجود نداشت، اما افزایش قابل ملاحظه‌ای در میزان  نوروپروستان‌ها مشاهده شد. داده‌ها تغییرات در میزان استرس اکسیداتیو و ارتباط آن‌ها با میزان این بیومارکرها را تایید می‌کنند.  با این حال، مطالعات بیشتری باید بر روی مکانیزم آسیب اکسیداتیو بر روی SLOS مربوط به محصولات اکسید شده انجام گیرد.

داده‌ها نشان‌دهنده ارتباط بین استرس اکسیداتیو و میزان بیومارکر در SLOS است و مطالعات بیشتری باید برروی محیط اکسیداتیو و تاثیر آن بر عملکرد عصبی انجام بگیرد. اما این مساله اثبات شده‌است که آسیب اکسیداتیو در دوره‌ها و شرایط خاصی در بدن رخ می‌دهد و کاهش این آسیب‌ها می‌تواند بر سلامت عملکرد و رفتار عصبی تاثیرگذار باشد،  این مطالعات باید به صورت بالینی نیز آزمایش شود که در صورت تایید جهت جلوگیری از آسیب و کم کردن اثرات بیماری و هم‌چنین بهبود کیفیت زندگی بیماران کاربرد خواهند داشت.

 

منبع:

Sharif, N.F., Korade, Z., Porter, N.A. and Harrison, F.E., 2017. Oxidative stress, serotonergic changes and decreased ultrasonic vocalizations in a mouse model of Smith–Lemli–Opitz syndrome. Genes, Brain and Behavior.

نوشته شده در

نقش تیول پراکسیداز در S. pneumoniae

باکتری‌های Streptococcus pneumoniae از سطح بالایی از پراکسید هیدروژن (H202) با کمک تیول پراکسیداز (TpxD) دفاع می‌کنند.

محققان گزارش دادند كه P.pneumoniae فاقد پروتئین كاتالاز برای محافظت در برابر استرس اکسیداتیو است ، اما ژن tpxD در S.pneumoniae پروتئین TpxD عملکردی را درگیر در مهار H202 كد می‌كند.

محققان به رهبری نوریث پورات (مرکز پزشکی دانشگاه سوروکا ) ، گفتند که پنوموکوک در طی عفونت در معرض سطوح مختلف اکسیژن است. در مرحله رشد هوازی ، S.pneumoniae  مقدار بالایی از H202 تولید می‌کند که می‌تواند مرگ سلول را در غلظت‌های زیاد القا کند.

پورات و همكارانش در رابطه با عفونت و ايمونولوژي توضيح مي‌دهند كه برخي از آنزيم‌هاي كليدي كه در پاسخ اكسيداتيو نقش دارند، از جمله سوپراكسيد دیسموتاز ، NADH oxidase و alkyl hydroperoxidase به تفصيل شرح داده شده اند ، اما پاسخ كامل مشخص نيست.

در آزمایش اول ، این گروه نشان داد كه پروتئین TpxD فعالیت پراكسیداز را در خود دارد ، و TpxD نوترکیب كاهش H202 را كاتالیزه می‌كند.

در آزمایش‌های داخل بدن ، با این حال ، نشان داد که TpxD فقط بخشی از H202 تولید شده توسط پنوموکوک را سم زدایی می‌کند. در تجزیه و تحلیل طیف سنجی جرمی ، TpxD- سیستئین تحت شرایط مشابه در جایی که H202 تشکیل شده است ، “تأیید فعالیت تیول پراکسیداز” ، “اکسیداسیون انتخابی” را در داخل بدن و تحت شرایط اکسیداسیون انتخابی قرار می‌دهد.

بیان و سنتز در شرایط آزمایشگاهی TpxD در سلول‌های رشد یافته هوازی در مقایسه با سلول‌های رشد یافته بی هوازی به طور معنی داری افزایش یافت. محققان توضیح می‌دهند که محل psa  در pneumoniae  که یک کمپلکس ABC Mn2 + -permease psaBCA را در بالادست کدنویسی برای پراکسیداز تیول رمزگذاری می‌کند.

با نگاهی به رابطه بین سطح بیان psaBCA و tpxD ، مشخص شد که psaBCA در شرایط هوازی در مقابل شرایط بی‌هوازی و در پاسخ به H202 تنظیم می‌شود. هماهنگی psaBCA و tpxD در داخل بدن با مقایسه سطح بیان موش‌های آلوده ، با آزمایش نشان داد که یک رابطه معکوس در سطح بیان وجود دارد.

“گزارش ما نشان می‌دهد که اثر H202 در بیان psaBCA توسط TpxD واسطه می‌یابد.” “این ممکن است یکی از مؤلفه‌های استراتژی اساسی ارگانیسم برای تنظیم دقیق فرآیندهای سلولی در پاسخ به H202 باشد.”

 

منابع:

Yesilkaya, H., Andisi, V.F., Andrew, P.W. and Bijlsma, J.J., 2013. Streptococcus pneumoniae and reactive oxygen species: an unusual approach to living with radicals. Trends in microbiology21(4), pp.187-195.

Hajaj, B., Yesilkaya, H., Benisty, R., David, M., Andrew, P.W. and Porat, N., 2012. Thiol peroxidase is an important component of Streptococcus pneumoniae in oxygenated environments. Infection and immunity80(12), pp.4333-4343.

