نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو و سرکوب تومور

مطالعه‌ی جدیدی در شماره فوریه مجله سرطان سلول ( Journal of Cancer Cell) منتشر شده است که نشان می‌دهد P38-آلفا  MAPK در حضور استرس اکسیداتیو فعال شده و باعث مهار تشکیل تومور می‌شود. این مطالعه رویکرد جدیدی را در مطالعه‌ی مکانیسم‌های خاصی که منجر به سرکوب سرطان می‌شوند، فراهم می‌سازد. شناسایی این مکانیسم‌ها برای توسعه داروهای ضد سرطان جدید مناسب خواهد بود.

P38-آلفا MAPK یک پروتئین نشانگر است که نقش مهمی در هماهنگی پاسخ‌های سلولی به استرس، از جمله استرس اکسیداتیو (که توسط افزایش تجمع گونه های اکسیژن فعال (ROS) در داخل سلول ایجاد می‌شود) دارد با این وجود هنوز مسیر‌ فعالیت P38-آلفا MAPK و مکانیسم‌های درگیر که در سرکوب سرطان نقش دارند به خوبی شناخته نشده‌اند. دکتر  نِبرادا از مرکز ملی سرطان اسپانیادر مادرید و همکارانش با مطالعه‌ی تغییرات بدخیمی که در سلول‌های موش های فاقد P38-آلفا نسبت به موش‌های گروه کنترل ایجاد شده بود به اهمیت مطالعه‌ی P38 -آلفا در سرکوب تومور پی بردند. کمبود P38-آلفا باعث افزایش تکثیرسلولی، مرگ سلولی از طریق آپوپتوز و افزایش تغییرات بدخیم در سلول می‌شوند. محققان مشاهده کردند که سطح ROS در سلول‌های فاقد P38-آلفا، نسبت به سلول‌های کنترل بسیار بالا است و علاوه بر این ، فعال شدن P38-آلفا در اثرROS در سلول‌های کنترل، آپوپتوز را تحریک می‌کند.در حالی که سلول‌های فاقد P38-آلفا به آپوپتوز ناشی از ROS مقاوم هستند. محققان یافته‌‌هایی به دست آوردند که از لحاظ بالینی بسیار اهمیت داشتند. آن‌ها با بررسی چند رده سلول سرطانی انسان مشاهده کردند که افزایش سطح ROS باپتانسیل تومورزایی در ارتباط هست. دانشمندان پیشنهاد می‌کنند که ممکن است سلول‌های سرطانی برای رهایی از سرکوب تومور، عملکرد P38-آلفا را از طریق کاهش حساسیت به استرس اکسیداتیو کم می‌کنند. در واقع بسیاری از سلول‌های تومور سبب افزایش بیان پروتیئن GST (پروتئین گلوتاتیون- اس- ترانسفراز) می‌شوند که این پروتیئن نیز مانع از فعال‌سازی P38-آلفا توسط ROs می‌گردد. بیان کاهش GST در سلول‌های سرطانی با افزایش فعالیت P38 -آلفا و آپوپتوز همراه است در حالی که افزایش بیان GST منجر به کاهش فعالیت P38 –آلفا، سطوح بالای ROS، و افزایش بدخیمی سلول‌های سرطانی می‌شود. روی هم رفته یافته‌ها نشان می‌دهد که P38-آلفا نقش مهمی در تنظیم منفی تشکیل تومور در پاسخ به انکوژن ناشی از ROS با تحریک آپوپتوز دارد و سلول‌های سرطانی ممکن است از این سیستم حفاظتی با جدا کردن ROS از P38-آلفا  فرار کنند! نتایج، مکانیسم‌های استفاده شده در مسیر‌های سرکوب تومور به وسیله‌ی سلول‌های سرطانی را نشان می‌دهد و پیشنهاد می‌کند که بازگرداندن فعالیت P38-آلفا ناشی از ROS برای مثال با هدف قرار دادن پروتیئن GST ممکن است یک راه درمانی بالقوه در سرکوب تومور باشد.

منبع :

Dolado et al.: “p38-alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis.” Publishing in Cancer Cell 11, 191-205, February 2007. DOI 10.1016/j.ccr.2006.12.013

 

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها و هزار مسیر تاثیر بر سلول سرطانی

یک فرم جایگزین آنزیمی که در مسیر متابولیسم گلوکز دخیل است، سلول‌های سرطانی را از استرس‌اکسیداتیو محافظت می‌کند.

