نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو و سرکوب تومور

مطالعه‌ی جدیدی در شماره فوریه مجله سرطان سلول ( Journal of Cancer Cell) منتشر شده است که نشان می‌دهد P38-آلفا  MAPK در حضور استرس اکسیداتیو فعال شده و باعث مهار تشکیل تومور می‌شود. این مطالعه رویکرد جدیدی را در مطالعه‌ی مکانیسم‌های خاصی که منجر به سرکوب سرطان می‌شوند، فراهم می‌سازد. شناسایی این مکانیسم‌ها برای توسعه داروهای ضد سرطان جدید مناسب خواهد بود.

P38-آلفا MAPK یک پروتئین نشانگر است که نقش مهمی در هماهنگی پاسخ‌های سلولی به استرس، از جمله استرس اکسیداتیو (که توسط افزایش تجمع گونه های اکسیژن فعال (ROS) در داخل سلول ایجاد می‌شود) دارد با این وجود هنوز مسیر‌ فعالیت P38-آلفا MAPK و مکانیسم‌های درگیر که در سرکوب سرطان نقش دارند به خوبی شناخته نشده‌اند. دکتر  نِبرادا از مرکز ملی سرطان اسپانیادر مادرید و همکارانش با مطالعه‌ی تغییرات بدخیمی که در سلول‌های موش های فاقد P38-آلفا نسبت به موش‌های گروه کنترل ایجاد شده بود به اهمیت مطالعه‌ی P38 -آلفا در سرکوب تومور پی بردند. کمبود P38-آلفا باعث افزایش تکثیرسلولی، مرگ سلولی از طریق آپوپتوز و افزایش تغییرات بدخیم در سلول می‌شوند. محققان مشاهده کردند که سطح ROS در سلول‌های فاقد P38-آلفا، نسبت به سلول‌های کنترل بسیار بالا است و علاوه بر این ، فعال شدن P38-آلفا در اثرROS در سلول‌های کنترل، آپوپتوز را تحریک می‌کند.در حالی که سلول‌های فاقد P38-آلفا به آپوپتوز ناشی از ROS مقاوم هستند. محققان یافته‌‌هایی به دست آوردند که از لحاظ بالینی بسیار اهمیت داشتند. آن‌ها با بررسی چند رده سلول سرطانی انسان مشاهده کردند که افزایش سطح ROS باپتانسیل تومورزایی در ارتباط هست. دانشمندان پیشنهاد می‌کنند که ممکن است سلول‌های سرطانی برای رهایی از سرکوب تومور، عملکرد P38-آلفا را از طریق کاهش حساسیت به استرس اکسیداتیو کم می‌کنند. در واقع بسیاری از سلول‌های تومور سبب افزایش بیان پروتیئن GST (پروتئین گلوتاتیون- اس- ترانسفراز) می‌شوند که این پروتیئن نیز مانع از فعال‌سازی P38-آلفا توسط ROs می‌گردد. بیان کاهش GST در سلول‌های سرطانی با افزایش فعالیت P38 -آلفا و آپوپتوز همراه است در حالی که افزایش بیان GST منجر به کاهش فعالیت P38 –آلفا، سطوح بالای ROS، و افزایش بدخیمی سلول‌های سرطانی می‌شود. روی هم رفته یافته‌ها نشان می‌دهد که P38-آلفا نقش مهمی در تنظیم منفی تشکیل تومور در پاسخ به انکوژن ناشی از ROS با تحریک آپوپتوز دارد و سلول‌های سرطانی ممکن است از این سیستم حفاظتی با جدا کردن ROS از P38-آلفا  فرار کنند! نتایج، مکانیسم‌های استفاده شده در مسیر‌های سرکوب تومور به وسیله‌ی سلول‌های سرطانی را نشان می‌دهد و پیشنهاد می‌کند که بازگرداندن فعالیت P38-آلفا ناشی از ROS برای مثال با هدف قرار دادن پروتیئن GST ممکن است یک راه درمانی بالقوه در سرکوب تومور باشد.

منبع :

Dolado et al.: “p38-alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis.” Publishing in Cancer Cell 11, 191-205, February 2007. DOI 10.1016/j.ccr.2006.12.013

 

نوشته شده در دیدگاه‌تان را بنویسید

مزیت سنجش ظرفیت آنتی‌اکسیدانتی در گاوهای شیری

از جمله مهمترین مشکلات در مزارع پرورش گاو شیری در طی دوره انتقال (سه هفته قبل از زایش و سه هفته بعد از زایش)، کاهش مصرف ماده خشک، وضعیت توازن منفی انرژی و کاهش ظرفیت سازش‌پذیری گاو شیری در مقابل تغییرات فیزیولوژیکی است. در طی اواخر دوره‌ی آبستنی، نیازمندی‌های تغذیه‌ای جنین به طور قابل توجهی افزایش می‌یابد، در حالی که مصرف خوراک در سه هفته آخر آبستنی کاهش پیدا می‌کند. این کاهش می‌تواند ناشی از رشد جنین و کاهش سایز شکمبه باشد؛ بعلاوه، در طی این دوره تقریبا تمام گلوکز دریافتی برای سنتز لاکتوز مورد استفاده قرار می‌گیرد که ماحصل آن در طی دوره انتقالی گاو شیری، بالانس منفی انرژی است.
این بالانس منفی انرژی زمانی رخ می‌دهد که تقاضای انرژی بیش از میزان جیره دریافتی است و در مواردی که انرژی مورد نیاز بوسیله جیره تامین نمی‌شود، گاو شیری از ذخایر چربی خود بعنوان منبع انرژی استفاده خواهد کرد. بعلاوه، در طی دوره انتقالی، با توجه به اینکه فرایندهای متابولیکی افزایش می‌یابند، حساسیت گاوهای شیری به استرس متابولیکی بیشتر شده و منجر به افزایش تولید گونه‌های فعال اکسیژن (ROS) می‌گردد.
گونه‌های فعال اکسیژن، رادیکال‌های آزادی هستند که از فرایندهای متابولیک طبیعی حاصل می‌شوند و می‌توانند برای سلول‌های بدن مضر و مخرب باشند و منجر به آسیب سلول‌ها، بافت‌ها و DNA شوند. استفاده از آنتی‌اکسیدانت‌ها جهت مهار تشکیل رادیکال‌های آزاد، نابود کردن و یا ترمیم آسیب‌های ناشی از آنها می‌تواند موثر واقع شود. با این حال اگر عدم تعادلی میان آنتی اکسیدانت‌ها و گونه‌های فعال اکسیژن باشد، سیستم دفاع طبیعی بدن دچار اختلال می‌گردد. رادیکال‌های آزاد علاوه بر سرکوب سیستم ایمنی در بسیاری از بیماریها نیز نقش دارند. با این تفاسیر، در 10 روز اول بعد از زایمان، گاوهای شیری در معرض بیشترین میزان ابتلا به اختلالات عفونی و متابولیک می‌باشند. در واقع، با توجه به تحقیقات انجام گرفته توسط Abuelo و همکارانشان در سال ۲۰۱۴ حدود 75٪ از بیماری‌ها در ماه اول شیردهی رخ می‌دهد.
از عوارض بروز استرس متابولیک در گاوهای شیری می‌توان به موارد زیر اشاره کرد:
کبد چرب، کتوز، ورم پستان، باقی‌ماندن پرده‌های جنینی، کاهش تولید، خطر ابتلا به سرطان، بیماری قلبی عروقی، ریوی، بیماری کلیوی، بیماری‌های التهابی مانند آرتریت، شرایط عفونی و اختلالات عصبی.