نوشته شده در

بیومارکر استرس اکسیداتیو، پروب فلورسنت مالون‌دی‌آلدهید در سلول‌های زنده

مالون‌دی‌آلدهید (MDA) بیومارکر مهمی در استرس اکسیداتیو محسوب می‌شود. تغییرات سطح MDA در سیستم‌های بیولوژیکی اغلب نشان‌دهنده تغییرات پاتولوژیک است که با انواع بیماری‌ها مرتبط است. اگرچه برای تشخیص MDA روش‌های مختلفی وجود دارد، این بیومارکر در سلول‌های زنده هنوز مورد بررسی قرار نگرفته است. در مطالعه‌ای، پروب فلورسنت روشن MDAP-1 را با مکانیسم انتقال پیوند الکترونی همراه کرده‌اند که برای اولین‌بار حساسیت MDA را تحت شرایط فیزیولوژیکی با حساسیت بالا نشان می‌دهد. ارزیابی‌های بیولوژیکی بیشتر نشان می‌دهد که MDAP-1 قادر به شناسایی MDA درونی و خارجی در سلول‌های زنده است که این موضوع می‌تواند برای ردیابی MDA تحت استرس اکسیداتیو کاربرد داشته باشد. این نتایج جهت مطالعات مربوط به رویدادهای بیولوژیک مرتبط با MDA و کشف مکانیزم آسیب شناختی در آینده مفید خواهد بود.
یک محصول جانبی پراکسیداسیون اسیدچرب اشباع نشده ناشی از ROS، مالون‌دی‌آلدهید (MDA) است که به عنوان یک بیومارکر استرس اکسیداتیو بررسی می‌شود. واکنش پذیری بالای MDA باعث سمی شدن آن شده که می‌تواند به راحتی با بیومولکول‌هایی مانند پروتئین‌ها و اسیدهای‌نوکئیک واکنش دهد. تغییرات سطح MDA در اندام‌های زنده اغلب نشان‌دهنده تغییرات پاتولوژیک و بروز بیماری‌های مختلف مانند لوسمی، دیابت، سرطان، بیماری قلبی عروقی، سندرم دائمی ماکولا، آسم، آترواسکلروز و بیماری‌های کبدی است بنابراين تشخيص MDA بسیار بااهمیت بوده تا مانع از پیشرفت بیماری و بررسی مکانیسم‌های پاتولوژیک گردد.

درحال حاضر روش‌های تشخیص MDA عبارتند از: تست تيوباربيتوريک اسيد TBA که به طور گسترده مورد استفاده قرار مي‌گيرد، تکنيک‌هاي تازه توسعه يافته عبارتند از کروماتوگرافي مايع، الکتروفورز، کروماتوگرافي گازي و طیف سنجی. با این حال، تقریبا تمام این روش‌ها با مشتقات شیمیایی نسبتا مضر و تحت شرایط سخت مانند اسیدیته قوی و یا درجه حرارت بالا انجام می‌گیرند، بنابراین فقط در نمونه های مایع بدن مانند سرم و ادرار قابل استفاده هستند. به همین دلیل نیاز بسیار شدید برای توسعه فلورسنت مولکول‌های کوچک، قابل نفوذ و بسیار انتخابی وجود دارد.

محققان اولین پروب فلورسنت MDA را که تحت شرایط فیزیولوژیکی کار می‌کند، گزارش کرده‌اند که برای بررسی MDA در سلول‌های زنده مناسب است. به طور خلاصه، یک پروب فلورسنت روشن (MDAP-1) برای MDA بر اساس مکانیسم پیوند الکترونی پیشنهاد شده است. MDAP-1 قادر به تشخیص MDA خارجی و درون سلولی در سلول‌های زنده است. هم‌چنین در تحقیق MDA تحت استرس اکسیداتیو قابل استفاده است. به طور کامل این اولین پروب فلورسنت برای MDA است که در شرایط فیزیولوژیکی کار می‌کند که می‌تواند برای مطالعات مربوط به رویدادهای بیولوژیک MDA مفید باشد

 

منبع:

Chen, J., Zeng, L., Xia, T., Li, S., Yan, T., Wu, S., Qiu, G. and Liu, Z., 2015. Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Analytical chemistry87(16), pp.8052-8056.

نوشته شده در

استرس اکسیداتیو در وقفه تنفسی

استرس اکسیداتیو مانع از وقفه تنفسی در خواب می‌شود؟

محققان می‌گویند ، وقفه تنفسی خواب ممکن است با افزایش بار اکسیداتیو همراه باشد.

این اطلاعات از آنجا که OSAS سندرم وقفه تنفسی  درخواب با عوارض قابل توجهی همراه است که شامل عوارض قلبی و عروقی نیز می‌شود ، مهم است ، بنابراین افزایش استرس اکسیداتیو ممکن است توضیحی مناسب برای رابطه بین OSAS و عوارض قلبی عروقی باشد.

آنها دریافتند که تغییرات یک شبه در کاهش گلوتاتیون و نسبت گلوتاتیون احیا (GSH) به گلوتاتیون اکسیده شده (GSH: GSSG) در بیماران مبتلا به OSAS شدید با افراد دارای اختلال خواب تفاوت معنی داری دارد.

این یافته ها می‌گوید: “یافته‌های ما نشان می‌دهد كه بیماران OSAS ، افزایش سطح GSH خود را در طی شب نسبت به گروه كنترل نشان داده‌اند.” “این ممکن است در دوره طبیعی OSAS از آنجا که پیشنهاد شده است که غلظت بالای GSH خون با طول عمر طولانی در حیوانات و انسان‌ها ارتباط دارد ، مهم باشد.”

18 بیمار مبتلا به OSAS شدید ، که به عنوان شاخص وقفه تنفسی (AHI)  بالای 30 سال تعریف شده بودند ، هیچ درمان قبلی برای OSAS دریافت نکرده بودند و عاری از عوارض جانبی شناخته شده برای افزایش استرس اکسیداتیو بودند.

