نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای استرس اکسیداتیو

بیومارکر چیست ؟ ( قسمت اول )

بیومارکرهای سرطان ( قسمت دوم )

 

استرس اکسیداتیو، قسمت سمی اکسیژن و متابولیسم را نشان می‌دهد. استرس اکسیداتیو به عنوان عدم تعادل بین اکسیدان‌ها و آنتی‌اکسیدان‌ها به نفع اکسیدان‌ها شناخته شده که منجر به اختلال در سیگنالینگ مجدد، کنترل چرخه سلولی و آسیب مولکولی می‌شود.

بیومارکرهای استرس اکسیداتیو به سه دسته اصلی تقسیم می‌شوند:
– گونه‌های فعال اکسیژن ROS
– DNA / RNA، چربی‌ها و پروتئین‌هایی که توسط اکسیداسیون آسیب دیده‌اند
– آنتی‌اکسیدان‌ها

درباره این سه گروه این توضیح را باید افزود که:
– ROS نشان‌دهنده عواملي هستند كه استرس‌اكسيداتيو را تحريك مي كنند و باعث آسیب به اجزاي سلول می‌شوند.
– آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، آسیب‌های ناشی از اکسیداسیون را نشان می‌دهد
– آنتی‌اکسیدان‌ها سیستم‌های مبارزه با استرس اکسیداتیو را نشان می‌دهند

• گونه فعال اکسیژن ROS

گونه فعال اکسیژن، گونه‌های شیمیایی واکنشی هستند که حاوی اکسیژن فعال می‌باشند. آن‌ها عبارتند از پراکسید، سوپراکسید، هیدروکسیل رادیکال، اکسیژن مجزا و آلفا اکسیژن.
با توجه به ماهیت گذار آن‌ها، به راحتی در سلول‌های زنده با استفاده از تست‌های رنگ‌سنجی، مانند DCFDA، اندازه‌گیری می‌شوند. این بیومارکرها قابل اندازه‌گیری در خون، پلاسما، بافت و ادرار هستند.

• آسیب DNA / RNA، پراکسیداسیون لیپید، و اکسیداسیون / نیترات پروتئین

استرس اکسیداتیو را می‌توان به طور غیرمستقیم با اندازه‌گیری سطوح آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، به جای اندازه‌گیری مستقیم گونه‌های فعال اکسیژن، اندازه‌گیری کرد. بیومارکرهای استرس اکسیداتیو پایدارتر از انواع اکسیژن فعال هستند.

آسیب DNA / RNA

انواع مختلفی از آسیب DNA / RNA وجود دارد که می‌تواند به عنوان بیومارکرهای استرس اکسیداتیو اندازه‌گیری شود.  8-hydroxydeoxyguanosine احتمالا به عنوان یکی از رایج ترین بیومارکرهای آسیب DNA برای استرس اکسیداتیو است. تست‌های مکان‌های apurinic / apyrimidinic و آزمون‌های آسیب ناشی از آلدهید می‌تواند به عنوان اندازه‌گیری‌های مستقیم از آسیب DNA استفاده شود که به طور بالقوه مرتبط با استرس اکسیداتیو است.

پراکسیداسیون لیپید

مالون‌دی‌آلدئید MDA یکی از معمول‌ترین شاخص‌های لیپیدی استرس اکسیداتیو است. این ماده از طریق پراکسیداسیون اسیدهای چرب غیراشباع تشکیل شده است و معمولا با استفاده از آزمون TBARS اندازه‌گیری می‌شود. تست TBARS به طور کامل برای MDA خاص نیست، همانطور که سایر آلدهید‌ها نیز سیگنال مشابهی را با این تست تولید می‌کنند، با این حال، تست TBARS عموما راحت‌تر از استفاده از HPLC برای اندازه گیری MDA است. آزمون‌های ELISA رقابتی برای MDA نیز در دسترس هستند.
دیگر بیومارکرهای پراکسیداسیون چربی شامل 4-HNA، 8-ایزوپروستان، هیدروپراکسید لیپیدها و LDL اکسید شده است.

اکسیداسیون / نیترات پروتئین

آسیب اکسیداتیو به پروتئین‌ها می‌تواند به شکل کربن لیپتین پروتئین و نیتراسیون پروتئین (3-نیتروتیروزین) باشد. گونه‌های فعال اکسیژن هم‌چنین می‌توانند تولید محصولات پیشرفته گلیکوزیله AGE و پروتئین‌های AOPP را ایجاد کنند. همه این بیومارکرها را می‌توان با روش‌های استاندارد اندازه‌گیری کرد.

• آنتی‌اکسیدان‌ها

آنزیم‌های آنتی‌اکسیدانی و دیگر مولکول‌های ROS، باعث آسیب اکسیداتیو می شوند. سه نوع آنتی‌اکسیدان به عنوان بیومارکر استرس اکسیداتیو وجود دارد: مولکول‌های کوچک، آنزیم‌ها و پروتئین‌ها (مانند آلبومین).
برای اندازه گیری ظرفیت کل‌آنتی اکسیدانی نمونه، از جمله مولکول‌کوچک و ظرفیت آنتی‌اکسیدانی پروتئین، تعدادی از تست‌ها وجود دارد. یکی از رایج‌ترین تست‌های کلسترول آنتی‌اکسیدانی، تست آنتی‌اکسیدانیTEAC است. تست آنتی‌اکسیدانی رادیکال اکسیژن ORAC یکی دیگر از آزمون‌های معمول استرس اکسیداتیو است که ظرفیت آنتی‌اکسیدان را با اندازه‌گیری توانایی آنتی‌اکسیدان‌ها برای کاهش رنگ فلورسنت توسط ROS اندازه‌گیری می‌کند.
فعالیت آنتی‌اکسیدانی نیز می‌تواند در سطح آنالیت‌های خاص اندازه‌گیری شود. به عنوان مثال با نگاه کردن به سطوح نسبی GSH و GSSG ، سطح آنالیت اندازه‌گیری می‌شود. گلوتاتیون احیا GSH به عنوان مولکولی فراوان در میان آنتی‌اکسیدان‌های درون سلولی در نظر گرفته می‌شود که GSSG را در فرم اکسید شده تشکیل می‌دهد. این واکنش توسط آنزیم گلوتاتیون ردوکتاز فعال می‌شود.
در غیر این صورت، سطح فعالیت آنزیم‌های آنتی‌اکسیدانی مانند GST و سوپراکسید‌دیسموتاز می‌تواند در رابطه با سطوح استرس اکسیداتیو اندازه‌گیری شود.