چگونه سلامتی گاو شیری می‌تواند در طی دوره انتقالی مصون بماند؟

برای اطمینان از سلامتی حیوانات، و کاهش زیان‌های اقتصادی برای دامداران، گاو شیری باید از نظر ظرفیت آنتی اکسیدانی، به خصوص در دوران بارداری تحت نظارت و بررسی قرار گیرد، سیستم دفاع آنتی اکسیدانتی اجزای بسیار زیادی دارد که می‌توان از سنجش ظرفیت آنتی‌اکسیدانتی تام برای اطلاع از کل وضعیت آنتی‌اکسیدانتی استفاده کرد و ارزیابی مناسبی را از توانایی بدن برای مقابله با حمله رادیکال‌های آزاد انجام داد. جهت حصول اطمینان از مکمل‌های غذایی مورد نیازی که برای ایجاد شرایط بدنی مناسب در طول دوره انتقالی گاوهای شیری استفاده می‌شود، سنجش ظرفیت آنتی‌اکسیدانتی تام می‌تواند کمک کننده باشد.

منابع:

Abuelo A., Hernandez J. and Beneditor J.L (2014) The importance of oxidative status of dairy carrel in the periparturient period: revisiting antioxidant supplementation. Journal of Animal Physiology and Animal Nutrition. 99(6):1003-1016

Li, H. Q., et al. (2016) Effects of dietary supplements of rumen-protected folic acid on lactation performance, energy balance, blood parameters and reproductive performance in dairy cows. Animal Feed Science and Technology

نوشته شده در دیدگاه‌تان را بنویسید

دفاع ایمنی بدون آسیب‌های جانبی

هنگامی که میکروب‌ها ناخواسته وارد بدن می‌شوند، گلبول‌های سفید خون وارد صحنه شده و شروع به مبارزه با آن‌ها می‌کنند. فرآیندی که در آن گلبول‌های سفید با مهاجمان به مبارزه می‌پردازند باید بسیار دقیق باشد، در غیر این صورت ممکن است بخش سالمی از بدن به وسیله یک نوع آسیب بیولوژیکال که بدن به خود وارد می‌کند، دچار آسیب گردد. محققان دانشگاه بازل سوئیس، نقش آنزیم مهمی را در این فرآیند کشف کرده‌اند که به گلبول‌های سفید خون اجازه می‌دهد تا با دقت بسیار بالا همانند یک تک تیرانداز ماهر به عوامل بیگانه حمله کنند.

این آنزیم میلو پراکسیداز (MPO) نام دارد و ظاهر سبزرنگی که در مناطق عفونی بدن مشاهده می‌شود ناشی از این ترکیب است. هنگامی که یک گلبول سفید خون به یک باکتری حمله می‌کند، پراکسید هیدروژن (H2O2) آزاد شده و MPO این ماده را به HOCL یا هیپوکلریک اسید تبدیل می‌کند، که مانند یک انفجار کوچک عمل کرده و باکتری‌ها را در شعاع کمتر از 1 میکرومتر از طریق ایجاد سوراخ‌هایی در آنها از بین می‌برد.

پروفسور Dirk Bumann، سرپرست این تیم تحقیقاتی، در این‌باره توضیح می‌دهد که: “باکتری‌ها در برابر این بمب اسیدی ابزاری جهت مقاومت ندارند و از آنجایی که هیپوکلریک اسید بسیار واکنش پذیر است، بلافاصله با نزدیکترین بیومولکول‌ها واکنش داده و فقط به صورت موضعی عمل کرده و به محیط‌های اطراف گسترش نمی‌یابد، در نتیجه باکتری‌ها از بین رفته و بافت‌های اطراف آن مصون مانده و آسیبی نمی‌بینند.”

اساسا MPO به عنوان یک سیستم کنترلی-مهاری عمل کرده تا پراکسید هیدروژن تبدیل شده، تنها در یک منطقه کوچک آزاد شود.

محققان برای پاسخ به این سوال که عدم وجود آنزیم میلوپراکسیداز در بدن می تواند چه عواقبی بدنبال داشته باشد؟ به بررسی سلولهای افرادی که این آنزیم را به دلیل ژنتیکی نداشتند، پرداختند. در این افراد، گلبول های سفید خون همچنان H2O2 را در مواجهه با یک عامل خارجی آزاد می‌کردند، اما این هیدروژن پراکسید هرگز به هیپوکلریک اسید تبدیل نمی‌شد که ماحصل آن کشته‌شدن باکتری‌ها بهمراه آسیب رسیدن به بافت‌های اطراف بود. Nina Khanna، بعنوان عضوی از این تیم تحقیقاتی می‌افزاید: ” آسیب همزمان به سلول‌های خونی و بافت‌ها بدون حضور MPO، ممکن است ناشی از عواقب درازمدت پیری زودرس و سرطان باشد اما هنوز به طور سیستماتیک مورد بررسی قرار نگرفته است.”

علاوه بر این، محققان دریافتند که آزاد شدن H2O2 در موش‌هایی که MPO را نداشتند و با سالمونلا آلوده شده بودند، سبب آسیب بافتی همراه با «تشدید آسیب‌های اکسیداتیو در لیپیدها و DNA» شده بود.

محققان می‌گویند این یافته‌ها می‌تواند به ایجاد استراتژی‌های جدید درمانی برای مبارزه با عفونت‌های باکتریایی کمک کند.

جهت مطالعه بیشتر می‌توانید به مقاله این تحقیق که در مجله nature microbiology به چاپ رسیده مراجعه نمایید.

منبع:

Schürmann N, Forrer P, Casse O, Li J, Felmy B, Burgener AV, Ehrenfeuchter N, Hardt WD, Recher M, Hess C, Tschan-Plessl A. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature microbiology. 2017 Jan 23;2:16268.

نوشته شده در دیدگاه‌تان را بنویسید

رادیکال‌های آزاد مفیدند!

مطالعه جدیدی انجام شده که سوالات جالبی در مورد یکی از نظریه‌های پیری (افزایش تولید رادیکال‌های آزاد) مطرح می‌کند.

این مطالعه نشان داده است که حداقل برای کرم‌ها، رادیکال‌های آزاد مضر نیستند. در کرم C.elegans که از باکتری‌ها برای تغذیه استفاده می‌کند، تغییرات ژنتیکی در جهت افزایش سطوح رادیکال‌های آزاد عمل می‌کنند و نه‌تنها تحدیدی برای زندگی این کرم محسوب نمی‌شود بلکه باعث افزایش طول عمر این جاندار است. ویتامین C به عنوان یک آنتی‌اکسیدانت باعث ایجاد آسیب در کرم شده و سم پاراکوات -که اثرات خود را به‌واسطه افزایش رادیکال‌های آزاد اعمال می‌کند باعث رشد بهتر این کرم می‌شود. این کرم در حضور پاراکوات بیشتر عمر می‌کند و این مساله تا حدی جدی شده است که در کشورهای عضو اتحادیه اروپا استفاده از این سم ممنوع شده است.

رادیکال‌های آزاد مولکول‌هایی هستند که در بدن انسان طی فرآوری اکسیژن تولید می‌شوند. بسیاری از پستانداران برای ادامه حیات اکسیژن مصرف می‌کنند و به عنوان یک فرآورده فرعی رادیکال‌های آزاد تولید می‌کنند که ممکن است برای سلول‌ها مضر باشد. به این فرآیند استرس اکسیداتیو گفته می‌شود، که فرآیندی تجزیه‌کننده در سلول است. این‌ها همه دلایلی برای تبدیل عبارت «استرس اکسیداتیو» به یک زنگ خطر در پزشکی و طب مکمل شده است.