بیماران مبتلا به OSAS و 13 فرد مبتلا به خروپف اولیه اما AHI زیر 5 سنجش شده با اسپیرومتری ، اکوکاردیوگرافی و مطالعه کامل پلی‌مونوگرافی قرار گرفتند. قبل و صبح روز بعد از پلی‌مونوگرافی ، نمونه خون برای ارزیابی نشانگرهای استرس اکسیداتیو جمع آوری شد.

این‌ها شامل نشانگرهای پراکسیداسیون لیپیدها و مواد واکنش پذیر اسید تیوباربیتوریک [TBARS] ، اکسیداسیون پروتئین (سطح کربونیل) و پراکسیداسیون  GSH نسبت GSSG به عنوان معیار سمیت سلولی ، تولید پراکسید اکسیژن (کاتالاز) و سوپر اکسید دیسموتاز مس و روی و ظرفیت آنتی اکسیدانی کل هستند.

شرکت کنندگان با و بدون OSAS قبل از پلی‌مونوگرافی سطح مشابهی از نشانگرهای استرس اکسیداتیو ارزیابی شده داشتند. اما در طول شب ، سطح GSH به طور متوسط ​​15٪ در بیماران مبتلا به OSAS کاهش یافته و به طور متوسط ​​63٪ در افراد فاقد OSAS افزایش یافته است. تغییر مشابهی برای نسبت GSH: GSSG مشاهده شد. این اختلافات هر دو معنی دار بود.

اما در تغییر یک شبه در سایر نشانگرهای استرس اکسیداتیو بین دو گروه تفاوت وجود نداشت. محققان خاطرنشان كردند كه تغييرات سطح نشانگرهاي زيستي با شاخص AHI ، برانگيختگي و عدم اشباع ارتباطي ندارد.

آنها گفتند: “مطالعه حاضر شواهدی را ارائه می‌دهد که نشان می‌دهد استرس اکسیداتیو یک شبه در بیماران OSAS حداقل در مسیر GSH / GSSG افزایش می‌یابد.”

 

منابع:

Gupta, V., Mo, L., Modi, R., Munnur, K., Nerlekar, N., Cameron, J., Seneviratne, S., Joosten, S., Hamilton, G. and Wong, D., 2018. Apnoea–Hypopnoea Index is a Better Predictor than Measures of Hypoxemic Burden for Significant Coronary Artery Plaque Burden in Obstructive Sleep Apnoea. Heart, Lung and Circulation27, p.S217.

 

Tang, T., Huang, Q., Liu, J., Zhou, X., Du, J., Wu, H. and Li, Z., 2019. Oxidative stress does not contribute to the release of proinflammatory cytokines through activating the Nod-like receptor protein 3 inflammasome in patients with obstructive sleep apnoea. Sleep and Breathing23(2), pp.535-542.

نوشته شده در

اپیتوپ مالون‌دی‌آلدهید، عامل موثر در التهاب کبدی

بیماری‌های مرتبط با رژیم غذایی مانند بیماری کبد چرب غیر الکلی (NAFLD)، دارای یک عنصر التهابی عمده هستند. با این حال، مسیرهای مولکولی مرتبط با رژیم غذایی که منجر به التهاب می‌شوند، ناشناخته است. در یک مطالعه جدید، دانشمندان مرکز تحقیقاتی CeMM دانشکده مولکولی آکادمی علوم اتریش و دانشگاه پزشکی وین، پروسه‌های التهابی مهمی را در بیماری NAFLD شناسایی کردند. علاوه بر این، مطالعه منتشر شده در Hepatology نشان می‌دهد که مالون‌دی‌آلدهید (MDA) بیومارکر استرس اکسیداتیو، نقش مهمی در بروز NAFLD دارد و می‌تواند توسط آنتی‌بادی‌های طبیعی خنثی شود که به عنوان یک رویکرد جدید در درمان بالقوه این بیماری شایع معرفی می‌شود.

ترکیبی از رژیم غذایی غلط و فقدان ورزش می‌تواند به مشکلات جدی سلامتی منجر شود: در سراسر جهان، موارد چاقی، فشار خون بالا یا مقاومت به انسولین در سطح هشداردهنده قرار دارند. در نتیجه، خطر ابتلا به بیماری‌های مرتبط با التهاب مانند دیابت نوع 2، NAFLD و بیماری‌های قلبی عروقی بر این اساس افزایش یافته است. با این حال، مسیرهای دقیق که عادات غذایی را با التهاب ناشی از آن پیوند دهند تاکنون به خوبی شناخته نشده است.

محققان تنها توانسته‌اند پروسه‌های زیست شناختی را که منجر به التهاب مزمن حاصل از رژیم غذایی غلط در موش‌ها بروز می‌کند را شناسایی کنند علاوه بر این، دانشمندان MDA را یک عامل کلیدی در التهاب کبدی می‌دانند که می‌تواند با آنتی‌بادی‌های طبیعی خنثی شود.

مالون‌دی‌آلدهید مولکول بسیار واکنشی، محصولی از تجزیه چربی و بیومارکر استرس اکسیداتیو است که بر روی سطح سلول‌های مرده در کبد تجمع می‌یابد. این مولکول به طور شیمیایی به پروتئین‌های غشایی و یا فسفولیپید‌ها متصل می‌شود و به این ترتیب اپیتوپ‌های MDA را تشکیل می‌دهد. گروه تحقیقاتی نشان داد که این اپیتوپ‌های MDA باعث ایجاد ترشح سیتوکین و همچنین استخراج لکوسیت‌ها می‌شود و در نتیجه باعث التهاب می‌گردد.