 

منابع:

Valavanidis, A., Vlachogianni, T. and Fiotakis, C., 2009. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C27(2), pp.120-139.

Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P., 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical chemistry43(7), pp.1209-1214.

Lykkesfeldt, J., 2007. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica chimica acta380(1-2), pp.50-58.

نوشته شده در دیدگاه‌تان را بنویسید

رادیکال‌های آزاد و پراکسیداسیون لیپیدی (قسمت اول)

هایپراکسید‌های لیپیدی واسطه‌های غیر رادیکالی هستند که از اسید‌های چرب غیر اشباع، فسفولیپید‌ها، گلیکولیپید‌ها، استرهای کلسترول و کلسترول حاصل می‌شوند. تولید این واسطه‌ها در واکنش‌های آنزیمی و غیرآنزیمی گونه‌های شیمیایی که از آن‌ها تحت عنوان گونه‌های فعال اکسیژن (Reactive Oxygen Species) نام‌برده می‌شود، اتفاق می‌افتد. این گونه‌های شیمیایی با تخریبی که در بافت‌های مختلف ایجاد می‌کنند، باعث بسیاری از تغییرات سمی در سیستم‌های بیولوژیک هستند. گونه‌های فعال اکسیژن به همراه سایر رادیکال‌های هیدروکسیل، لیپید اکسیل یا رادیکال‌های پروکسیل، اکسیژن منفرد و پراکسی‌نیتریت حاصل از نیتروژن اکساید تحت عنوان رادیکال‌های آزاد نامیده می‌شوند. این  گونه‌های شیمیایی ماهیت غیرمستقل داشته و یک یا چند الکترون منفرد در اوربیتال اتمی یا مولکولی دارند. آن‌ها به دو روش گرفتن یا دادن الکترون توسط یک غیررادیکال ایجاد می‌شوند و می‌توانند طی واکنشی به نام Homolytic fission یا همکافت ایجاد شوند. طی این واکنش یک پیوند کووالانسی می‌شکند و هر یک از اتم‌های طرفین پیوند یک الکترون منفرد را تصاحب می‌کنند. واکنش همکافت فعال‌ترین گونه‌های فعال، یعنی رادیکال هیدروکسیل OH را می‌سازد. طی واکنش سوختن نیز در دمای بالا با شکستن پیوند‌های C-C، C-H و  C-O یک پروسه رادیکال آزاد اتفاق می‌افتد. برعکس این مکانیسم تحت عنوان Heterolytic Fission‌ یا ناهمکافت نام دارد که طی آن پس از شکستن پیوند کووالانسی، یکی از اتم‌ها هر دو الکترون پیوندی را گرفته و دراای بار منفی می‌شود و در مقابل نیز اتمی با یک اوربیتال خالی دارای بار مثبت می‌شود.

نوشته شده در دیدگاه‌تان را بنویسید

درمورد علل استرس اکسیداتیو بیشتر بدانید…

رادیکال‌های آزاد اتم‌ها یا مولکول‌هایی با الکترون آزاد هستند که بسیار ناپایدار و واکنش پذیر می‌باشند. این ذرات با مولکول‌های دیگر در بدن واکنش داده و باعث تغییر ساختار مولکولی می‌گردند. این مولکول‌ها تبدیل به رادیکال‌های آزاد شده که یک واکنش زنجیره‌ای را ایجاد می‌کنند که میلیون‌ها مولکول را در یک نانوثانیه تحت تاثیر قرار می‌دهند. رادیکال‌های آزاد با عنوان گونه‌‌فعال‌اکسیژن بیان‌شده (ROS)، بنابراین استرس رادیکال آزاد به عنوان استرس اکسیداتیو شناخته می‌شود. علل بسیاری جهت بروز استرس‌ اکسیداتیو وجود دارد که به عنوان مکانیسم اصلی در بیماری‌های مزمن و پیری شناخته می‌شود.

آنتی‌اکسیدان‌ها
آنتی‌اکسیدان‌ها مکانیسم دفاعی بدن علیه رادیکال‌های آزاد هستند که این ذرات آسیب پذیر را خنثی می‌کنند. برخی از رادیکال‌های آزاد به عنوان بخش مهمی از فرایندهای بدن تولید می‌شوند، اما نباید تولید رادیکال‌های آزاد از ظرفیت بدن در خنثی‌سازی آن فراتر رود.
آنتی‌اکسیدان‌های داخلی بدن عبارتند از: گلوتاتیون، کوآنزیم Q10، سوپراکسید دیسموتاز و گلوتاتیون پراکسید

عوامل بیرونی ایجاد رادیکال‌های آزاد عبارتند از:
• نگهدارنده‌ها و مواد شیمیایی در غذاها
• آفت‌کش‌ها در غذاهای غیر آلی
• داروهای تجویزی
• آلودگی و تابش و آفتاب سوختگی
• فلزات سنگین مانند جیوه، آلومینیوم و سرب
• الکل و سیگار
• ترانس و چربی‌های هیدروژنه شده

عوامل درونی ایجاد رادیکال‌های آزاد عبارتند از:
سیستم ایمنی بدن رادیکال‌های آزاد را در جهت از بین بردن باکتری‌ها، ویروس‌ها و قارچ‌ها تولید می‌کند. اگر سیستم ایمنی بدن بیش از حد فعال باشد (در موارد التهاب مزمن)، بار اضافی از استرس اکسیداتیو در بدن ایجاد می‌شود. در شرایط خاصی که عملکرد سیستم ایمنی بدن کاهش می‌یابد، عفونت های مزمن و بیماری مزمن متنوعی در بدن ایجاد می‌شود.
بدن به طور طبیعی رادیکال‌های آزاد را به عنوان یک محصول جانبی از تولید انرژی سلولی و سم‌زدایی از کبد تولید می‌کند. استرس به طور قابل توجهی باعث افزایش بار رادیکال آزاد در بدن می‌شود. همانطور که استرس موجب ترشح هورمون‌ها می‌شود، بدن آمادگی لازم جهت مبارزه و پاسخ ایمنی را به دست می‌آورد که باعث ایجاد تغییرات زیست شیمیایی و افزایش استرس اکسیداتیو در بدن می‌گردد.

 

منابع:

Halliwell, B. and Gutteridge, J.M., 1990. [1] Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology186, pp.1-85.

Halliwell, B., 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. The lancet344(8924), pp.721-724.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology39(1), pp.44-84.

