نوشته شده در دیدگاه‌تان را بنویسید

از رادیکال آزاد تا شکستگی لگن

تحقیقات جدید اپیدمولوژیست‌های دانشگاه سینسیناتی (UC) نشان می‌دهد که استرس اکسیداتیو، عامل مهم برای شکستگی لگن در زنان یائسه می‌باشد. استرس اکسیداتیو به عنوان استرس های فیزیولوژیکی در بدن است که توسط تجمع رادیکا‌ل‌های آزاد که با آنتی‌اکسیدانت‌ها خنثی نشده‌اند ایجاد می‌شود. استرس اکسیداتیو به طور طبیعی رخ می‌هد ولی عواملی مانند تابش طبیعی و مصنوعی، مواد سمی در هوا، آب و غذا و منابع دیگر مانند دود سیگار و شکست دفاع آنتی اکسیدان بدن نیز دخیل هستند. محققان با اندازه‌گیری محصولات اکسیداسیون فلورسنت  (FLOP (Fluorescent Oxidation Products در پلاسمای خون استرس اکسیداتیو را اندازه‌گیری می‌کنند. FLOP نشان دهنده ترکیبی از محصولات اکسیداسیون لیپیدها، پروتئین ها و DNA است و می تواند توسط دستگاه اسپکتروفتومتر فلورسنت اندازه گیری شود. در این مطالعه از ۹۹۶ زن ۶۰ ساله یا مسن‌تر استفاده کردند و FLOP موجود در پلاسمای آن‌ها را در طول موج‌های مختلف اندازه‌گرفتند.

FlOP_360 نشان‌دهنده‌ی اکسیدشدن فسفولیپید‌ها یا اکسیداسیون چربی‌ها در واکنش با پروتیئن‌هاست. این ماده، محصولات اکسیداسیون مانند هیدروپراکسید چربی‌ها، آلدئیدها و کتون ها با DNA در حضور فلزات را نشان می‌دهد. FlOP_400 نشان دهنده تعامل بین مالون دی آلدئید (MDA : نشانگر خاص برای اکسیداسیون چربی)، پروتئین‌ها و فسفولیپیدها است.محققان با بررسی سه طول موج دریافتد که ریسک شکستگی لگن برای افرادی با سطح پایه‌ی FlOP_320 بیشتر از سایر افراد است. افزایش FlOP_320 با خطر بیشتری از شکستگی لگن همراه بود به طوری که در زنانی که میزان FlOP_320، بالای ۳۰٪ قرائت شده است ریسک شکستگی لگن ۲.۶۷ برابر بیشتر از زنانی است که کمتر از ۳۰٪ گزارش شده است. از آنجایی که FlOP_320 در حضور فلزات سنگین اتفاق می‌افتد در نتیجه باید ارتباط قوی میان شکستگی لگن و فلات سنگین وجود داشته باشد (زیرا سایرFLOP ها در عدم حضور فلزات سنگین هم رخ می‌دهند). شکستگی استخوان علاوه بر هزینه‌های زیاد، ناتوانی افراد و مرگ‌ومیر ناشی از شکستگی‌ها را به دنبال دارد. محققان دریافتند که علاوه بر عوامل معمول مانند کهولت سن و پوکی استخوان، FLOP_320 نقش مهمی در ارزیابی ریسک شکستگی لگن دارد.

اگر یافته‌های این مطالعه در مطالعات دیگر تایید شود، میتوان با اضافه کردن این نشانگر (FLOP_320) به مدل‌های ارزیابی شکستگی‌های موجود، شکستگی لگن در زنان یائسه را پیش‌بینی کرد و بهبود بخشید.

منبع:

Yang, S., Feskanich, D., Willett, W. C., Eliassen, A. H. and Wu, T. (2014), Association Between Global Biomarkers of Oxidative Stress and Hip Fracture in Postmenopausal Women: A Prospective Study. J Bone Miner Res, 29: 2577–2583. doi:10.1002/jbmr.2302