محققان نقش مهم این اپیتوپ‌های MDA را در التهاب کبدی ناشی از رژیم غذایی بررسی کرده‌اند. با تزریق داخل وریدی از یک آنتی بادی MDA خاص که به طور انتخابی به اپیتوپ‌های MDA متصل می‌شود، می‌توان التهاب را در موش‌ها بهبود بخشید. این مطالعه نشان می‌دهد که با بررسی توالی RNA و تجزیه و تحلیل بیوانفورماتیک داده‌های مربوط به ترجمه، مکانیزم‌های کلیدی در برخی از بیماری‌های شایع را می‌توان بررسی کرد که این یافته‌ها در مدل‌های موش تایید می‌کند که استفاده از آنتی‌بادی‌های خاص برای اپیتوپ‌های MDA یک رویکرد جدید امیدوار کننده برای توسعه استراتژی‌های درمانی می‌باشد.

 

 

منبع:

Busch, C.J.L., Hendrikx, T., Weismann, D., Jäckel, S., Walenbergh, S., Rendeiro, A.F., Weißer, J., Puhm, F., Hladik, A., Göderle, L. and Papac‐Milicevic, N., 2017. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology65(4), pp.1181-1195.

نوشته شده در

عصاره دارچین، عامل کاهش استرس اکسیداتیو در سندرم متابولیک

مطالعه جدید محققان نشان داده است که مصرف روزانه عصاره دارچین می‌تواند سطح آنتی‌اکسیدانی بدن را افزایش و در نتیجه استرس اکسیداتیو را در ارتباط با سندرم متابولیک کاهش دهد.

سندروم متابولیک حدود 32 درصد از بزرگسالان را تحت تاثیر قرار داده و با چاقی، فشار خون بالا و کاهش سوخت و ساز بدن با سنجش گلوکز و انسولین مشخص می‌شود. سندرم  متابولیک با افزایش خطر ابتلا به دیابت نوع 2 و بیماری قلبی‌عروقی همراه است.

محققان 24 نفر از افراد مبتلا به اختلال دیابتی و تحت استرس اکسیداتیو را مورد مطالعه قرار دادند. بیماران به دو گروه تصادفی  تقسیم شدند: گروه اول با دوز روزانه 500 میلی‌گرم عصاره دارچین و گروه دوم به مدت 12 هفته با داروی Placebo تیمار شدند.در نتیجه این مطالعه، محققان دریافتند که در گروه عصاره دارچین در مقایسه با گروه Placebo ، سطح آنتی‌اکسیدانی پلاسما به طور قابل توجهی افزایش یافته است، سطوح گونه فعال مرتبط با استرس اکسیداتیو مانند مالون‌دی‌آلدئید (MDA) نیز در گروه دارچین پایین‌تر بود، اما در بیماران تیمار شده با Placebo تغییری مشاهده نشد.

این مطالعه نشان می‌دهد که ترکیبات فعال موجود در عصاره دارچین ممکن است در کاهش خطر ابتلا به این بیماری‌ها به وسیله محافظت از سلول‌ها از اکسیداسیون مضر کمک کنند. افراد مبتلا به اختلال عملکرد انسولین در معرض خطر بیشتری از بیماری‌های مزمن تهدید کننده زندگی هستند، از جمله دیابت و بیماری‌های قلبی.

مطالعات حیوانی قبلی، مصرف روزانه عصاره دارچین را به تنظیم فشار خون، هم‌چنین سطح پایین گلوکز خون، تری‌گلیسیرید، کلسترول تام و LDL کلسترول مرتبط کرده است. امروزه دارچین به عنوان یک تنظیم کننده قند خون در میان افراد دیابتی استفاده می‌شود. دارچین بدن را از آسیب های اکسیدانتی محافظت کرده و گیاه کامل دارویی برای افراد دیابتی به شمار می‌رود

منابع:

Roussel, A.M., Hininger, I., Benaraba, R., Ziegenfuss, T.N. and Anderson, R.A., 2009. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. Journal of the American College of Nutrition28(1), pp.16-21.

Qin, B., Panickar, K.S. and Anderson, R.A., 2010. Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journal of diabetes science and technology4(3), pp.685-693.

Mang, B., Wolters, M., Schmitt, B., Kelb, K., Lichtinghagen, R., Stichtenoth, D.O. and Hahn, A., 2006. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. European journal of clinical investigation36(5), pp.340-344.