نوشته شده در دیدگاه‌تان را بنویسید

اهمیت آنتی‌اکسیدان‌ها در صنعت مواد غذایی

غذاهای آنتی‌اکسیدانی و مواد تشکیل‌دهنده آن جزء مهمی از صنایع غذایی هستند. در گذشته، آنتی‌اکسیدان‌ها در درجه اول برای کنترل اکسیداسیون و تضعیف آسیب‌ها استفاده می‌شدند، اما امروزه بسیاری از آن‌ها به دلیل مزایای بهداشتی کاربرد دارند. با این حال، استرس اکسیداتیو، که شامل تولید گونه‌های فعال اکسیژن(ROS) است، زمینه‌ای برای بروز بیماری‌های مزمن و پیری است. شواهد جمع آوری شده نشان می‌دهد که ROS عملکردهای متابولیک ضروری را مختل می‌کند و حذف بسیاری از ROS ها می‌تواند مسیرهای سیگنالینگ سلول را بهبود بخشد و در واقع خطر ابتلا به بیماری مزمن را کاهش می‌دهد. ضروری است که صنایع غذایی از پیشرفت در این زمینه آگاهی یابند تا علم مربوط به مواد غذایی را به روشنی بیان کنند. این ممکن است به معنی بررسی دوباره پیامدهای سلامت و تغییر مقدار آنتی‌اکسیدانی مواد غذایی باشد.
امروزه در صنایع‌غذایی و دارویی استفاده گسترده‌ای از آنتی‌اکسیدان‌های طبیعی و مصنوعی می‌شود. آنتی‌اکسیدان‌های طبیعی مانند پلی‌فنل‌ها عمدتا از گیاهان حاصل می‌شوند، در حالی که آنتی‌اکسیدان‌های مصنوعی به طور صنعتی تولید می‌شوند و اهمیت این آنتی‌اکسیدان‌ها در حفاظت از مواد غذایی روشن است. چربی‌ها و مواد مغذی موجود در بسیاری از انواع غذاها مانند گوشت دودی، گوشت قرمز، غذاهای روزانه و غذاهای دریایی، می‌توانند فاسد شوند. فساد میکروبیولوژیک و اکسیداسیون چربی توسط رادیکال‌های آزاد که می‌تواند توسط نور، گرما یا یون‌های فلزی ایجاد شود رخ داده، سپس پراکسیدهای تشکیل‌شده در طول این واکنش‌ها، به‌نوبه خود، می‌توانند با لیپیدهای دیگر و اسیدهای چرب خاص واکنش دهند تا گونه‌های جدیدی از پراکسید را تشکیل دهند. اهمیت آنتی‌اکسیدان‌ها در این زمینه این است که ROS و رادیکال‌های آزاد را در طی واکنش جهت جلوگیری از تجزیه مواد غذایی از بین می‌برد.
عاملي که چالش اصلی در سنجش ظرفيت آنتي‌اکسيدان به حساب می‌آید بدین شرح است: در سيستم‌هاي بيولوژيک، حداقل چهار منبع عمومي آنتي‌اکسيدان‌ وجود دارد:
(1) آنزيم‌ها مانند سوپراکسيد ديسموتاز، گلوتاتيون پراکسيداز و کاتالاز
(2) مولکول‌های بزرگ (آلبومین، فریتین و پروتئین‌های دیگر)
(3) مولکول‌های کوچک ( اسید اسکوربیک، گلوتاتیون، اسید اوریک، توکوفرول، کاروتنوئیدها، (پلی) فنل )
(4) برخی از هورمون‌ها (استروژن، آنژیوتانسین، ملاتونین، و غیره)

از سوی دیگر، منابع چندگانه رادیکال و اکسیدان آزاد وجود دارد و هر دو اکسیدان و آنتی‌اکسیدان‌ها ویژگی‌های شیمیایی و فیزیکی متفاوت دارند. آنتی‌اکسیدان‌ها در بعضی موارد ممکن است با مکانیسم چندگانه در یک سیستم واحد یا با یک مکانیزم مختلف بسته به سیستم واکنش عمل کنند. علاوه بر این، آنتی‌اکسیدان‌ها ممکن است به شیوه‌ای متفاوت به منابع مختلف رادیکال و اکسیدکننده پاسخ دهند. به عنوان مثال، کاروتنوئیدها بر روی پراکسیل نسبت به فنول‌ها و سایر آنتی‌اکسیدان‌ها تاثیر کمتری داشته، با این حال، اکسیژن تنها یک رادیکال نیست و از طریق مکانیسم‌های رادیکالی واکنش نشان نمی‌دهد، بلکه واکنش بیشتر به صورت اضافه شدن از طریق پیوند و تشکیل آندوپروکسیدها صورت می‌گیرد که می‌توانند به رادیکال‌های آلوکسیل که باعث واکنش‌های زنجیره‌ای می‌شوند تبدیل شود.

از آنجایی که ویژگی‌های مکانی واکنش و مکانیسم‌های چندگانه در سنجش آنتی اکسیدانی تاثیرگذار هستند هیچ آزمایش واحدی به درستی تمام منابع رادیکال یا تمام آنتی‌اکسیدان‌ها را در یک سیستم پیچیده منعکس نمی‌کند. واضح است که مطابقت منابع رادیکال و ویژگی‌های سیستم با مکانیسم‌های واکنش آنتی‌اکسیدانی در انتخاب روش‌های مناسب آزمایش و همین‌طور در نظر گرفتن نحوه استفاده نهایی از نتایج، بسیار مهم است.

 

منابع:

Prior, R.L., Wu, X. and Schaich, K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry53(10), pp.4290-4302

Prieto, P., Pineda, M. and Aguilar, M., 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry269(2), pp.337-341

Erel, O., 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry37(4), pp.277-285

Janaszewska, A. and Bartosz, G., 2002. Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scandinavian journal of clinical and laboratory investigation62(3), pp.231-236

Koleva, I.I., Van Beek, T.A., Linssen, J.P., Groot, A.D. and Evstatieva, L.N., 2002. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical analysis13(1), pp.8-17

Finley, J.W., Kong, A.N., Hintze, K.J., Jeffery, E.H., Ji, L.L. and Lei, X.G., 2011. Antioxidants in foods: state of the science important to the food industry. Journal of Agricultural and Food Chemistry59(13), pp.6837-6846

Schillaci, C., Nepravishta, R. and Bellomaria, A., 2014. Antioxidants in food and pharmaceutical research. Albanian Journal of Pharmaceutical Sciences1(1), pp.9-15.