محققان با فعال کردن آنزیمی که در تجزیه گلوکز دخالت دارند، می‌توانند رشد سلول‌های سرطانی ریه را تسکین دهند و آسیب‌های تولید شده توسط گونه‌های فعال اکسیژن(ROS) تولید شده در متابولیسم طبیعی را کاهش دهند. این گونه‌های فعال اکسیژن می‌توانند باعث آسیب به سلول در غلظت‌های بالا شود. یافته‌های منتشر شده در Science Express می‌تواند در جهت تحت تاثیر قرار دادن درمان‌های سرطان مورد استفاده قرار گیرد و رشد تومور را به حداقل برساند.
Karen Vousden از مؤسسه تحقیقات سرطان گلاسکو، گفت: این مطالعه نشان می‌دهد که چگونه تومورها به طور طبیعی با افزایش استرس اکسیداتیو روبرو می‌شوند و راه را برای تبدیل این مکانیسم علیه سرطان فراهم می‌کند.

دانشمندان مدت‌هاست دریافته‌اند که سلول‌های سرطانی تمایل دارند فرم دیگری از آنزیم پیرووات کیناز (PKM1) داشته باشند که بخشی از مسیر گلیکولیزی است و گلوکز را به پیروات و ATP می‌شکند. بر خلاف PKM1 که سطح فعالیت آن‌ها ثابت است، فعالیت PKM2 می‌تواند بالا یا پایین باشد و فرم جایگزینی آنزیم در کمک به رشد سلول‌های تومور نقش مهمی ایفا می‌کند.
دانشمندان هم‌چنین با این واقعیت که سلول‌های سرطانی می‌توانند از آسیب به اجزای سلولی اصلی که به طور ناگهانی در نتیجه سطوح بالای ROS پایدار می‌باشند، تحریک شوند، سلول‌های سرطانی ROS بیشتری تولید می‌کنند، اما به طریقی از عواقب معمولی اجتناب می‌کنند. کار قبلی نشان داد که مسیر PKM2 در این مسیر آسیب اکسیداتیو نقش مهمی ایفا می‌کند.
Anastasiou و همکارانش خطوط سلولی سرطان ریه را با عوامل اکسیدکننده افزایش دادند و سطوح ROS و PKM2 را افزایش دادند اما متوجه شدند که این سلول‌ها فعالیت PKM2 را کاهش داده‌اند. از سوی دیگر، هنگامی که عامل‌های کاهش دهنده را اضافه می‌کنند تا سطوح ROS را کاهش دهند و اکسیداسیون PKM2 را معکوس کنند، فعالیت آنزیمی افزایش می‌یابد و این نشان می‌دهد که PKM2 به عنوان سنسور برای ROS عمل می‌کند.

سپس محققان فرم جهش PKM2 را ایجاد کردند که همچون PKM1 هم‌چنان به عنوان سطح “ROS” عمل می‌کند. سلول‌های سرطانی با فرم جهش PKM2 باعث آسیب بیشتر نسبت به کنترل سرطان‌ها شدند، که نشان می‌دهد توانایی سلول سرطانی برای کاهش فعالیت PKM2 در پاسخ به میزان ROS بالا نقش کلیدی در حفظ سلول‌ها از آسیب دارد. هم‌چنین محققان دریافتند که کاهش فعالیت PKM2 موجب می‌شود که سلول‌های سرطانی با بازسازی گلوتاتیون، یک مولکول خنثی کننده ROS، زنده بمانند.
آزمایش به گونه‌ای طراحی شد که سلول‌هایی با جهش اکسیداتیو PKM2 طراحی شده و به موش‌ها تزریق کرده و رشد آن‌ها را بررسی کردند. سلول‌های با فرم جهش‌یافته، تومورهای کوچک‌تر از همتایان نوع وحشی داشتند.

یافته‌های این پژوهش نشان می‌دهد که محققان ممکن است یک روز بتوانند PKM2 را فعال کنند تا سلول‌های سرطانی بیشتر به درمان‌های سرکوب کننده مانند شیمی‌درمانی و رادیوتراپی آسیب پذیر باشند.
هم‌چنین پرسش مهم این است که آیا می‌توان از مکانیزم‌هایی استفاده کرد که بتواند PKM2 را فعال کند؟ اگر بتوان PKM2 را فعال کرد، آیا می‌توان به عنوان درمان اصلی بیماری سرطان کاربرد داشته باشد؟

منابع:

Alexander, B.M., Wang, X.Z., Niemierko, A., Weaver, D.T., Mak, R.H., Roof, K.S., Fidias, P., Wain, J. and Choi, N.C., 2012. DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology* Biology* Physics83(1), pp.164-171.

Zhao, C., Tang, Z., Chung, A.C.K., Wang, H. and Cai, Z., 2019. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicology and environmental safety170, pp.495-501.