نوشته شده در

مزیت سنجش ظرفیت آنتی‌اکسیدانتی در گاوهای شیری

از جمله مهمترین مشکلات در مزارع پرورش گاو شیری در طی دوره انتقال (سه هفته قبل از زایش و سه هفته بعد از زایش)، کاهش مصرف ماده خشک، وضعیت توازن منفی انرژی و کاهش ظرفیت سازش‌پذیری گاو شیری در مقابل تغییرات فیزیولوژیکی است. در طی اواخر دوره‌ی آبستنی، نیازمندی‌های تغذیه‌ای جنین به طور قابل توجهی افزایش می‌یابد، در حالی که مصرف خوراک در سه هفته آخر آبستنی کاهش پیدا می‌کند. این کاهش می‌تواند ناشی از رشد جنین و کاهش سایز شکمبه باشد؛ بعلاوه، در طی این دوره تقریبا تمام گلوکز دریافتی برای سنتز لاکتوز مورد استفاده قرار می‌گیرد که ماحصل آن در طی دوره انتقالی گاو شیری، بالانس منفی انرژی است.
این بالانس منفی انرژی زمانی رخ می‌دهد که تقاضای انرژی بیش از میزان جیره دریافتی است و در مواردی که انرژی مورد نیاز بوسیله جیره تامین نمی‌شود، گاو شیری از ذخایر چربی خود بعنوان منبع انرژی استفاده خواهد کرد. بعلاوه، در طی دوره انتقالی، با توجه به اینکه فرایندهای متابولیکی افزایش می‌یابند، حساسیت گاوهای شیری به استرس متابولیکی بیشتر شده و منجر به افزایش تولید گونه‌های فعال اکسیژن (ROS) می‌گردد.
گونه‌های فعال اکسیژن، رادیکال‌های آزادی هستند که از فرایندهای متابولیک طبیعی حاصل می‌شوند و می‌توانند برای سلول‌های بدن مضر و مخرب باشند و منجر به آسیب سلول‌ها، بافت‌ها و DNA شوند. استفاده از آنتی‌اکسیدانت‌ها جهت مهار تشکیل رادیکال‌های آزاد، نابود کردن و یا ترمیم آسیب‌های ناشی از آنها می‌تواند موثر واقع شود. با این حال اگر عدم تعادلی میان آنتی اکسیدانت‌ها و گونه‌های فعال اکسیژن باشد، سیستم دفاع طبیعی بدن دچار اختلال می‌گردد. رادیکال‌های آزاد علاوه بر سرکوب سیستم ایمنی در بسیاری از بیماریها نیز نقش دارند. با این تفاسیر، در 10 روز اول بعد از زایمان، گاوهای شیری در معرض بیشترین میزان ابتلا به اختلالات عفونی و متابولیک می‌باشند. در واقع، با توجه به تحقیقات انجام گرفته توسط Abuelo و همکارانشان در سال ۲۰۱۴ حدود 75٪ از بیماری‌ها در ماه اول شیردهی رخ می‌دهد.
از عوارض بروز استرس متابولیک در گاوهای شیری می‌توان به موارد زیر اشاره کرد:
کبد چرب، کتوز، ورم پستان، باقی‌ماندن پرده‌های جنینی، کاهش تولید، خطر ابتلا به سرطان، بیماری قلبی عروقی، ریوی، بیماری کلیوی، بیماری‌های التهابی مانند آرتریت، شرایط عفونی و اختلالات عصبی.

چگونه سلامتی گاو شیری می‌تواند در طی دوره انتقالی مصون بماند؟

برای اطمینان از سلامتی حیوانات، و کاهش زیان‌های اقتصادی برای دامداران، گاو شیری باید از نظر ظرفیت آنتی اکسیدانی، به خصوص در دوران بارداری تحت نظارت و بررسی قرار گیرد، سیستم دفاع آنتی اکسیدانتی اجزای بسیار زیادی دارد که می‌توان از سنجش ظرفیت آنتی‌اکسیدانتی تام برای اطلاع از کل وضعیت آنتی‌اکسیدانتی استفاده کرد و ارزیابی مناسبی را از توانایی بدن برای مقابله با حمله رادیکال‌های آزاد انجام داد. جهت حصول اطمینان از مکمل‌های غذایی مورد نیازی که برای ایجاد شرایط بدنی مناسب در طول دوره انتقالی گاوهای شیری استفاده می‌شود، سنجش ظرفیت آنتی‌اکسیدانتی تام می‌تواند کمک کننده باشد.

منابع:

Abuelo A., Hernandez J. and Beneditor J.L (2014) The importance of oxidative status of dairy carrel in the periparturient period: revisiting antioxidant supplementation. Journal of Animal Physiology and Animal Nutrition. 99(6):1003-1016

Li, H. Q., et al. (2016) Effects of dietary supplements of rumen-protected folic acid on lactation performance, energy balance, blood parameters and reproductive performance in dairy cows. Animal Feed Science and Technology

نوشته شده در

استرس اکسیداتیو باعث پیری در سلول‌های RPE می‌شود

دژنراسیون سلولی مرتبط با سن (AMD) یکی از مهمترین دلایل کوری در افراد کهنسال محسوب می‌شود. این پدیده که هر دو چشم را درگیر می‌کند بوسیله آسیب دیدن رتینای میانی (ماکولا) ایجاد می‌شود. ماکولا در نور روز مسولیت دید رنگ‌ها را در انسان بر عهده دارد. بنابراین ضایعات ماکولا در انسان تاثیر بسیار مهمی در بینایی دارد.

مطالعات پیشین پیشنهاد کرده‌اند که تاثیرات استرس اکسیداتیو بر سلول‌های بینایی می‌تواند نقشی در بوجود آمدن AMD داشته باشند. استرس اکسیداتیو زمانی اتفاق می‌افتد که گونه‌های فعال اکسیژن (ROS) با پروتئین و DNA مداخله دارند. در این مطالعه نیز آریان و همکاران از هیدروژن پراکساید به عنوان یک ماده فعال استفاده کرده‌اند تا در سلول‌های رنگی اپیتلیال رتینای انسان، استرس اکسیداتیو ایجاد کنند. سلول‌های رنگی اپیتلیال رتینا وظیفه تغذیه سلول‌های رتینا را برعهده دارند. این استرس اکسیداتیو باعث پیشرفت زیادی در پیری سلول‌ها شد و از تقسیم آن‌ها جلوگیری نمود. این نتایج به قدرت اثبات می‌کند که استرس اکسیداتیو نقش بسیاری در توسعه AMD‌ در جمعیت کهنسال دارد. با وجود اینکه روش‌های مختلف برای سنجش ظرفیت تام آنتی‌اکسیدانتی معرفی شده است، مطالعات بیشتر در مورد نقش آنتی‌اکسیدانت‌ها احتمالا می‌تواند به عنوان یک راهکار درمانی برای AMD در قشر کهنسال مطرح گردد.