نوشته شده در دیدگاه‌تان را بنویسید

ارتباط TAC و بیومارکر MDA در مطالعات بالینی

زمانی که آنتی‌اکسیدان‌ها در بدن ضعیف می‌شوند و یا کاهش می‌یابند، سلول‌های بدن و بافت‌ها مستعد ابتلا به اختلالات عملکرد و بیماری می‌شوند بنابراین حفظ سطوح آنتی‌اکسیدانی کافی برای جلوگیری و یا حتی کنترل بسیاری از بیماری‌ها ضروری است.
استفاده از ظرفیت آنتی‌اکسیدانی تام (TAC) ، در بیوشیمی، پزشکی، علوم تغذیه و در بسیاری از بیماری‌های مختلف پاتوفیزیولوژی (بیماری‌های قلبی و عروقی، دیابت، بیماری‌های عصبی، روانپزشکی، اختلالات کلیوی و بیماری‌های ریوی) می‌تواند به عنوان یک بیومارکر قابل اعتماد تشخیصی و پیش آگهی مورد مطالعه قرار بگیرد، اگرچه چندین توصیه برای سنجش آن باید مورد توجه باشد. مطالعه بیومارکرهای آنتی‌اکسیدانی دیگر نیز مانند عناصر پاسخ آنتی‌اکسیدانی ژنتیکی (ARE) و یا ویتامین‌های آنتی‌اکسیدانی و دیگر بیومارکرهای ارزشمند اکسیداتیو / نیتروژنیک نیز می‌تواند برای ارزیابی مداخلات تغذیه‌ای با غذاهای غنی از TAC در مورد خطر و پیشگیری از بیماری، از جمله استراتژی های ضد پیری مفید باشد.

رادیکال‌های آزاد زمانی که بیش از حد تولید می‌شوند و یا در اثر کمبود آنتی‌اکسیدان‌ها سطح بالایی در سلول دارند، می‌توانند ساختار و عملکرد پروتئین را تغییر دهند و باعث پراکسیداسیون لیپیدها شده و باعث آسیب DNA گردد. تجزیه پراکسید‌های لیپید محصولات متنوعی را تولید می‌کند. از جمله آن، مالون‌دی‌آلدهید (MDA) یک محصول پراکسیداسیون لیپیدی است که به خوبی مطالعه و بررسی شده است. سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی در نتیجه حضور رادیکال‌های آزاد عمل می‌کند.

پراکسیداسیون لیپید ناشی از ROS در تغییرات بدخیم دخیل بوده و اهداف اولیه پراکسیداسیون توسط ROS اسید چرب غیر اشباع شده در چربی‌های غشایی است. علاوه بر این، تجزیه این لیپیدهای پراکسیداسیون، انواع محصولات نهایی مانند MDA را تولید می‌کند. MDA به عنوان بیومارکر موتاژنیک و سرطان زایی مورد توجه قرار گرفته است. همچنین می توان از آن به عنوان بیومارکر تشخیص بیان ژن‌های مربوط به پیشرفت تومور استفاده کرد. بنابراین، سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی حاصل از رادیکال‌های آزاد عمل می‌کند. افزایش سطح MDA در بیماران OSCC ( سرطان سلول‌های سنگفرشی دهان) نسبت به گروه شاهد مشاهده شده است. این افزایش در MDA ممکن است به علت شکل‌گیری رادیکال های آزاد بیش از حد و تجزیه اسیدهای چرب اشباع‌نشده موجود در غشاء باشد و یا ممکن است به علت اصلاح ناکافی رادیکال‌های آزاد توسط سیستم آنتی‌اکسیدانی ضعیف سلولی باشد. افزایش سطح MDA و کاهش میزان TAC موجود در سرم و بافت بیماران OSCC در مطالعات به خوبی بررسی و اثبات شده است.

اثرات آنتی‌اکسیدانی NO-MDA با یکدیگر مرتبط هستند؛ NO باعث پراکسیداسیون لیپید می‌شود که به نوبه خود MDA را تولید می‌کند. فعالیت های MDA و NO در سرطان زایی بستگی به وضعیت آنتی‌اکسیدانی کل دارد. بدین ترتیب که این مکانیزم‌ها به طور متقابل در ارتباط هستند، نیاز به مطالعه آن‌ها با هم وجود دارد.
مطالعات نشان می‌دهد میزان استرس اکسیداتیو و نیتروژنیک در بیماران سرطانی دهان افزایش یافته و بیانگر سطح بالایی از NO و MDA و کاهش TAC به عنوان دفاع آنتی‌اکسیدانی اثبات شده است. افزایش سطح NO سرم و بافت منجر به پراکسیداسیون لیپیدها و در نتیجه باعث افزایش سطح سرمی و بافتی MDA می‌گردد. ارتباط مثبت NO-MDA نشان می‌دهد که DNA آسیب دیده در اثر اکسیداسیون، یک پدیده حیاتی برای سرطان زایی است که به دلیل تعامل ROS و RNS ( گونه‌های فعال نیتروژن) همراه با TAC رخ می‌دهد.

هم چنین در بیماران مزمن کلیوی، سطح MDA و گلوتاتیون اکسیدشده (GSSG) افزایش و غلظت GSH و GPx کاهش یافته که بررسی‌ها در این بیماران سطح پایینی از TAC را نشان می‌دهد. بیماران مبتلا به صرع دارای گلوتاتیون ردوکتاز اریتروسیتوز و سطح ویتامین‌های A و C پایین نسبت به گروه شاهد هستند و سطوح بالاتری از اریتروسیت MDA، سرولوپلاسمی و همولیز را نسبت به افراد کنترل نشان دادند که در این بیماران نیز TAC کاهش یافته است.
Pleural effusion لنفوسیت‌ها در بیماران مبتلا به سرطان، کاهش سطح TAC و درجه بالاتری از آسیب اکسیداتیو DNA را نشان می‌دهد. کودکان مبتلا به سرطان استخوان، لنفوم Burkitt و لوسمی حاد ميلوئژن، سطح پلاسماي MDA بالاتري داشته و در زنان مبتلا به سرطان سینه ، بیماران مبتلا به فیبروآدنوم و آدنوکارسینوم پستان سطح پلاسما و اریتروسیت MDA افزایش یافته و غلظت GSH و ویتامین های C و E کاهش می‌یابد.