یکی از تئوری‌های معروف پیری عنوان می‌کند که در طی پیشرفت عمر، تولید رادیکال‌های آزاد افزایش می‌یابد که در نتیجه باعث افزایش صدمات سلولی می‌شود که در یک چرخه‌ی معیوب دوباره خود باعث افزایش رادیکال‌های آزاد می‌شود. مصرف آنتی‌اکسیدانت‌های تغذیه‌ای می‌تواند به معکوس کردن این چرخه کمک کند.

دکتر سیگفراید هِکیمی، پژوهشگر بخش زیست‌شناسی دانشگاه مک‌گیل می‌گوید: این یافته‌ها فهم ما از نقش رادیکال‌های آزاد در پیری را به چالش می‌کشد. این تئوری بسیار ساده و منطقی است، اما یافته‌های ما نشان می‌دهد که چارچوب متفاوتی در خصوص ارتباط استرس اکسیداتیو و پیری وجود دارد. مطالعات بیشتری برای درک این چارچوب مورد نیاز است. رادیکال‌های آزاد قطعا در این فرآیند دخیل هستند اما ممکن است این دخالت در مسیری متفاوت از آنچه همه متصور هستند اتفاق می‌افتد.

 

یادداشت: ممکن است پدیده Hormesis یا انطباق که قبلا راجع به آن مطلبی نوشته‌ایم در این فرآیند تاثیر داشته باشد.

 

منبع:

 

Van Raamsdonk JM, Hekimi S (2009) Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans. PLoS Genet 5(2): e1000361. https://doi.org/10.1371/journal.pgen.1000361

نوشته شده در دیدگاه‌تان را بنویسید

راهی برای جلوگیری از آلزایمر

محققان معتقدند که یک ساختار پروتئینی به نام آمیلوئید بتا، عامل اصلی آسیب عصبی در بیماری آلزایمر است.
مطالعه‌ای در دانشگاه کالیفرنیا سان دیگو که در مجله Journal of Biological Chemistry به چاپ رسیده، نشان می‌دهد که آمیلوئید بتا یکی از پروتئین‌های آنتی‌اکسیدانتی مغز را مختل می‌کند، همچنین در این مطالعه راهی برای محافظت از اثرات مضر آمیلوئید بر روی پروتئین‌های آنتی اکسیدانتی پیشنهاد شده است.
پروفسور جری یانگ در این رابطه می‌گوید: به نظر می‌رسد آمیلوئید، سبب آسیب به سلول‌ها می‌شود. در مطالعه حاضر شیوه بسیار دقیقی از یک فعل و انفعال بالقوه، در رابطه با اینکه آمیلوئید چطور می‌تواند باعث ایجاد بیماری شود و راه مقابله با آن چیست را پیدا کردیم.
این مطالعه بر روی کاتالاز (آنزیمی که اکسیدانت‌های اضافی را از بین می‌برد) تمرکز داشته، زیرا کاتالاز به طور معمول به جلوگیری از آسیب مغزی در بیماران مبتلا به آلزایمر کمک می‌کند و در مطالعات قبلی نشان داده شده که پروتئین‌های کاتالاز در پلاک‌های آمیلوئیدی ذخیره می‌شوند.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

لیلا حبیب، دانشجوی کارشناسی ارشد مهندسی زیستی و نویسنده نخست این مقاله می‌افزاید: در این مطالعه، آمیلوئید به محیط کشت سلول‌های عصبی اضافه شد و اثرات آن مورد بررسی قرار گرفت. وی گفت: ما توانستیم تعامل میان بتا آمیلوئید و کاتالاز را ارزیابی کرده و به این نتیجه برسیم که در این بین، عملکرد فیزیولوژیکی کاتالاز دچار اختلال شده و تبدیل پراکسید هیدروژن به اکسیژن و آب به درستی صورت نمی‌پذیرد.
این محققان جهت جلوگیری از تعامل آمیلوئید با دیگر پروتئین‌ها، اقدام به پوشاندن آمیلوئید توسط مولکول‌های کوچکی کردند و توانستند فعالیت کاتالاز و پراکسید هیدروژن درون سلول‌ها را به سطوح نرمال بازگردانند. این پوشش که محققان برای بررسی اثر متقابل آمیلوئید و کاتالاز استفاده کردند، نامزدی برای پیدایش یک داروست که در آزمایشگاه پروفسور یانگ توسعه یافته است.

 

منبع:

Habib, Lila K., Michelle TC Lee, and Jerry Yang. “Inhibitors of catalase-amyloid interactions protect cells from β-amyloid-induced oxidative stress and toxicity.” Journal of Biological Chemistry 285.50 (2010): 38933-38943.

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری SLOS

سندروم Smith Lemli Opitz)  SLOS) یک بیماری نادر است و زمانی اتفاق می‌افتد که بیماران از هردو والد نقص ژنتیکی Dhcr7، که آخرین آنزیم را در مسیر بیوسنتز کلسترول (۷دهیدروکلسترول‌ردوکتاز) رمزگذاری می‌کند، ارث می‌برند. SLOS یک اختلال ژنتیکی آتوزوم مغلوب است و طیف  گسترده‌ای از بیماران SLOS دارای رفتارهای اختلالی طیف اوتیسم نیز (ASD) هستند.  این سندروم با خصوصیات مشخص چهره، اندازه سر کوچک (میکروسفالی)، ناتوانی ذهنی یا مشکلات یادگیری و مشکلات رفتاری مشخص می‌شود. ضایعات قلب، ریه‌ها، کلیه‌ها، دستگاه گوارش و تناسلی نیز ممکن است در این بیماری مشاهده شود.

طبق مطالعات می‌توان علائم آسیب اکسیداتیو را در SLOS مشاهده کرد بنابراین درمان‌ آنتی‌اکسیدانی در برخی از جمعیت‌ موش‌های دارای این نقص انجام شده است. برای نشان دادن عدم تعادل اکسیداتیو در SLOS  بیومارکرهای  پراکسیداسیون لیپید مورد ارزیابی قرار گرفت.مالون‌دی‌آلدهید MDA به طور معنی‌داری در موش‌های جهش‌یافته نسبت به گروه‌های کنترلی تغییر یافته بود. MDA  از اکسیداسیون اسید آراشیدونیک حاصل می‌شود. سطوح پایین MDA در موش‌های سالم کنترلی در طی استرس اکسیداتیو افزایش یافته و هم‌چنین میزان کمتری در موش‌های موتانت هترو نسبت به گروه کنترلی مشاهده می‌شود.

این الگو از اثرات، با اندازه‌گیری ایزوپروستان‌ها و نوروپروستان‌ها نیز تأیید شدند. ایزوپروستان‌ها نیز از اسید آراشیدونیک مشتق شده‌اند و بیومارکر خاص و پایدار آسیب اکسیداتیو محسوب می‌شوند.  تمامی مطالعات نتایج مشابهی نشان دادند. در این موش‌ها تفاوت بین ايزوپروستان‌ها وجود نداشت، اما افزایش قابل ملاحظه‌ای در میزان  نوروپروستان‌ها مشاهده شد. داده‌ها تغییرات در میزان استرس اکسیداتیو و ارتباط آن‌ها با میزان این بیومارکرها را تایید می‌کنند.  با این حال، مطالعات بیشتری باید بر روی مکانیزم آسیب اکسیداتیو بر روی SLOS مربوط به محصولات اکسید شده انجام گیرد.