 

منبع:

Aryan, N., Betts-Obregon, B. S., Perry, G., & Tsin, A. T. (2016). Oxidative Stress Induces Senescence in Cultured RPE Cells. The Open Neurology Journal, 10, 83–87. http://doi.org/10.2174/1874205X01610010083

نوشته شده در

دفاع ایمنی بدون آسیب‌های جانبی

هنگامی که میکروب‌ها ناخواسته وارد بدن می‌شوند، گلبول‌های سفید خون وارد صحنه شده و شروع به مبارزه با آن‌ها می‌کنند. فرآیندی که در آن گلبول‌های سفید با مهاجمان به مبارزه می‌پردازند باید بسیار دقیق باشد، در غیر این صورت ممکن است بخش سالمی از بدن به وسیله یک نوع آسیب بیولوژیکال که بدن به خود وارد می‌کند، دچار آسیب گردد. محققان دانشگاه بازل سوئیس، نقش آنزیم مهمی را در این فرآیند کشف کرده‌اند که به گلبول‌های سفید خون اجازه می‌دهد تا با دقت بسیار بالا همانند یک تک تیرانداز ماهر به عوامل بیگانه حمله کنند.

این آنزیم میلو پراکسیداز (MPO) نام دارد و ظاهر سبزرنگی که در مناطق عفونی بدن مشاهده می‌شود ناشی از این ترکیب است. هنگامی که یک گلبول سفید خون به یک باکتری حمله می‌کند، پراکسید هیدروژن (H2O2) آزاد شده و MPO این ماده را به HOCL یا هیپوکلریک اسید تبدیل می‌کند، که مانند یک انفجار کوچک عمل کرده و باکتری‌ها را در شعاع کمتر از 1 میکرومتر از طریق ایجاد سوراخ‌هایی در آنها از بین می‌برد.

پروفسور Dirk Bumann، سرپرست این تیم تحقیقاتی، در این‌باره توضیح می‌دهد که: “باکتری‌ها در برابر این بمب اسیدی ابزاری جهت مقاومت ندارند و از آنجایی که هیپوکلریک اسید بسیار واکنش پذیر است، بلافاصله با نزدیکترین بیومولکول‌ها واکنش داده و فقط به صورت موضعی عمل کرده و به محیط‌های اطراف گسترش نمی‌یابد، در نتیجه باکتری‌ها از بین رفته و بافت‌های اطراف آن مصون مانده و آسیبی نمی‌بینند.”

اساسا MPO به عنوان یک سیستم کنترلی-مهاری عمل کرده تا پراکسید هیدروژن تبدیل شده، تنها در یک منطقه کوچک آزاد شود.

محققان برای پاسخ به این سوال که عدم وجود آنزیم میلوپراکسیداز در بدن می تواند چه عواقبی بدنبال داشته باشد؟ به بررسی سلولهای افرادی که این آنزیم را به دلیل ژنتیکی نداشتند، پرداختند. در این افراد، گلبول های سفید خون همچنان H2O2 را در مواجهه با یک عامل خارجی آزاد می‌کردند، اما این هیدروژن پراکسید هرگز به هیپوکلریک اسید تبدیل نمی‌شد که ماحصل آن کشته‌شدن باکتری‌ها بهمراه آسیب رسیدن به بافت‌های اطراف بود. Nina Khanna، بعنوان عضوی از این تیم تحقیقاتی می‌افزاید: ” آسیب همزمان به سلول‌های خونی و بافت‌ها بدون حضور MPO، ممکن است ناشی از عواقب درازمدت پیری زودرس و سرطان باشد اما هنوز به طور سیستماتیک مورد بررسی قرار نگرفته است.”

علاوه بر این، محققان دریافتند که آزاد شدن H2O2 در موش‌هایی که MPO را نداشتند و با سالمونلا آلوده شده بودند، سبب آسیب بافتی همراه با «تشدید آسیب‌های اکسیداتیو در لیپیدها و DNA» شده بود.

محققان می‌گویند این یافته‌ها می‌تواند به ایجاد استراتژی‌های جدید درمانی برای مبارزه با عفونت‌های باکتریایی کمک کند.

جهت مطالعه بیشتر می‌توانید به مقاله این تحقیق که در مجله nature microbiology به چاپ رسیده مراجعه نمایید.

منبع:

Schürmann N, Forrer P, Casse O, Li J, Felmy B, Burgener AV, Ehrenfeuchter N, Hardt WD, Recher M, Hess C, Tschan-Plessl A. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature microbiology. 2017 Jan 23;2:16268.

نوشته شده در

مهندسی ژنتیکی مخمر،‌روش جدید درمان استرس اکسیداتیو

بسیاری‌ از انواع استرس‌ها در سلول‌های دارای ژن HD (بیماری هانتینگتون) رخ می‌دهد و بررسی مکانیزم آن می‌تواند روش جدیدی را در جهت معرفی داروهای HD معرفی کند. در مطالعه جدید، مخمر برای تعیین این‌که کدام پروتئین می‌تواند این سلول‌ها را از آسیب و مرگ محافظت کند و کشف یک آنتی‌اکسیدان محافظ و یک داروی مرتبط بررسی شد.

ژن‌ها الگوی ساخت پروتئین‌ها در هر موجود زنده هستند که هر پروتئین نقش منحصر به فردی در سلول دارد.‌ ژنی که باعث بروز بیماری هانتینگتون می‌شود الگوی نادرست فولدینگ پروتئین را کد کرده و باعث بروز بیماری هانتینگتون می‌شود. مکانیسم این جهش به درستی مشخص نشده است اما حضور آن به سلول‌های مغزی آسیب می‌رساند.