در نتیجه می‌توان به این نکته اشاره کرد که با افزایش سطح رادیکال‌های آزاد در سلول مانند NO و فعالیت اکسیداسیونی آن، سطح MDA به عنوان یک بیومارکر افزایش می‌یابد و سطح TAC که دفاع آنتی اکسیدانی در مقابل استرس اکسیداتیو محسوب می‌شود، در مقایسه با گروه شاهد کاهش معناداری را از خود نشان می‌دهد.  سنجش میزان TAC سلولی می‌تواند به تشخیص و پیش‌آگاهی بیماری و میزان استرس اکسیداتیو سلولی در نتیجه حضور رادیکال‌های آزاد منجر شود.

 

منابع:

 

Alipour, M., Mohammadi, M., Zarghami, N. and Ahmadiasl, N., 2006. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits. Journal of sports science & medicine5(4), p.682

Sies, H., 2007. Total antioxidant capacity: appraisal of a concept. The Journal of nutrition137(6), pp.1493-1495

Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M.L. and Benedito, J.L., 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary science80(2), pp.133-139

Samouilidou, E. and Grapsa, E., 2003. Effect of dialysis on plasma total antioxidant capacity and lipid peroxidation products in patients with end-stage renal failure. Blood purification21(3), pp.209-212

Korde, S.D., Basak, A., Chaudhary, M., Goyal, M. and Vagga, A., 2011. Enhanced nitrosative and oxidative stress with decreased total antioxidant capacity in patients with oral precancer and oral squamous cell carcinoma. Oncology80(5-6), pp.382-389.

 

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در دیدگاه‌تان را بنویسید

آیا آنتی‌اکسیدان‌ها می‌توانند باعث تشدید سرطان شوند؟

علیرغم اینکه آنتی‌اکسیدان‌ها در صنعت مکمل‌های غذایی بسیار درآمدزا می‌باشند، اما بسیاری از افراد از اطلاعات کافی در مورد آنتی‌اکسیدان‌ها و فواید آنها برای انسان غافل‌اند. اعتقاد رایج بر‌این‌است که آنتی اکسیدان‌ها قادر به پیشگیری از سرطان بوده و سلول‌ها را در برابر”گونه‌های فعال اکسیژن” یا “رادیکال‌های آزاد” محافظت کنند. رادیکال‌های آزاد در سلول‌ها تولید و قادر به تخریب ساختارهای سلولی و ژنوم آن می‌باشند که نتیجه آن بروز سرطان خواهد بود.

با این حال سلول‌ها انواع مختلفی از سطوح رادیکال‌های آزاد را تولید می‌کنند، مانند برخی سلول‌های  سیستم ایمنی که برای تخریب پاتوژن‌ها مورد استفاده قرار می‌گیرند. بنابراین بایستی از مزایا و معایب حذف رادیکال‌های آزاد با کمک آنتی‌اکسیدان‌ها آگاه بود. چنانچه همه رادیکال‌های آزاد حذف شوند، ممکن‌ است از اقدامات مفید آن‌ها جلوگیری گردد. دلیل این امر می‌تواند عدم وجود  اطلاعات جامع در مورد نقش آنتی اکسیدان‌ها به عنوان اجازه دهنده یا ممانعت کننده از بروز سرطان و درمان آن بوسیله آنتی‌اکسیدان‌ها باشد.

محققان در کالج کینگ لندن اخیرا تحقیقاتی در مجله موسسه ملی سرطان منتشر کرده‌اند که نشان می‌دهد رادیکال‌های آزاد تنها به عنوان عوامل مضر شناخته نمی‌شوند. مکمل‌های آنتی‌اکسیدان می‌توانند در برخی موارد آسیب بیشتری در مقایسه با فواید خود در سلول‌ها از خود برجای گذارند.

شکل دادن به سلول‌های سرطانی

در سال 2008 این مطلب بیان شد که سلول‌های ملانوم – جدی‌ترین شکل سرطان پوست – می‌توانند شکل خود را بسته به مقدار دو مولکول کلیدی مخالف هم به نام‌هایRac و Rho که مانند یک سوئیچ عمل می‌کنند، تغییر دهند. اگر Rac بیشتر و Rho کمتر وجود داشته باشد، سلول‌ها به حالت کشیده Spindly تبدیل می‌شوند و در حالت عکس سلول‌ها کروی می‌شوند. به تازگی روشن شده است سلول‌های کروی به راحتی قادر به مهاجرت و در نتیجه متاستاز خواهند بود.

 

به منظور بررسی این‌که چگونه Rac و Rho در مسیر تاثیر رادیکال‌های آزاد بر سرطان دخالت دارند، سلول‌های ملانوم در آزمایشگاه رشد داده و با استفاده از آنتی‌اکسیدان‌ها برای حذف گونه‌های فعال اکسیژن تیمار شدند. در نتیجه سلول‌ها شکل کروی به خود گرفته ، سریع‌تر مهاجرت کرده و باعث گسترش سریع توده‌های سرطانی در سطح بدن شدند.

مهار سیگنال‌های Rho و افزایش Rac ، مقدار رادیکال‌های آزاد را افزایش و در‌نتیجه سلول ها را کشیده‌تر و حرکت آنها را کندتر می‌سازد. از سوی دیگر افزایش رادیکال‌های آزاد، موجب بیان برخی ژن‌های سلولی مانند p53 می‌شود که موجب محافظت سلول در مقابل سرطان می‌گردد،لکن در خود سلول در طول سرطان این اثر از بین می‌رود. ژن دیگر PIG3 است که به ترمیم DNA کمک و به طور غیرمنتظره‌ای منجربه سرکوب فعالیت Rho  می‌شود.

این مطالعه با بررسی تومور‌های پوستی موش تایید شد. اگر سلول‌های سرطانی سطوح بالاتری از PIG3  داشته باشند، به‌ علت افزایش رادیکال‌های آزاد، حیوانات زنده‌مانی بیشتری دارند. این تومورها به آرامی رشد می‌کنند و سلول‌های سرطانی به اندازه زیاد گسترش نمی‌یابند.

در مقابل، بیماران انسانی که سطوح پایین PIG3 داشتند، سلول‌های سرطانی کروی بیشتری دارا بودند و سریعا در سطح بدن گسترش یافتند. در عین حال، پرونده‌های ژنتیکی بیماران سرطانی نشان داد افرادی که مبتلا به ملانوم گسترش یافته‌اند مقادیر کم PIG3، اما سطح بالایی از پروتئین‌ها تحت کنترل Rho را نشان می‌دهد.