داده‌ها نشان‌دهنده ارتباط بین استرس اکسیداتیو و میزان بیومارکر در SLOS است و مطالعات بیشتری باید برروی محیط اکسیداتیو و تاثیر آن بر عملکرد عصبی انجام بگیرد. اما این مساله اثبات شده‌است که آسیب اکسیداتیو در دوره‌ها و شرایط خاصی در بدن رخ می‌دهد و کاهش این آسیب‌ها می‌تواند بر سلامت عملکرد و رفتار عصبی تاثیرگذار باشد،  این مطالعات باید به صورت بالینی نیز آزمایش شود که در صورت تایید جهت جلوگیری از آسیب و کم کردن اثرات بیماری و هم‌چنین بهبود کیفیت زندگی بیماران کاربرد خواهند داشت.

 

منبع:

Sharif, N.F., Korade, Z., Porter, N.A. and Harrison, F.E., 2017. Oxidative stress, serotonergic changes and decreased ultrasonic vocalizations in a mouse model of Smith–Lemli–Opitz syndrome. Genes, Brain and Behavior.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها، درمان جدید پارکینسون

محققان گزارش دادند که گروه جدید و قدرتمند آنتی­‌اکسیدان‌ها می‌­تواند درمانی قوی برای بیماری پارکینسون باشد.

طبق تحقیقات دکتر بابی توماس، دانشمند عصب دانشکده پزشکی گرجستان و نویسنده مقاله در مجله Antioxidants & Redox Signaling ،  یک گروه از آنتی اکسیدان ها با نام  triterpenoidمصنوعی مانع پیشرفت پارکینسون در یک مدل حیوانی شده است.

 

توماس و همکارانش توانستند از مرگ سلول‌های مغزی تولید کننده دوپامین که در طی پارکینسون رخ می­‌دهد جلوگیری کنند که این عمل با استفاده از داروهای تقویت کننده  Nrf2، یک آنتی‌­اکسیدان طبیعی و ضدالتهابی قوی صورت گرفته است.

استرس­ها و قرار گرفتن در معرض آسیب­‌های مختلف، باعث افزایش استرس اکسیداتیو می‌­شوند و بدن با التهاب که بخشی از روند بازسازی طبیعی است پاسخ می‌­دهد. این التهاب باعث ایجاد محیطی در مغز می­‌شود که برای عملکرد طبیعی آن مفید نیست. علائم آسیب اکسیداتیو در مغز پیش از آنکه سلول های عصبی در اثر پارکینسون از بین بروند، قابل تشخیص است.

 

ژن Nrf2 به عنوان تنظیم­‌کننده اصلی استرس اکسیداتیو و التهاب به طور قابل­‌توجهی در زمان شروع پارکینسون کاهش یافته و در واقع، فعالیت Nrf2 به طور معمول با افزایش سن کاهش می‌یابد. دکتر توماس بیان می­‌کند: “در بیماران پارکینسون شما به وضوح می­‌توانید افزایش قابل توجهی از استرس اکسیداتیو را مشاهده کنید، به همین دلیل از داروها به صورت انتخابی برای فعال کردن Nrf2 استفاده کردیم.”

 

آن­ها تعدادی از آنتی‌­اکسیدان‌هایی را که در حال حاضر تحت مطالعه برای طیف گسترده‌ای از بیماری‌­ها مانند نارسایی کلیه، بیماری­های قلبی و دیابت است، تجزیه و تحلیل کردند و تری­ترپنوئیدها را موثرترین ترکیب بر روی Nrf2 یافتند. دکتر مایکل اسپارن، استاد داروسازی، سم شناسی و پزشکی در دانشکده پزشکی داکوتای جنوبی، توانست ترکیب شیمیایی تری­ترپنوئیدها را جهت محافظت از بروز خونریزی مغزی تغییر دهد.

 

هم­چنین در نوروبلاستمای  انسانی و سلول‌های مغزی موش توانستند مقدار افزایش Nrf2 در پاسخ به تولید تریترپروئیدهای مصنوعی را ثبت کنند. سلول‌های dopaminergic انسان برای بررسی در دسترس نیست بنابراین دانشمندان از سلول­های نوروبلاستوما انسان استفاده می­‌کنند که درواقع سلول‌­های سرطانی هستند که خواصی مشابه با نورون دارند.

 

شواهد اولیه نشان می‌دهد که سنتز تریترپروئیدهای مصنوعی فعالیت Nrf2 در آستروسیت‌ها را افزایش می‌­دهد. آستروسیت نوعی سلول مغزی است که نورون­ها را تغذیه می‌­کند و برخی از پسماندهای آن­را از بین می‌­برد. این داروها در موش آزمایشگاهی که ژن nrf2 حذف شده است، از سلول­های مغز محافظت نمی‌کند که اثبات می­کند Nrf2 هدف این دارو است.

 

محققان از پروتئین قدرتمند نوروتوکسین MPTP برای مقابله با آسیب سلول‌های مغز مانند پارکینسون در عرض چند روز استفاده کردند. آنها اکنون به تاثیر تریترپنوئید‌های مصنوعی در یک مدل حیوانی می‌­پردازند که از نظر ژنتیکی برای پیشرفت آهسته بیماری مشابه انسان برنامه‌ریزی شده ­است. محققان در دانشکده پزشکی جانز هاپکینز، برروی سلول‌های بنیادی pluripotent التهابی، سلول‌های بنیادی بالغ تحقیق می­‌کنند که می‌توانند نورون‌های دوپامینرژیک برای آزمایش داروها ایجاد کنند.

 

منبع:

Kaidery, N.A., Banerjee, R., Yang, L., Smirnova, N.A., Hushpulian, D.M., Liby, K.T., Williams, C.R., Yamamoto, M., Kensler, T.W., Ratan, R.R. and Sporn, M.B., 2013. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxidants & redox signaling18(2), pp.139-157.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای اکسیداتیو

استرس اکسیداتیو / نیتروژنی، که منجر به افزایش گونه‌های فعال اکسیژن / نیتروژن می‌شود، درحال حاضر به عنوان یکی از ویژگی‌های برجسته بسیاری از بیماری‌های حاد و مزمن و حتی فرایند پیری طبیعی شناخته شده است. با این حال، شواهد قطعی برای این ارتباط به علت محدودیت روش‌های شناسایی نشانگرهای زیستی برای ارزیابی وضعیت استرس اکسیداتیو در انسان‌ها کم است. در حال حاضر بر شناسایی بیومارکرهای زیستی در استرس اکسیداتیو که به صورت عینی اندازه گیری و ارزیابی می‌شوند تاکید می‌گردد. این بیومارکرها به ‌عنوان شاخص فرآیندهای بیولوژیکی طبیعی، فرآیندهای بیماری‌زا و یا پاسخ‌های دارویی به تیمارهای درمانی شناخته شده‌اند. برای پیش‌بینی بیماری، یک نشانگر زیستی باید مورد شناسایی، تشخیص و سنجش قرار گیرد. مهمترین عوامل درسنجش و اندازه‌گیری این بیومارکرها اختصاصی بودن و حساسیت می باشد. علاوه براین، شرایط نمونه‌گیری و روش های تحلیلی و برخی محدودیت‌ها مانند شرایط نمونه‌برداری، پایداری بیومارکرها، حساسیت و سادگی تحلیل نتایج باید مورد توجه قرار گیرد.

در این بخش ما به بررسی بیومارکرهای شناخته شده که بیشتر از سایر بیومارکرها در تشخیص بیماری‌ها و آزمایشات کلینیکی و تحقیقاتی مورد توجه قرار گرفته‌اند پرداخته‌ایم. سنجش هرکدام از بیومارکرهای زیستی دارای مزیت‌ و محدودیت‌های به خصوص بوده که در طی بررسی و سنجش باید مورد توجه قرار گیرد. هم‌چنین دسترسی به امکانات و دستگاه‌های آزمایشگاهی از مهم‌ترین عوامل انتخاب روش سنجش مناسب بیومارکرهای زیستی می‌باشد.