بروز علایم HD و سایر اختلالات عصبی به صورت ناگهانی اتفاق می‌افتد، زیرا سلول‌های مغزی دارای مکانیسم‌های مبارزه با عوارض جانبی پروتئین‌های معیوب هستند. در حقیقت، برخی از مکانیسم‌های مولکولی به طور خاص جهت کمک به سلول‌ها برای محافظت در برابر اشتباهات ژنتیکی که باعث بیماری می‌شوند، ایجاد شده است. بنابراین، کدام بخش‌ مهمترین دفاع در برابر محیط سمی تولید شده توسط هانتینگتون جهش یافته ارائه می‌دهد؟ اگر محققان بتوانند مشخص کنند که کدام پروتئین‌ها به سلول‌ها کمک می‌کنند تا از مرگ سلولی در امان باشند، داروهای موثر برای تقویت دفاع سلولی معرفی می‌شود.

اما حتی ساده‌ترین سلول‌ها از هزاران پروتئین تشکیل شده‌است و این چالشی برای یافتن پروتئین موثر در این سیستم دفاعی است. اخیرا گروهی از محققین به مطالعه HD در سیستم بسیار ساده مخمر پرداختند. محققان می‌توانند قطعه کوچک از ژن HD انسان را به یک سلول مخمر وارد کنند تا مخمر بتواند پروتئین هانتینگتون جهش یافته تولید کند. سلول‌های مخمر تحت تاثیر ژن جهش یافته قرار گرفته و رشد این سلول‌ها را طی چند روز متوقف می‌کند. جهت بررسی مکانیسم تاثیرگذار در دفاع از مرگ سلولی جمعیت بزرگی از مخمرهای جهش‌یافته بررسی شدند و این آزمایش برای همه پروتئین‌های سلولی تکرار شد. اکثر گروه‌های مخمر دچار مرگ سلولی شدند اما برخی دیگر که دارای پروتئین اضافی بودند محافظت شدند.

محققین بیش از 300 پروتئین سرکوب کننده را کشف کردند که هنگام سنتز، مخمرها را از مرگ توسط هانتینگتون محافظت می‌کرد. آن‌ها از پایگاه‌های داده ژنتیکی و نرم‌افزار بررسی عملکرد پروتئین مخمر استفاده کردند تا مشخص شود کدام یک از آن‌ها مشابه پروتئین بدن است. یکی از قوی‌ترین پروتئین‌های سرکوب کننده، گلوتاتیون‌پراکسیداز1 یا Gpx1 نامیده می‌شود. از 300 پروتئین که به مخمرهای HD برای زنده‌مانی کمک کرد، Gpx1 نقش به‌سزایی داشته و می‌تواند به کاهش اثرات آنتی‌اکسیدانی کمک کند.

شواهد قوی وجود دارد که  نشان می‌دهد ROS در سلول‌های مغزی بیماران مبتلا به هانتینگتون افزایش می‌یابد. تاکنون، استراتژی‌های آنتی‌اکسیدانی برای درمان HD بسیار موثر بوده‌اند. بااین حال، Ebselen، که نقش پروتئین Gpx1 را تقلید می‌کند، نقش اندکی در مطالعات بالینی اولیه برای اختلالات سکته مغزی که در اثر افزایش تولید ROS به وجود آمده‌اند نشان می‌دهد.

مخمر دارای ژن HD زمانی‌که پروتئین آنتی‌اکسیدانی Gpx1 را دریافت می‌کند زنده‌مانی بهتری از خود نشان می‌دهد. اما چه موجودی نزدیکی سلولی بیشتری به انسان نسبت به مخمر دارد؟ مگس دارای ژن HD دارای مشکلات خواب و حرکت پروازی است و سلول‌های عصبی نور سنجی در چشمشان دچار اختلال می‌شود. زمانی‌که Gpx1 به صورت ژنتیکی به مگس‌های بیمار وارد شود، رفتار و سلول‌های عصبی آن‌ها بهبود می‌یابد. مگس های تیمارشده با Ebselen پیشرفت بیشتری را در بهبودی نشان می‌دهند. افزایش مقدار Gpx1 و یا تیمار با Ebselen سلول‌های موش را از افزایش مقدار ROS و دیگر مولکول‌های مضر محافظت می‌کند.

این‌ها یافته‌های هیجان انگیزی است، اما اگر آنتی‌اکسیدان‌های دیگر در مدل‌های حیوانی و آزمایش‌های بالینی HD بی‌اثر باشند، چرا Gpx1 یا Ebselen تاثیرگذارند؟ یک دلیل برای شکست درمان‌های آنتی‌اکسیدانی این است که آن‌ها با روش‌های متفاوت از سلول‌های مغزی HD عمل می‌کنند.

واقعیت این است که Gpx1 و Ebselen به بهبود تقریبی ​​در مخمر، سلول‌های موش و مگس منجر شده‌است اما به این معنی نیست که Ebselen آماده آزمایش‌های بالینی در HD است زیرا مطالعات نشان نمی‌دهند که آیا این ماده بر بهبود مستقیم سلول‌های مغزی تاثیرگذار هستند یا نه؟ با این وجود این دارو نقش محافظتی یک پروتئین آنتی‌اکسیدان را تقلید می‌کند و می‌تواند گام مهمی در درمان‌های مبتنی بر Ebselen باشد.