 

بنابراین، به طور خلاصه، استفاده از داروها برای کاهش Rho و افزایش محصولات Rac  باعث افزایش رادیکال‌های آزاد و به همین ترتیب PIG3 می‌شود که باعث کاهش احتمال گسترش سلول‌های سرطانی می‌گردد. شواهد بدست آمده از این مطالعه قویا این فرضیه را که استفاده از آنتی‌اکسیدان‌ها قادر به مهار و درمان ملانوما می‌باشد را رد کرد.

 

احتیاط مصرف آنتی‌اکسیدان‌ها

از آنجائیکه اکثر تحقیقات برروی سلول‌های ملانوم در محیط‌های آزمایشگاهی انجام شده است نتیجه گیری قطعی مستلزم مطالعات بیشتری مبنی بر نقش داروهای مهار کننده مسیر سیگنالینگ  Rho بر روی سلول‌های سرطانی می‌باشد. از سویی دیگر داروهای مشابهی در تحقیقات بالینی برای گلوکوم، فشارخون بالا و بیماری‌های قلبی مورد آزمایش قرارگرفته‌ و ایمنی مصرف آن‌ها در بیماران تایید شده است. تحقیقات رو به رشد نشان می‌دهد این خانواده از داروها می‌تواند به کاهش سرعت گسترش سرطان پوست کمک کند.

مطالعات دیگر نشان می‌دهد که آنتی‌اکسیدان‌ها می‌توانند خطر ابتلا به سرطان را بالا ببرند و سرعت پیشرفت آن‌را افزایش دهند. دوزهای بالایی از آنتی‌اکسیدان‌ها هم‌چنین می‌توانند در برخی از درمان‌های سرطانی مانند شیمی‌درمانی دخالت داشته باشند که بر رادیکال‌های آزاد تأثیر می‌گذارند و در نهایت باعث کشتن سلول‌های سرطانی می‌شوند.

در حالی که نتایج به طور قطع از آسیب‌های آنتی‌اکسیدان‌ها به سلول‌های سالم عاجز هستند اما استفاده از آنتی‌اکسیدان‌ها در بیماران مبتلا به سرطان از توجه ویژه‌ای برخوردار است. آگاهی کامل از مزایا و معایب مصرف مکمل‌های آنتی‌اکسیدانی، مستلزم مطالعات تکمیلی برای ارائه راهکاری جهت مهار رادیکال‌های “بد” و تفکیک آن‌ها از رادیکال‌های “خوب” می‌باشد.

 : منبع

Herraiz, C., Calvo, F., Pandya, P., Cantelli, G., Rodriguez-Hernandez, I., Orgaz, J.L., Kang, N., Chu, T., Sahai, E. and Sanz-Moreno, V., 2016. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination. JNCI: Journal of the National Cancer Institute, 108.1.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی اکسیدان ها قدرت باروری مردان را افزیش می‌دهند

محققان دانشگاه استرالیا و دانشگاه Monash  کشف کرده‌اند که رژیم غذایی آنتی­‌اکسیدانتی می‌تواند به حفظ باروری مردان کمک کند.

دکتر ماریا آلمبرو و پروفسور سیمونز از مرکز زیست شناسی تکاملی UWA و دکتر Damian Dowling از دانشکده علوم زیستی دانشگاه Monash ، در مورد جیرجیرک­‌ها مطالعه کردند و دریافتند که ترکیبی از آنتی‌اکسیدان‌ها بهترین سلاح برای تقویت سلامت جنسی مردان است .

پروفسور سیمونز گفت مولکول‌هایی با قدرت واکنش بالا با عنوان رادیکال‌های آزاد ، محصولات متابولیسم­ سلولی که به عنوان سوخت سلولی عمل می‌کنند را از بین می‌برند. اگر رادیکال­های آزاد توسط آنتی اکسیدان‌ها خنثی نشوند باعث آسیب سلول ها خواهند شد.

دکتر آلبرو گفت اسپرم‌ها در معرض حمله رادیکال‌های آزاد هستند و این مطالعه نشان داده است که بهترین دفاع در برابر صدمه اسپرم، حضور دو آنتی­اکسیدان ویتامین E و بتا کاروتن است.

می­توان گفت اسپرم‌ها با هم رقابت می‌کنند و ما می‌توانیم انتظار داشته باشیم که موفق‌ترین اسپرم ماندگاری بالایی تا زمان رسیدن به سلول همتای ماده دارد . مطالعه‌ها نشان داد که اسپرم مردانی که از آنتی اکسیدان‌ها تغذیه می کنند نیمه عمر بالاتری نسبت به اسپرم مردان بدون رژیم آنتی اکسیدانی دارند.

دکتر داولینگ گفت دانشمندان پزشکی قبلا شواهدی را ارائه کرده اند که آنتی اکسیدان ها در حفظ سلامت اسپرم مهم هستند.

تحقیقات دانشمندان تنها به شرایط آزمایشگاهی محدود نشده بلکه آزمایش برروی موجود زنده، نشان می‌دهد که آنتی‌اکسیدان ها در تولید مثل جنس نر بسیار مهم هستند. این آزمایش تحت شرایط سختگیرانه و با استفاده از جیرجیرک‌هایی که رژیم غذایی آنتی‌اکسیدانی دارند به عنوان نمونه انجام شد و محققان اکنون مکانیزم دقیقی را معرفی کرده‌اند که مشخص می‌کند آنتی اکسیدان های غذایی باعث افزایش باروری جنس نر در این حشرات می‌شوند.

 

منبع:

Almbro, M., Dowling, D.K. and Simmons, L.W., 2011. Effects of vitamin E and beta‐carotene on sperm competitiveness. Ecology letters, 14(9), pp.891-895.