 

 

[table id=5 /]

 

ایزوپروستان‌ها (IsoPs)

IsoPs ترکیب پروستاگلاندینی است که از پراکسیداسیون اسیدچرب ضروری (به طور عمده اسید آراکیدونیک) بدون کاتالیزور و بدون اثر مستقیم آنزیم‌های سیکلوکوکسیژناز (COX) تولید می‌‌شود. این ترکیبات در سال 1990 توسط L. Jackson Roberts و Jason D. Morrow در بخش فارماکولوژی بالینی در دانشگاه واندربیلت کشف شد. این ایکوسانوئید دارای فعالیت بیولوژیکی قوی به عنوان واسطه‌های التهابی است که باعث درک درد شده و نشانگر دقیق پراکسیداسیون لیپید در هر دو مدل حیوانی و انسان می‌باشد. افزایش سطح ایزوپروستان‌ها مشکوک به افزایش خطر ابتلا به حمله قلبی است و متابولیت‌های آن‌ها در ادرار افراد سیگاری افزایش یافته است و به عنوان نشانگر بیولوژیک استرس اکسیداتیو در سیگاری‌ها پیشنهاد شده است.

 

تولید کنندگان تجاری کیت‌های سنجش ایزوپروستان : cayman و abcam

 

مالون دی آلدهید (MDA)

MDA بیومارکر استرس اکسیداتیو در بسیاری از بیماری‌ها مانند سرطان، بیماری‌های روانی، بیماری مزمن انسدادی ریوی، آسم یا بیماری های قلبی عروقی است. تست تيوباربيتوريک اسيد (TBA) روشي است که بيشترين استفاده را براي تعيين MDA در مايعات بيولوژيک دارد. مالون‌دی‌آلدئید به عنوان محصول اصلی برای ارزیابی پراکسیداسیون لیپید است. اکثر آزمایش‌ها با سنجش توسط اسید تيوباربيتوريک انجام می‌گیرد که توسط روش‌های غیرمستقيم (اسپکترومتری) و روش‌های مستقیم (کروماتوگرافی) اندازه‌گیری می‌شود. اگر چه در میان روش‌ها اختلاف نظر وجود دارد، آزمون های مبتنی بر HPLC انتخابی یک روش قابل اندازه‌گیری پراکسیداسیون لیپید را فراهم می کند.

تولید کنندگان تجاری کیت‌های سنجش مالون دی آلدهید: sigmaaldrich و نوند سلامت. (چرا کیت‌های آزمایشگاهی نوند سلامت؟)

نیتروتایروزین (Nitrotyrosine)

Nitrotyrosine محصول نیترات تیروزین است که به وسیله گونه‌های فعال نیتروژن مانند پروتئین نیترات و دی اکسید نیتروژن تولید می‌شود. نیتروتیروسین به عنوان شاخص یا نشانگر آسیب سلول، التهاب و تولید NO (نیتریک اکسید) شناخته می‌شود. نیتروتیروسین در حضور متابولیت فعال NO تشکیل شده است. تولید ONOO قادر به اکسیداسیون چند ليپوپروتئين و نيتروژن باقي‌مانده تيروزين در بسياری از پروتئين‌ها است. نیتروتیروسین در مایعات بیولوژیکی نظیر پلاسما، ریه، BALF و ادرار تشخیص داده می‌شود. افزایش سطح نیتروتیروستین در آرتریت روماتوئید شوک سپتیک و بیماری سلیاک مشاهده می‌شود. نیتروتیروستین هم‌چنین در بسیاری از انواع دیگر بیماری ها مانند آسیب قرنیه در کراتوکونوس و دیابت سنجیده می شود.

تولید کنندگان تجاری کیت‌های سنجش نیتروتایروزین: merck و abcam 

 

s-گلوتاتیونیلاسیون (s-gluthathionylation)

S-glutathionylation  وسط استرس اکسیداتیو یا نیتراتیک تولید می‌شود، اما در سلول‌های بدون استرس نیز قابل مشاهده است که این مساله می‌تواند به تنظیم انواع فرایندهای سلولی توسط تعدیل عملکرد پروتئین و جلوگیری از اکسیداسیون غیرقابل برگشت پروتئین‌های تیول کمک کند. یافته های اخیر نقش مهمی در کنترل مسیرهای سیگنالینگ S-glutathionylation سلولی مرتبط با عفونت های ویروسی و آپوپتوز ناشی از عامل ناباروری تومور ایفا می‌کند.

تولید کنندگان تجاری کیت‌های سنجش اس-گلوتاتیونیلاسیون: cayman و cellbiolabs

میلوپراکسیداز (Myeloperoxidase)

MPO آنزیمی است که در گرانول‌های آزورفیل از نوتروفیل‌ها و ماکروفاژهای چند هسته‌ای و در محیط پروتئین التهابی در مایع خارج سلولی ذخیره می‌شود. میلوپرکسیداز در استرس اکسیداتیو و التهاب دخیل است و عامل مهمی برای مطالعه میلوپوکسیداز به عنوان نشانگر احتمال بی ثباتی پلاک و ابزار بالینی مفید در ارزیابی بیماران مبتلا به بیماری قلبی عروقی است.

تولید کنندگان تجاری کیت‌های سنجش میلو پراکسیداز: sigmaaldrich و cayman و نوند سلامت

 

اکسی ال دی ال (OxLDL)

OxLDL چربی لیپوپروتئین با چگالی کم (LDL) یکی از پروتئین های کلیدی در خون است و یکی از اجزای مهم سوخت و ساز بدن و مسئول حمل و نقل چربی‌ها در سراسر بدن است. اکسیداسیون LDL فرایند طبیعی درون بدن بوده و LDL اکسید شده ابزار مهمی در مطالعه اندوسیتوز توسط گیرنده رسپتور ماکروفاژها و سلول های اندوتلیال و همچنین تشکیل سلول‌های فوم است.

تولید کنندگان تجاری کیت‌های سنجش اکسی ال دی ال: cellbiolabs و biocompare

 

بیومارکر DNA

DNA biomarker : اکسیداسیون DNA به دلیل جهش‌زایی آن بسیار بااهمیت است، اگر چه دارای نقش های متعدد دیگری در پیری و سرطان است، اکسیداسیون DNA بسیار مورد توجه قرار قرار گرفته است که برای مقابله با ضایعات اکسید شده DNA، تعدادی از سیستم های زیستی پیرایش تکامل یافته‌است، از جمله BER (پیرایش اگزون)، Ligation، NER (تعمیر مجدد نوکلئوتیدی) که دارای خاصیت هم‌پوشانی هستند و ممکن است به عنوان سیستم پشتیبان به صورت تعاملی عمل کنند. حمله به DNA توسط گونه های فعال اکسیژن، به ویژه رادیکال های هیدروکسیل، می تواند منجر به شکستن رشته DNA-DNA و پروتئین متصل به DNA، کراسینگ اور، تغییر شکل بازها و جهش زایی شود.