یکی از نتایج مهم این مطالعه که با استفاده از یک ارگانیسم ساده انجام شده است، معرفی 300 پروتئین است که احتمالا در حفاظت سلولی در HD نقش دارند. هم‌چنین مطالعات بیشتر نشان داد برخی از پروتئین‌ها به صورت تعاونی عمل کرده و در یک شبکه مشترک به رغم حضور ژن معیوب باعث زنده‌مانی بیشتر سلول می‌شوند.

 

منابع:

Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S.C. and Muchowski, P.J., 2005. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington’s disease. Nature genetics37(5), p.526.

Bates, G.P., MacDonald, M.E., Baxendale, S., Sedlacek, Z., Youngman, S., Romano, D., Whaley, W.L., Allitto, B.A., Poustka, A., Gusella, J.F. and Lehrach, H., 1990. A yeast artificial chromosome telomere clone spanning a possible location of the Huntington disease gene. American journal of human genetics46(4), p.762.

Mason, R.P. and Giorgini, F., 2011. Modeling Huntington disease in yeast: perspectives and future directions. Prion5(4), pp.269-276.

نوشته شده در

استرس اکسیداتیو در بیماری‌های دژنراتیو عصبی [یادداشت]

استرس اکسیداتیو و آسیب میتوکندریایی در پاتوژنز برخی بیماری‌های عصبی، از جمله آلزایمر، پارکینسون و اسکلروز جانبی آمیوتروفیک دخیل است. استرس اکسیداتیو با تولید بیش از حد گونه‌های فعال اکسیژن شناخته می‌شود که می‌تواند جهش در DNA میتوکندری را القا نماید یا منجر به اختلال در زنجیره تنفسی میتوکندری، تغییر در میزان نفوذپذیری غشا و سیستم های دفاع میتوکندری شود. سلول های مغزی ما بوسیله میتوکندری تامین انرژی می شوند و گونه های فعال اکسیژن، به عنوان محصولی از متابولیسم طبیعی اکسیژن در این اندامک ها می توانند منجر به مرگ سلول های عصبی شوند. تمامی این تغییرات در تکامل این بیماری های عصبی نقش داشته و سبب اختلال در عملکرد نورونها و دژنراسیون آن ها می‌گردد.

نوشته شده در

رادیکال‌های آزاد مفیدند!

مطالعه جدیدی انجام شده که سوالات جالبی در مورد یکی از نظریه‌های پیری (افزایش تولید رادیکال‌های آزاد) مطرح می‌کند.

این مطالعه نشان داده است که حداقل برای کرم‌ها، رادیکال‌های آزاد مضر نیستند. در کرم C.elegans که از باکتری‌ها برای تغذیه استفاده می‌کند، تغییرات ژنتیکی در جهت افزایش سطوح رادیکال‌های آزاد عمل می‌کنند و نه‌تنها تحدیدی برای زندگی این کرم محسوب نمی‌شود بلکه باعث افزایش طول عمر این جاندار است. ویتامین C به عنوان یک آنتی‌اکسیدانت باعث ایجاد آسیب در کرم شده و سم پاراکوات -که اثرات خود را به‌واسطه افزایش رادیکال‌های آزاد اعمال می‌کند باعث رشد بهتر این کرم می‌شود. این کرم در حضور پاراکوات بیشتر عمر می‌کند و این مساله تا حدی جدی شده است که در کشورهای عضو اتحادیه اروپا استفاده از این سم ممنوع شده است.

رادیکال‌های آزاد مولکول‌هایی هستند که در بدن انسان طی فرآوری اکسیژن تولید می‌شوند. بسیاری از پستانداران برای ادامه حیات اکسیژن مصرف می‌کنند و به عنوان یک فرآورده فرعی رادیکال‌های آزاد تولید می‌کنند که ممکن است برای سلول‌ها مضر باشد. به این فرآیند استرس اکسیداتیو گفته می‌شود، که فرآیندی تجزیه‌کننده در سلول است. این‌ها همه دلایلی برای تبدیل عبارت «استرس اکسیداتیو» به یک زنگ خطر در پزشکی و طب مکمل شده است.

یکی از تئوری‌های معروف پیری عنوان می‌کند که در طی پیشرفت عمر، تولید رادیکال‌های آزاد افزایش می‌یابد که در نتیجه باعث افزایش صدمات سلولی می‌شود که در یک چرخه‌ی معیوب دوباره خود باعث افزایش رادیکال‌های آزاد می‌شود. مصرف آنتی‌اکسیدانت‌های تغذیه‌ای می‌تواند به معکوس کردن این چرخه کمک کند.

دکتر سیگفراید هِکیمی، پژوهشگر بخش زیست‌شناسی دانشگاه مک‌گیل می‌گوید: این یافته‌ها فهم ما از نقش رادیکال‌های آزاد در پیری را به چالش می‌کشد. این تئوری بسیار ساده و منطقی است، اما یافته‌های ما نشان می‌دهد که چارچوب متفاوتی در خصوص ارتباط استرس اکسیداتیو و پیری وجود دارد. مطالعات بیشتری برای درک این چارچوب مورد نیاز است. رادیکال‌های آزاد قطعا در این فرآیند دخیل هستند اما ممکن است این دخالت در مسیری متفاوت از آنچه همه متصور هستند اتفاق می‌افتد.

 

یادداشت: ممکن است پدیده Hormesis یا انطباق که قبلا راجع به آن مطلبی نوشته‌ایم در این فرآیند تاثیر داشته باشد.

 

منبع:

 

Van Raamsdonk JM, Hekimi S (2009) Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans. PLoS Genet 5(2): e1000361. https://doi.org/10.1371/journal.pgen.1000361