نوشته شده در دیدگاه‌تان را بنویسید

ارتباط TAC و بیومارکر MDA در مطالعات بالینی

زمانی که آنتی‌اکسیدان‌ها در بدن ضعیف می‌شوند و یا کاهش می‌یابند، سلول‌های بدن و بافت‌ها مستعد ابتلا به اختلالات عملکرد و بیماری می‌شوند بنابراین حفظ سطوح آنتی‌اکسیدانی کافی برای جلوگیری و یا حتی کنترل بسیاری از بیماری‌ها ضروری است.
استفاده از ظرفیت آنتی‌اکسیدانی تام (TAC) ، در بیوشیمی، پزشکی، علوم تغذیه و در بسیاری از بیماری‌های مختلف پاتوفیزیولوژی (بیماری‌های قلبی و عروقی، دیابت، بیماری‌های عصبی، روانپزشکی، اختلالات کلیوی و بیماری‌های ریوی) می‌تواند به عنوان یک بیومارکر قابل اعتماد تشخیصی و پیش آگهی مورد مطالعه قرار بگیرد، اگرچه چندین توصیه برای سنجش آن باید مورد توجه باشد. مطالعه بیومارکرهای آنتی‌اکسیدانی دیگر نیز مانند عناصر پاسخ آنتی‌اکسیدانی ژنتیکی (ARE) و یا ویتامین‌های آنتی‌اکسیدانی و دیگر بیومارکرهای ارزشمند اکسیداتیو / نیتروژنیک نیز می‌تواند برای ارزیابی مداخلات تغذیه‌ای با غذاهای غنی از TAC در مورد خطر و پیشگیری از بیماری، از جمله استراتژی های ضد پیری مفید باشد.

رادیکال‌های آزاد زمانی که بیش از حد تولید می‌شوند و یا در اثر کمبود آنتی‌اکسیدان‌ها سطح بالایی در سلول دارند، می‌توانند ساختار و عملکرد پروتئین را تغییر دهند و باعث پراکسیداسیون لیپیدها شده و باعث آسیب DNA گردد. تجزیه پراکسید‌های لیپید محصولات متنوعی را تولید می‌کند. از جمله آن، مالون‌دی‌آلدهید (MDA) یک محصول پراکسیداسیون لیپیدی است که به خوبی مطالعه و بررسی شده است. سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی در نتیجه حضور رادیکال‌های آزاد عمل می‌کند.

پراکسیداسیون لیپید ناشی از ROS در تغییرات بدخیم دخیل بوده و اهداف اولیه پراکسیداسیون توسط ROS اسید چرب غیر اشباع شده در چربی‌های غشایی است. علاوه بر این، تجزیه این لیپیدهای پراکسیداسیون، انواع محصولات نهایی مانند MDA را تولید می‌کند. MDA به عنوان بیومارکر موتاژنیک و سرطان زایی مورد توجه قرار گرفته است. همچنین می توان از آن به عنوان بیومارکر تشخیص بیان ژن‌های مربوط به پیشرفت تومور استفاده کرد. بنابراین، سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی حاصل از رادیکال‌های آزاد عمل می‌کند. افزایش سطح MDA در بیماران OSCC ( سرطان سلول‌های سنگفرشی دهان) نسبت به گروه شاهد مشاهده شده است. این افزایش در MDA ممکن است به علت شکل‌گیری رادیکال های آزاد بیش از حد و تجزیه اسیدهای چرب اشباع‌نشده موجود در غشاء باشد و یا ممکن است به علت اصلاح ناکافی رادیکال‌های آزاد توسط سیستم آنتی‌اکسیدانی ضعیف سلولی باشد. افزایش سطح MDA و کاهش میزان TAC موجود در سرم و بافت بیماران OSCC در مطالعات به خوبی بررسی و اثبات شده است.

اثرات آنتی‌اکسیدانی NO-MDA با یکدیگر مرتبط هستند؛ NO باعث پراکسیداسیون لیپید می‌شود که به نوبه خود MDA را تولید می‌کند. فعالیت های MDA و NO در سرطان زایی بستگی به وضعیت آنتی‌اکسیدانی کل دارد. بدین ترتیب که این مکانیزم‌ها به طور متقابل در ارتباط هستند، نیاز به مطالعه آن‌ها با هم وجود دارد.
مطالعات نشان می‌دهد میزان استرس اکسیداتیو و نیتروژنیک در بیماران سرطانی دهان افزایش یافته و بیانگر سطح بالایی از NO و MDA و کاهش TAC به عنوان دفاع آنتی‌اکسیدانی اثبات شده است. افزایش سطح NO سرم و بافت منجر به پراکسیداسیون لیپیدها و در نتیجه باعث افزایش سطح سرمی و بافتی MDA می‌گردد. ارتباط مثبت NO-MDA نشان می‌دهد که DNA آسیب دیده در اثر اکسیداسیون، یک پدیده حیاتی برای سرطان زایی است که به دلیل تعامل ROS و RNS ( گونه‌های فعال نیتروژن) همراه با TAC رخ می‌دهد.