تولید کنندگان تجاری کیت‌های سنجش بیومارکرهای دی‌ ان ای: abcam و cayman

 

 

منبع:

Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D. and Milzani, A., 2006. Biomarkers of oxidative damage in human disease. Clinical chemistry52(4), pp.601-62

 

 

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری مزمن ریه COPD

بیماری مزمن انسداد ریوی (COPD) یک بیماری تنفسی مزمن با علائم سیستمیک است که به طور معنی‌داری بر کیفیت زندگی بیماران تاثیرگذار است. این بیماری با انسداد جریان هوا همراه با التهاب ریه و تخریب بافت ریوی همراه بوده و عموما یک بیماری در طی پروسه پیری است. نشانگرهای استرس اکسیداتیو در بیماری مزمن انسداد ریوی (COPD) و گونه‌های فعال اکسیژن (ROS) می‌توانند مولکول‌های بیولوژیکی، مسیرهای سیگنالینگ و عملکرد مولکولی آنتی‌اکسیدان را تغییر دهند که بسیاری از آن‌ها در پاتوژنز COPD دخالت دارند.

شواهد نشان می‌دهد که عملکرد چندین سلول کلیدی در بیماران COPD در طی بیماری تغییر می‌کند و سطوح بیان مولکول‌های مهم اکسیدان و آنتی‌اکسیدان ممکن است غيرطبيعی باشد. آزمایشات درمانی در جهت تلاش برای بازگرداندن تعادل به این مولکول‌ها بر تمام جنبه های بیماری تأثیر نگذاشته این درحالیست که تاثیر ROS در COPD با مدل های فعلی و مسیرهای مربوط به آسیب بافت اثبات شده است.

روش‌های مختلفی برای ارزیابی حضور استرس اکسیداتیو در ریه بیماران مبتلا به COPD مورد استفاده قرار گرفته است و شواهد واضحی از افزایش بار اکسیداتیو در COPD در مقایسه با گروه‌های کنترل غیر سیگاری وجود دارد.

بررسی مایع تنفس ریه (EBC) یک روش موثر برای شناسایی محصولات استرس اکسیداتیو موجود در ریه است. مطالعات متعدد نشان داده است که H2O2 به میزان قابل توجهی در تراکم انسداد تنفس COPD در مقایسه با کنترل‌های سالم افزایش می‌یابد. با افزایش سطح H2O2 اسید آراشیدونیک که اسید چرب اشباع نشده در غشای سلولی است، افزایش چشمگیری یافته و می‌تواند توسط رادیکال‌های آزاد در in vivo پراکسیده شود تا ایزوپروستان‌ها را تشکیل دهد که در EBC اندازه گیری می‌شوند و در بیماری COPD قابل مشاهده است. همچنین میزان تولید پروتئین اسیدچرب، مالون دی آلدهید (MDA) نیز در EBC بیماران مبتلا به COPD افزایش یافته است. سطوح سرمی MDA و GPx (تعیین شده توسط فعالیت) با شدت COPD ارتباط دارد، با افزایش MDA سرم و کاهش GPx شدت بیماری COPD افزایش می‌یابد.

با استفاده از رنگ‌آمیزی ایمونوهیستولوژیکی، می‌توان برخی از محصولات استرس اکسیداتیو مانند 4HNE، محصول نهایی پراکسیداسیون لیپید که به آسانی با چندین پروتئین واکنش می‌دهد را در اجزای مجزای سلولی ریه مشخص کرد. این رنگ‌آمیزی بیان‌گر افزایش نشانگرهای استرس اکسیداتیو نیتروژن، نیتروتیروسین و اکسید نیتریک القا شده (iNOS) در COPD است.

تحقیقات نشان داده است که مولکول‌های ضدالتهابی یا آنتی‌اکسیدان‌های مختلف توانایی کاهش التهاب و شدت علائم COPD در مدل موش را دارند. موش های ترانس‌ژنیک بیان‌کننده تریروتوكسین (TRX) كه مولكول آنتی‌اكسیدان است، كاهش بسیاری در شدت COPD نشان می‌دهد که می‌تواند یک روش درمانی باشد. در مدل‌های موش، تحت تاثیر قرار گرفتن در معرض ROS منجر به ابتلا به COPD و پیشرفت این بیماری می‌شود و شناسایی مکانیسم‌ آن می‌تواند یک روش درمانی مفید محسوب شود.

استرس اکسیداتیو از طریق H2O2 ناشی از اختلال عملکرد میتوکندری اختلال در COPD را  شدیدتر می‌کند. درمان آنتی‌اکسیدانی هدفمند میتوکندری باعث مهار و کاهش علایم بیماری COPD می‌گردد. علاوه بر این، شواهدی از اختلال عملکرد میتوکندری در ماکروفاژ بیمارهای مبتلا به COPD در طی فاگوسیتوز یافت شده و مطالعات دیگر از اختلال عملکرد میتوکندری طی استرس اکسیداتیو گزارش می‌دهد.

دلایل نظری قابل ملاحظه ای وجود دارد که چرا آزاد شدن ROS باعث ایجاد یا پیشرفت COPD می شود. افزایش میزان اکسیدان‌ها از 4700 ترکیب شیمیایی و بیش از 1015 اکسیدان / رادیکال‌های آزاد موجود در سیگار حاصل می‌شود با این حال، این محرک به تنهایی نمی‌تواند کافی یا ضروری باشد تا COPD در سیگاری‌ها ایجاد شود، و این نشان می‌دهد که باید فاکتورهای دیگری به صورت تعاونی با این عوامل در جهت بروز بیماری همکاری کنند.

بسیاری از محصولات استرس اکسیداتیو در COPD در مقایسه با کنترل افزایش می‌یابد، در حالی که سطح آنزیم‌های مربوط به حذف ROS در برخی مطالعات کاهش یافته است. مطالعات سلولی نشان می‌دهد که آزادی ROS از واسطه‌های اصلی واکنش التهابی در COPD، از جمله نوتروفیل‌ها، ماکروفاژهای هوا و مونوسیت‌ها، افزایش یافته است. اگر چه مدل حیوانی COPD وجود ندارد که تمام جنبه‌های بالینی بیماری بررسی شود، مدل‌های دیگر نشان‌دهنده افزایش بار اکسیداتیو در اثر قرار گرفتن در معرض دود سیگار و آسیب بافتی بعد از آن، از جمله ایجاد آمفیزم است که می‌تواند با هدف‌گیری مسیرهای اکسیداسیون، کاهش یابد.

ارائه درمان بالینی برای COPD با توجه به تغییر در پروتئین‌ها، آنزیم‌ها، مولکول‌ها و سلول‌های دخیل در این بیماری چالش مهم بوده و در حال حاضر مشخص نیست که آیا تغییرات نسبت اکسیدان‌ها به آنتی‌اکسیدان‌ها به صورت ثابت رخ می‌دهد که درک این موضوع برای تعیین درمان‌هایی که بیشتر از آنتی‌آکسیدان‌ها استفاده می‌کنند، حیاتی است. واضح است که تحقیقات پایه و تحلیلی بیشتر برای شناسایی بیماران حساس به آسیب های مرتبط با ROS ضروری است و باید مشخص شود آیا ROS هدف موثر برای تغییر در COPD است یا خیر؟

 

منبع:

McGuinness, A.J.A. and Sapey, E., 2017. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of clinical medicine6(2), p.21.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای محرومیت از خواب در انسان و موش صحرایی