نوشته شده در دیدگاه‌تان را بنویسید

مزیت سنجش ظرفیت آنتی‌اکسیدانتی در گاوهای شیری

از جمله مهمترین مشکلات در مزارع پرورش گاو شیری در طی دوره انتقال (سه هفته قبل از زایش و سه هفته بعد از زایش)، کاهش مصرف ماده خشک، وضعیت توازن منفی انرژی و کاهش ظرفیت سازش‌پذیری گاو شیری در مقابل تغییرات فیزیولوژیکی است. در طی اواخر دوره‌ی آبستنی، نیازمندی‌های تغذیه‌ای جنین به طور قابل توجهی افزایش می‌یابد، در حالی که مصرف خوراک در سه هفته آخر آبستنی کاهش پیدا می‌کند. این کاهش می‌تواند ناشی از رشد جنین و کاهش سایز شکمبه باشد؛ بعلاوه، در طی این دوره تقریبا تمام گلوکز دریافتی برای سنتز لاکتوز مورد استفاده قرار می‌گیرد که ماحصل آن در طی دوره انتقالی گاو شیری، بالانس منفی انرژی است.
این بالانس منفی انرژی زمانی رخ می‌دهد که تقاضای انرژی بیش از میزان جیره دریافتی است و در مواردی که انرژی مورد نیاز بوسیله جیره تامین نمی‌شود، گاو شیری از ذخایر چربی خود بعنوان منبع انرژی استفاده خواهد کرد. بعلاوه، در طی دوره انتقالی، با توجه به اینکه فرایندهای متابولیکی افزایش می‌یابند، حساسیت گاوهای شیری به استرس متابولیکی بیشتر شده و منجر به افزایش تولید گونه‌های فعال اکسیژن (ROS) می‌گردد.
گونه‌های فعال اکسیژن، رادیکال‌های آزادی هستند که از فرایندهای متابولیک طبیعی حاصل می‌شوند و می‌توانند برای سلول‌های بدن مضر و مخرب باشند و منجر به آسیب سلول‌ها، بافت‌ها و DNA شوند. استفاده از آنتی‌اکسیدانت‌ها جهت مهار تشکیل رادیکال‌های آزاد، نابود کردن و یا ترمیم آسیب‌های ناشی از آنها می‌تواند موثر واقع شود. با این حال اگر عدم تعادلی میان آنتی اکسیدانت‌ها و گونه‌های فعال اکسیژن باشد، سیستم دفاع طبیعی بدن دچار اختلال می‌گردد. رادیکال‌های آزاد علاوه بر سرکوب سیستم ایمنی در بسیاری از بیماریها نیز نقش دارند. با این تفاسیر، در 10 روز اول بعد از زایمان، گاوهای شیری در معرض بیشترین میزان ابتلا به اختلالات عفونی و متابولیک می‌باشند. در واقع، با توجه به تحقیقات انجام گرفته توسط Abuelo و همکارانشان در سال ۲۰۱۴ حدود 75٪ از بیماری‌ها در ماه اول شیردهی رخ می‌دهد.
از عوارض بروز استرس متابولیک در گاوهای شیری می‌توان به موارد زیر اشاره کرد:
کبد چرب، کتوز، ورم پستان، باقی‌ماندن پرده‌های جنینی، کاهش تولید، خطر ابتلا به سرطان، بیماری قلبی عروقی، ریوی، بیماری کلیوی، بیماری‌های التهابی مانند آرتریت، شرایط عفونی و اختلالات عصبی.

چگونه سلامتی گاو شیری می‌تواند در طی دوره انتقالی مصون بماند؟

برای اطمینان از سلامتی حیوانات، و کاهش زیان‌های اقتصادی برای دامداران، گاو شیری باید از نظر ظرفیت آنتی اکسیدانی، به خصوص در دوران بارداری تحت نظارت و بررسی قرار گیرد، سیستم دفاع آنتی اکسیدانتی اجزای بسیار زیادی دارد که می‌توان از سنجش ظرفیت آنتی‌اکسیدانتی تام برای اطلاع از کل وضعیت آنتی‌اکسیدانتی استفاده کرد و ارزیابی مناسبی را از توانایی بدن برای مقابله با حمله رادیکال‌های آزاد انجام داد. جهت حصول اطمینان از مکمل‌های غذایی مورد نیازی که برای ایجاد شرایط بدنی مناسب در طول دوره انتقالی گاوهای شیری استفاده می‌شود، سنجش ظرفیت آنتی‌اکسیدانتی تام می‌تواند کمک کننده باشد.

منابع:

Abuelo A., Hernandez J. and Beneditor J.L (2014) The importance of oxidative status of dairy carrel in the periparturient period: revisiting antioxidant supplementation. Journal of Animal Physiology and Animal Nutrition. 99(6):1003-1016

Li, H. Q., et al. (2016) Effects of dietary supplements of rumen-protected folic acid on lactation performance, energy balance, blood parameters and reproductive performance in dairy cows. Animal Feed Science and Technology

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدانت‌ها جلوی پیری را نمی‌گیرند

رادیکال‌های آزاد سوپراکسید به عنوان یکی از محصولات فرعی متابولیسم تولید می‌شوند. این مولکول‌‌ها اساسا ناپایدار هستند و الکترون‌های آزاد زیاد آن‌ها به‌دنبال موادی هستند که با آن‌ها پیوند ایجاد کنند. این پدیده بصورت مشابه در مورد زنگ زدن آهن نیز اتفاق می‌افتد و آهن به اکسید آهن تبدیل می‌شود. تنها تفاوت این است که در بدن انسان، مکانیسم‌های بیولوژیکی وجود دارند که می‌توانند این واکنش را متوقف یا آن‌را برعکس کنند.

در سال ۱۹۵۶ دِنهام هارمان، پیری‌شناس معروف عنوان کرد که پیری در واقع در نتیجه تجمع «استرس اکسیداتیو» حاصل از اثر رادیکال‌های آزاد بر سلول‌ها ایجاد می‌شود. حال جِمز و همکاران در تحقیقات خود اثبات کرده‌اند که این تئوری صحیح نبوده و سوپراکسید ذکر شده عامل اصلی پیری نیست.

برای انجام این تحقیق، جِمز و همکاران ژن‌های کنترل‌کننده پاکسازی سوپراکسید از نماتود Caenorhabditis elegans که بصورت معمول در تحقیقات پیری استفاده می‌شود، را مورد مطالعه قرار دادند. آن‌ها با روشن و خاموش کردن ژن‌های خاص توانستند که ظرفیت پاکسازی این کرم‌ها را به نحوی تغییر دهند که صدمات بالقوه حاصل از اکسیداسیون کاهش یابد.

براساس این یافته جمز عنوان می‌کند: «اگر حتی سوپراکسید در تجمع صدمات سلولی که باعث ایجاد پدیده پیری شود، تاثیر بسیار کمی در این زمینه خواهد داشت.» او ادامه می‌دهد: «آسیب اکسیداتیو به عنوان یک عامل اصلی و کلی در پیشبرد پدیده پیری مطرح نیست. سایر عوامل، از جمله واکنش‌های شیمیایی که قند‌ها در آن دخیل هستند، نقش بیشتری در این زمینه دارند.»

 

منبع:

Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes & development. 2008 Dec 1;22(23):3236-41.