هم چنین در بیماران مزمن کلیوی، سطح MDA و گلوتاتیون اکسیدشده (GSSG) افزایش و غلظت GSH و GPx کاهش یافته که بررسی‌ها در این بیماران سطح پایینی از TAC را نشان می‌دهد. بیماران مبتلا به صرع دارای گلوتاتیون ردوکتاز اریتروسیتوز و سطح ویتامین‌های A و C پایین نسبت به گروه شاهد هستند و سطوح بالاتری از اریتروسیت MDA، سرولوپلاسمی و همولیز را نسبت به افراد کنترل نشان دادند که در این بیماران نیز TAC کاهش یافته است.
Pleural effusion لنفوسیت‌ها در بیماران مبتلا به سرطان، کاهش سطح TAC و درجه بالاتری از آسیب اکسیداتیو DNA را نشان می‌دهد. کودکان مبتلا به سرطان استخوان، لنفوم Burkitt و لوسمی حاد ميلوئژن، سطح پلاسماي MDA بالاتري داشته و در زنان مبتلا به سرطان سینه ، بیماران مبتلا به فیبروآدنوم و آدنوکارسینوم پستان سطح پلاسما و اریتروسیت MDA افزایش یافته و غلظت GSH و ویتامین های C و E کاهش می‌یابد.

در نتیجه می‌توان به این نکته اشاره کرد که با افزایش سطح رادیکال‌های آزاد در سلول مانند NO و فعالیت اکسیداسیونی آن، سطح MDA به عنوان یک بیومارکر افزایش می‌یابد و سطح TAC که دفاع آنتی اکسیدانی در مقابل استرس اکسیداتیو محسوب می‌شود، در مقایسه با گروه شاهد کاهش معناداری را از خود نشان می‌دهد.  سنجش میزان TAC سلولی می‌تواند به تشخیص و پیش‌آگاهی بیماری و میزان استرس اکسیداتیو سلولی در نتیجه حضور رادیکال‌های آزاد منجر شود.

 

منابع:

 

Alipour, M., Mohammadi, M., Zarghami, N. and Ahmadiasl, N., 2006. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits. Journal of sports science & medicine5(4), p.682

Sies, H., 2007. Total antioxidant capacity: appraisal of a concept. The Journal of nutrition137(6), pp.1493-1495

Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M.L. and Benedito, J.L., 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary science80(2), pp.133-139

Samouilidou, E. and Grapsa, E., 2003. Effect of dialysis on plasma total antioxidant capacity and lipid peroxidation products in patients with end-stage renal failure. Blood purification21(3), pp.209-212

Korde, S.D., Basak, A., Chaudhary, M., Goyal, M. and Vagga, A., 2011. Enhanced nitrosative and oxidative stress with decreased total antioxidant capacity in patients with oral precancer and oral squamous cell carcinoma. Oncology80(5-6), pp.382-389.

 

نوشته شده در دیدگاه‌تان را بنویسید

استرس اکسیداتیو در بیماری مزمن ریه COPD

بیماری مزمن انسداد ریوی (COPD) یک بیماری تنفسی مزمن با علائم سیستمیک است که به طور معنی‌داری بر کیفیت زندگی بیماران تاثیرگذار است. این بیماری با انسداد جریان هوا همراه با التهاب ریه و تخریب بافت ریوی همراه بوده و عموما یک بیماری در طی پروسه پیری است. نشانگرهای استرس اکسیداتیو در بیماری مزمن انسداد ریوی (COPD) و گونه‌های فعال اکسیژن (ROS) می‌توانند مولکول‌های بیولوژیکی، مسیرهای سیگنالینگ و عملکرد مولکولی آنتی‌اکسیدان را تغییر دهند که بسیاری از آن‌ها در پاتوژنز COPD دخالت دارند.

شواهد نشان می‌دهد که عملکرد چندین سلول کلیدی در بیماران COPD در طی بیماری تغییر می‌کند و سطوح بیان مولکول‌های مهم اکسیدان و آنتی‌اکسیدان ممکن است غيرطبيعی باشد. آزمایشات درمانی در جهت تلاش برای بازگرداندن تعادل به این مولکول‌ها بر تمام جنبه های بیماری تأثیر نگذاشته این درحالیست که تاثیر ROS در COPD با مدل های فعلی و مسیرهای مربوط به آسیب بافت اثبات شده است.

روش‌های مختلفی برای ارزیابی حضور استرس اکسیداتیو در ریه بیماران مبتلا به COPD مورد استفاده قرار گرفته است و شواهد واضحی از افزایش بار اکسیداتیو در COPD در مقایسه با گروه‌های کنترل غیر سیگاری وجود دارد.