خواب یک فرآیند بیولوژیکی ضروری است با این حال، مطالعات مکانیزم‌های مولکولی مبتنی بر اثرات کم‌خوابی هنوز در اولین مراحل آن است. خطر ابتلا به بسیاری از اختلالات متابولیک، از جمله افزایش وزن، دیابت، چاقی و بیماری‌های قلبی‌عروقی به علت کم‌ خوابی، اساس تحقیقات پایه در این زمینه می‌باشد.
در یک مطالعه که در مجله “آکادمی ملی علوم” منتشر شده است، آمیتا سگل، استاد علوم اعصاب در دانشکده پزشکی Perelman در دانشگاه پنسیلوانیا و محقق موسسه پزشکی Howard Hughes همراه با پیتر میرلو ، از دانشگاه گرونینگن هلند، مولکول‌های رایج درگیر در متابولیسم پاسخ به کم‌خوابی در آنالیز خون موش و انسان را یافته‌اند. یافته‌های آن‌ها نشان می‌دهد که تغییر کلی در چگونگی متابولیسم لیپیدها حاصل از استرس اکسیداتیو ناشی از کاهش خواب در هر دو گونه مشاهده می‌شود.
استرس اکسیداتیو و متابولیسم لیپید عامل مهمی در بیماری‌های متابولیکی هستند، اگرچه برای ایجاد یک ارتباط بین نشانگرهای موجود و بیماری‌های خاص، باید مطالعات بیشتری صورت بگیرد.
سگل می‌گوید: “یک احتمال این است که خواب باعث رفع متابولیت‌ها می‌شود و بنابراین به عنوان یک فرآیند ترمیم در سطح متابولیک عمل می‌کند.” متابولیت‌ها مواد واسطه شیمیایی یا محصولات متابولیسم هستند، بنابراین درحالی‌که از طریق تجزیه چربی‌ها، کربوهیدرات‌ها و پروتئین تولید می‌شوند، عملکرد آن‌ها محدود به این فرآیندها نیست. آن‌ها هم‌چنین در سیگنالینگ، تنظیم فعالیت آنزیمی و رشد نیز نقش دارند.
این تیم در طی پنج روز موش و انسان را در شرایط محدودیت خواب مزمن قرار دادند. در هر دو مطالعه، سطوح متابولیتی در خون موش و انسان، پس از خواب مناسب و کافی و بعد از محدودیت خواب مورد بررسی قرار گرفت. سپس متابولیت‌های خون موش‌ها و انسان‌های با محدودیت خواب شناسایی شده که 38 متابولیت منحصر به فرد را معرفی می‌کند که نیمی از آن‌ها لیپید هستند. اکثریت متابولیت‌ها در افراد کم‌خواب ترکیبات لیپید یا اسید چرب را دارند.
هفت نوع فسفولیپید به نام plasmalogens که با استرس اکسیداتیو در ارتباط هستند در موش‌های با محدودیت خواب یافت شدند. به طور کلی، سطوح بالاتر این فسفولیپیدها و نقش اساسی آن‌ها در متابولیسم لیپیدی موش‌ها و انسان‌های دارای محدودیت خواب مشخص شده‌است. هم‌چنین برخی از انتقال‌دهنده‌های عصبی و متابولیت های روده (احتمالا از میکروب‌های روده) نیز به علت محدودیت خواب تغییر کرده‌اند.

هنگامی که محققین متابولیت‌های تغییر یافته در موش و انسان را در مقایسه با شروع اولیه قبل از محدودیت خواب مقایسه کردند، متوجه شدند که دو متابولیت oxalic acid و diacylglycerol 36:3 در شرایط محدودیت خواب محو شده و بعد از بهبودی در هر دو گونه‌ دوباره مشاهده شدند. oxalic acid یک محصول زائد است که از فرآورده‌های غذایی در رژیم‌هایی مانند گیاهان، به طور عمده از تجزیه ویتامین C و برخی اسیدآمینه‌ها تولید می‌شود. Diacylglycerol یک مولکول پیش‌رونده در تولید تری‌گلیسیرید است و مولکولی است که اکثر چربی‌ها به این شکل در بدن ذخیره می‌شود و همچنین در سیگنالینگ سلولی عمل می‌کند. محققان معتقدند که این دو مولکول می‌توانند به عنوان نشانگرهای زیستی بالقوه از آن‌جایی که در هر دو گونه موجودند، به کار روند.

این بیومارکرهای بین گونه‌ای به دو دلیل مورد توجه هستند. اول این‌که نیاز به بیومارکر کمی در بررسی محدودیت خواب و کیفیت خواب وجود دارد و این رویکرد نشان می‌دهد که متابولیت‌ها در این زمینه مفید هستند. دوم این‌که متابولیت‌های مشابهی را در انسان‌ها و موش‌ها معرفی می‌کند و به همین طریق اثرات متابولیکی خواب در موش صحرایی که ممکن است دارای کاربرد بالینی و درمانی باشد مورد بررسی قرار می‌گیرد.
به طور کلی، این مطالعه یک ارتباط بالقوه بین آسیب‌شناسی شناخته شده محدودیت خواب و اختلال عملکرد متابولیکی ایجاد می‌کند و بیان‌گر این است که یکی از عملکردهای خواب ترمیم و پاک‌سازی متابولیت‌ها در مغز و بازگرداندن تعادل آنتی‌اکسیدانی در بافت‌های محیطی است و از سوی دیگر از دست دادن خواب، باعث ایجاد حالت اکسیداتیو در متابولیت‌ها می‌گردد.

منبع:

Weljie, A.M., Meerlo, P., Goel, N., Sengupta, A., Kayser, M.S., Abel, T., Birnbaum, M.J., Dinges, D.F. and Sehgal, A., 2015. Oxalic acid and diacylglycerol 36: 3 are cross-species markers of sleep debt. Proceedings of the National Academy of Sciences112(8), pp.2569-2574

نوشته شده در دیدگاه‌تان را بنویسید

آیا بیومارکرها در بیماری هانتینگتون می‌توانند مفید باشند؟

نوع خاصی از آسیب به نام “استرس اکسیداتیو” ممکن است به سلول‌های بیمار و مرگ در بیماری هانتینگتون کمک کند. گزارش‌های قبلی نشان می‌دهد که بیومارکر استرس اکسیداتیو می‌تواند به عنوان یک بیومارکر برای آزمایشات بالینی HD ( بیماری هانتینگتون) بررسی شود. اما به تازگی مطالعه‌ای منتشر شده که نشان می‌دهد که این بیومارکر مفید محسوب نمی‌شود. آیا این خبر بد است؟

هدف اکثر مطالعات بر روی بیماری هانتینگتون، ایجاد درمان موثر برای بیماران است. برای رسیدن به این هدف ، باید صنعت دارو را در این زمینه گسترش داد و برای دریافت دارو، باید آزمایش‌های بالینی صورت بگیرد تا اثر بخشی آنان مشخص گردد. اما چگونه می‌توانیم بدانیم که درمان موثر است؟

درباره برخی داروها به راحتی می‌توان اثربخشی آنان را تایید کرد زیرا به روشنی بر علایم HD تأثیر مثبتی دارند، همانند تاثیر بر حرکات فیزیکی مربوط به بیماری. اما ایده‌آل محققین رسیدن به دارویی است که درواقع باعث جلوگیری، کند شدن و یا توقف ساخت سلول‌های مغزی شود که باعث ایجاد HD می‌گردد. این مساله در بیماری هانتینگتون و سایر بیماری‌های مغزی بسیار سخت است، زیرا نمی‌توان به طور مستقیم مغز را بررسی و عملکرد دارو را سنجید. بیومارکر چیزی است که می‌تواند در مغز سنجیده شود و اطلاعاتی درباره اتفاقاتی که در مغز می‌افتد در اختیار قرار دهد.