نوشته شده در دیدگاه‌تان را بنویسید

روش‌های تعیین ظرفیت آنتی اکسیدانتی (قسمت اول)

شواهد بیوشیمیایی، زیستی و بالینی فراوان وجود دارد که نشان می‌دهد واکنش اکسایشی ناشی از رادیکال‌های آزاد (ROS) درایجاد بیماری‌های مختلف، تسریع پیری و فساد موادغذایی دخالت دارد. به دلیل خاصیت آنتی اکسیدان‌ها در ممانعت از اثرات رادیکال آزاد در ایجاد بیماریها و فساد مواد غذایی، نقش و اثر آنتی اکسیدانها مورد توجه محققین، پزشکان وعموم مردم قرار گرفته است و مطالعات ارزیابی ظرفیت آنتی اکسیدانی یکی از متداولترین موضوعات مورد بررسی در سالهای اخیر بوده است.روشهای تعیین ظرفیت آنتی اکسیدانی بر اساس ساز و کار انتقال اتم هیدروژن شامل  TRAP،ORAC  و CBA و بر اساس سازوکار روش انتقال الکترون شاملFRAP , TEAC  و DPPH میباشد. در کنار این روشهای تقریبا سنتی در سالهای اخیر روشهای دستگاهی مانند DSC نیز در تعیین ظرفیت آنتی اکسیدانی و پیشرفت اکسیداسیون مطرح شده است.در اینجا به بررسی معایب و مزایای روش TRAP می پردازیم.TRAP یکی از روش‌های متداول تعیین ظرفیت آنتی اکسیدانی پلاسمای خون می‌باشد. در این روش نیز سرعت پراکسیداسیون القا شده توسط AAPH (2’-Azobis (2-AmidinoPropane) Hydrochloride) از طریق کاهش شدت فلوئورسنس پروتئین آر فیکواریترین اندازه گرفته می‌شود. روش TRAP به طرق متعددی انجام میشود روش اولیه آزمون TRAP به این ترتیب است که بعد از اضافه کردن AAPH به پلاسما مقدار اکسیداسیون مواد قابل اکسید شدن از طریق اندازه‌گیری مقدار اکسیژن مصرفی در طول واکنش توسط الکترودهای اکسیژن اندازه گرفته می‌شود. در حضور آنتی اکسیدان‌ها در پلاسما زمان آغاز واکنش اکسیداسیون و یا مصرف اکسیژن به تاخیر میافتد. مدت زمان فاز تاخیری پلاسما با زمانی که مقادیر خاصی از استاندارد یا Trolox به پلاسمای خون اضافه شده است (استاندارد داخلی) مقایسه شده و به این ترتیب مقدارظرفیت آنتی اکسیدانی خون محاسبه می‌شود.

مزايا و معايب روشTRAP

این روش را می‌توان جهت ارزیابی ظرفیت آنتی اکسیدانی سرم و یا پلاسما (به طور کلی شرایط داخل بدن) بکار برد و میزان ظرفیت آنتی اکسیدان‌های غیرآنزیمی مانند گلوتاتیون و آسکوربیک اسید را اندازه گرفت اما از آنجایی که نقطه پایانی متفاوتی را می‌توان برای این روش در نظر گرفت بنابراین امکان مقایسه نتایج در تحقیقات مختلف وجود ندارد. این روش نسبتا پیچیده و زمان‌بر بوده و علاوه بر این اجرای آن نیاز به تخصص و تجربه دارد.

در بخش بعدی به بررسی روش ORAC در سنجش ظرفیت آنتی اکسیدانتی می‌پردازیم. برای مطالعه ادامه مطلب کلیک کنید.

منبع:

حسینی سپیده، قراچورلو مریم، غیاثی طرزی بابک و قوامی مهرداد. مروری بر روشهای تعیین ظرفیت آنتی اکسیدانی (اساس واکنش، روش کار، نقاط قوت و ضعف). Food Technology and Nutrition.

نوشته شده در دیدگاه‌تان را بنویسید

انسولین در مقابله با استرس اکسیداتیو و التهاب موثر نیست

تزریق زیرپوستی انسولین (CSII) برای درمان دیابت نوع ۱ به عنوان استاندارد طلایی مطرح است. این روش تزریق گرچه به اندازه تزریق داخل بطنی، فیزیولوژیک نیست اما می‌تواند در بسیاری از بیماران باعث تغییرات گلایسمیک شود که خود یک محرک قوی تولید گونه‌های فعال اکسیژن است. با وجود اینکه نقش این استرس اکسیداتیو در دیابت به عنوان یک عامل مطرح است و خصوصیات دقیق آن مشخص نشده است، مخصوصا در کبد که به عنوان یک ارگان حساسیت به انسولین مدنظر است. در طی شرایط فیزیولوژیک، یک سیستم آنتی‌اکسیدانتی طبیعی مسولیت تنظیم تعادل را بر عهده دارد. بقای میزبان نیز به قابلیت سلول و بافت به قابلیت مقابله و یا سازگاری با این استرس بستگی دارد. بافت باید بتواند در مقابله با این استرس به ترمیم و یا حذف مولکلول‌ها و سلو‌ل‌های آسیب دیده بپردازد.

سیگریست و همکاران در مرکز مطالعات دیابت اروپا (CEED، استراسبورگ، فرانسه) در ژانویه سال ۲۰۱۶ در مقاله‌ای که در ژورنال Experimental Biology and Medicine‌ چاپ شد نشان دادند که در مدل دیابتی رت، افزایش سریعی در استرس اکسیداتیو هپاتیک و بیومارکرهای التهابی اتفاق می‌افتد که به همراه کاهش بسیار شدید ذخیره گلیکوژن و سنتز پروتئین است. با تجویز مداوم زیر پوستی انسولین بوسیله یک مینی-پمپ اسموتیک، استرس اکسیداتیو در کبد و بصورت سیستمیک کاهش یافت اما با ادامه یافتن وضعیت دیابتیک این کاهش از بین رفت. در حقیقت، CSII نتوانست تعادل گونه‌های آنتی و پرواکسیداتیو را حفظ کند. این نتایج برای اولین بار نشان داد که برای مقابله با عوارض دیابت، استفاده از درمان آنتی‌اکسیدانتی می‌تواند یک روش جدید باشد چرا که درمان‌های معمول با انسولین به تنهایی برای محافظت کبد در مقابل عوارض مزمن دیابت کافی نیست. از این جهت نتیجه‌گیری می‌شود که ترکیب درمان انسولین با سایر مواد درمانی جهت مقابله با استرس اکسیداتیو و التهاب مورد نیاز است.