بیومارکرها واقعا مهم هستند، زیرا آنها توانایی پیشرفت به سوی درمان‌های موثر را دارند. محققان نیاز به سنجش‌های قابل اعتماد و ساده دارند و این‌که بدانند در مغز بیماران هانتینگتون چه اتفاقی می‌افتد، بدون این‌که مجبور شوند جمجمه‌ها را باز کنند. هم‌چنین یک بیومارکر خوب می‌تواند در تعیین این‌که آیا یک داروی جدید دارای اثر مفید بر HD بوده یا نه مورد استفاده قرار بگیرد

 

استرس اکسیداتیو در HD

یکی از مواد تولیدشده توسط تمام سلولهای بدن، از جمله مغز، یک ماده شیمیایی به نام 8OhdG است. نام شیمیایی آن 8‌هیدروکسی دزوکسی گوانوزین بوده و تشخیص آن بسیار ساده است. سلول‌های ما به طور مداوم در معرض انواع استرس هستند. یکی از مهم‌ترین انواع استرس‌ها، استرس اکسیداتیو نامیده می‌شود. اساسا ما به اکسیژن نیاز داریم تا نیاز به انرژی را تامین کنیم، اما اکسیژن مولکول مضر نیز می‌تواند باشد و 8OhdG یک ماده شیمیایی است که وقتی اکسیژن DNA را تخریب می‌کند، تولید می‌شود.

در سال 1997، دکتر فلینت بیال از کالج پزشکی Weil Cornell، سطوح بالای 8OhdG را در مغز افرادی که در اثر بیماری هانتینگتون جان خود را از دست داده بودند،نشان داد و این مطالعه در کارهای بعدی منجر به این ایده شده است که HD با افزایش استرس اکسیداتیو همراه است.

بر اساس این ایده‌ها در مورد افزایش استرس اکسیداتیو در بیماری هانتینگتون، در سال 2006 یک گروه تحت هدایت دیانا روسس و استیو هرش در بیمارستان عمومی ماساچوست در بوستون، میزان بیومارکر 8OhdG را در خون بیماران HD که تحت تیمار دارویی بودند، بررسی کردند . نتایج بسیار جالب توجه بودند، آن‌ها دریافتند که بیماران HD دارای میزان بالاتری از 8OhdG نسبت به افراد کنترل‌شده هستند که در حقیقت، 8OhdG بیش از سه برابر که افزایش چشم‌گیری است محاسبه شد. دارویی که مورد آزمایش قرار گرفت، creatine نامیده شد که به نظر می‌رسید استرس اکسیداتیو را کاهش می‌دهد. در واقع، مصرف این دارو میزان 8OhdG را کاهش می‌دهد.

بر پایه نتایج این آزمایش نسبتا کوتاه‌مدت ، creatine بر روی حدود 650 بیمار مبتلا به HD، برای مدت طولانی‌تری تست شده است. این آزمایش جدید که CREST-E نامیده می‌شود، سطوح 8OhdG را در خون نیز اندازه‌گیری می‌کند.

8OhdG بیانگر چیست ؟

مطالعات اخیر نشان داده است که 8OhdG کاملا به همان اندازه که انتظار می‌رفت مفید نیست. به عنوان یک بیومارکر مفید، انتظار می‌رفت تغییرات سطوح آن در افراد قبل از ابتلای شدید به بیماری هانتینگتون مشاهده شود. در سال 2012 مطالعه‌ای تحت عنوان PREDICT-HD ( پیش‌بینی بیماری هانتینگنون ) بر اساس بیومارکر 8OhdG انجام شد. این مطالعه علایم افراد مبتلا به جهش HD را بررسی می‌کند، اما هنوز نشانه‌هایی از بیماری را نشان نمی‌دهند. این‌ها افرادی هستند که در آینده درمان خواهند شد و نتیجه بررسی تغییرات در این جمعیت، گامی مهم در جهت توسعه آزمایش‌های دارویی مناسب است.

سطح 8OhdG در خون افراد در مطالعه PREDICT-HD اندازه گیری شد. در این گروه، تغییرات بسیار کمی در سطوح 8OhdG وجود دارد. تجزیه و تحلیل پیچیده ریاضی نشان داد که ممکن است افزایش سطح 8OhdG در افرادی که دارای جهش HD هستند، افزایش یابد، اما تغییر بسیار کم خواهد بود. محققان PREDICT-HD با استفاده از دو تکنولوژی متفاوت برای اندازه‌گیری 8OhdG به نتایج متضاد رسیدند که یکی از آن‌ها بیان‌گر افزایش اندک و دیگری هیچ تغییری را نشان نداد.

مطالعات جدید در جهت بررسی اهمیت 8OhdG

این مطالعات گیج‌کننده بودند و دانستن اینکه آیا 8OhdG می‌تواند در بیماران HD به عنوان یک بیومارکر اندازه‌گیری شود یا نه را دشوار می‌کرد. به امید روشن شدن این مسئله، دانشمندان بنیاد CHDI و TRACK-HD مطالعه جدیدی را انجام دادند که به طور اختصاصی در مورد درک آنچه برای8OhdG در خون بیماران HD و حامل‌های جهش اتفاق می‌افتد، طراحی شده است. در ابتدا این دانشمندان به دقت تکنولوژی اندازه گیری این بیومارکر را بررسی کردند، زیرا بدون اندازه‌گیری دقیق، هیچ نتیجه‌ای نمی‌تواند مورد استفاده قرار بگیرد.

با درک روشنی از دقیق بودن ابزارهای سنجش، تیم به 320 نمونه خون تحت مطالعه TRACK-HD تقسیم شد. این مطالعه به دقت افرادی که دارای جهش HD هستند را بررسی می‌کند. با استفاده از هر دو روش اندازه‌گیری، این مطالعه دقیق به وضوح ثابت می‌کند که در خون افراد مبتلا به جهش HD اختلاف سطح 8OhdG وجود ندارد. سطح بیومارکر در ابتدا و با پیشرفت بیماری تغییری نکرد. این بدان معنی است که سطوح 8OhdG یک نشانگر خوب برای آزمایشات HD نیست.

این ممکن است بد به نظر برسد، در ابتدا تصور می‌شد 8OhdG ممکن است یک بیومارکر خوب برای تیمارهای دارویی HD باشد، و اکنون مشخص شده است که این‌گونه نیست. اما در واقع این اطلاعات بسیار مفید است. دانستن اینکه 8OhdG مفید نیست، محققان را قادر می‌سازد که بر روی بیومارکرهای جدیدی که می‌تواند در این بیماری مورد سنجش قرار بگیرند، تمرکز کنند.

مطالعاتی مانند PREDICT-HD و TRACK-HD مجموعه عظیمی از بیومارکرهای بالقوه احتمالی برای پیگیری در اختیار قرار داده‌اند و این بدان معنی است که محققان یک گام به یافتن بیومارکر مفید در HD نزدیک شده‌اند.


منابع:

Rosas, H.D., Lee, S.Y., Bender, A.C., Zaleta, A.K., Vangel, M., Yu, P., Fischl, B., Pappu, V., Onorato, C., Cha, J.H. and Salat, D.H., 2010. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4), pp.2995-3004.

Lerch, J.P., Carroll, J.B., Dorr, A., Spring, S., Evans, A.C., Hayden, M.R., Sled, J.G. and Henkelman, R.M., 2008. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. Neuroimage, 41(2), pp.243-251.

Biglan, K.M., Ross, C.A., Langbehn, D.R., Aylward, E.H., Stout, J.C., Queller, S., Carlozzi, N.E., Duff, K., Beglinger, L.J. and Paulsen, J.S., 2009. Motor abnormalities in premanifest persons with Huntington’s disease: The PREDICT‐HD study. Movement Disorders, 24(12), pp.1763-1772.

Georgiou-Karistianis, N., Hannan, A.J. and Egan, G.F., 2008. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain research reviews, 58(1), pp.209-225.