بررسی مایع تنفس ریه (EBC) یک روش موثر برای شناسایی محصولات استرس اکسیداتیو موجود در ریه است. مطالعات متعدد نشان داده است که H2O2 به میزان قابل توجهی در تراکم انسداد تنفس COPD در مقایسه با کنترل‌های سالم افزایش می‌یابد. با افزایش سطح H2O2 اسید آراشیدونیک که اسید چرب اشباع نشده در غشای سلولی است، افزایش چشمگیری یافته و می‌تواند توسط رادیکال‌های آزاد در in vivo پراکسیده شود تا ایزوپروستان‌ها را تشکیل دهد که در EBC اندازه گیری می‌شوند و در بیماری COPD قابل مشاهده است. همچنین میزان تولید پروتئین اسیدچرب، مالون دی آلدهید (MDA) نیز در EBC بیماران مبتلا به COPD افزایش یافته است. سطوح سرمی MDA و GPx (تعیین شده توسط فعالیت) با شدت COPD ارتباط دارد، با افزایش MDA سرم و کاهش GPx شدت بیماری COPD افزایش می‌یابد.

با استفاده از رنگ‌آمیزی ایمونوهیستولوژیکی، می‌توان برخی از محصولات استرس اکسیداتیو مانند 4HNE، محصول نهایی پراکسیداسیون لیپید که به آسانی با چندین پروتئین واکنش می‌دهد را در اجزای مجزای سلولی ریه مشخص کرد. این رنگ‌آمیزی بیان‌گر افزایش نشانگرهای استرس اکسیداتیو نیتروژن، نیتروتیروسین و اکسید نیتریک القا شده (iNOS) در COPD است.

تحقیقات نشان داده است که مولکول‌های ضدالتهابی یا آنتی‌اکسیدان‌های مختلف توانایی کاهش التهاب و شدت علائم COPD در مدل موش را دارند. موش های ترانس‌ژنیک بیان‌کننده تریروتوكسین (TRX) كه مولكول آنتی‌اكسیدان است، كاهش بسیاری در شدت COPD نشان می‌دهد که می‌تواند یک روش درمانی باشد. در مدل‌های موش، تحت تاثیر قرار گرفتن در معرض ROS منجر به ابتلا به COPD و پیشرفت این بیماری می‌شود و شناسایی مکانیسم‌ آن می‌تواند یک روش درمانی مفید محسوب شود.

استرس اکسیداتیو از طریق H2O2 ناشی از اختلال عملکرد میتوکندری اختلال در COPD را  شدیدتر می‌کند. درمان آنتی‌اکسیدانی هدفمند میتوکندری باعث مهار و کاهش علایم بیماری COPD می‌گردد. علاوه بر این، شواهدی از اختلال عملکرد میتوکندری در ماکروفاژ بیمارهای مبتلا به COPD در طی فاگوسیتوز یافت شده و مطالعات دیگر از اختلال عملکرد میتوکندری طی استرس اکسیداتیو گزارش می‌دهد.

دلایل نظری قابل ملاحظه ای وجود دارد که چرا آزاد شدن ROS باعث ایجاد یا پیشرفت COPD می شود. افزایش میزان اکسیدان‌ها از 4700 ترکیب شیمیایی و بیش از 1015 اکسیدان / رادیکال‌های آزاد موجود در سیگار حاصل می‌شود با این حال، این محرک به تنهایی نمی‌تواند کافی یا ضروری باشد تا COPD در سیگاری‌ها ایجاد شود، و این نشان می‌دهد که باید فاکتورهای دیگری به صورت تعاونی با این عوامل در جهت بروز بیماری همکاری کنند.

بسیاری از محصولات استرس اکسیداتیو در COPD در مقایسه با کنترل افزایش می‌یابد، در حالی که سطح آنزیم‌های مربوط به حذف ROS در برخی مطالعات کاهش یافته است. مطالعات سلولی نشان می‌دهد که آزادی ROS از واسطه‌های اصلی واکنش التهابی در COPD، از جمله نوتروفیل‌ها، ماکروفاژهای هوا و مونوسیت‌ها، افزایش یافته است. اگر چه مدل حیوانی COPD وجود ندارد که تمام جنبه‌های بالینی بیماری بررسی شود، مدل‌های دیگر نشان‌دهنده افزایش بار اکسیداتیو در اثر قرار گرفتن در معرض دود سیگار و آسیب بافتی بعد از آن، از جمله ایجاد آمفیزم است که می‌تواند با هدف‌گیری مسیرهای اکسیداسیون، کاهش یابد.

ارائه درمان بالینی برای COPD با توجه به تغییر در پروتئین‌ها، آنزیم‌ها، مولکول‌ها و سلول‌های دخیل در این بیماری چالش مهم بوده و در حال حاضر مشخص نیست که آیا تغییرات نسبت اکسیدان‌ها به آنتی‌اکسیدان‌ها به صورت ثابت رخ می‌دهد که درک این موضوع برای تعیین درمان‌هایی که بیشتر از آنتی‌آکسیدان‌ها استفاده می‌کنند، حیاتی است. واضح است که تحقیقات پایه و تحلیلی بیشتر برای شناسایی بیماران حساس به آسیب های مرتبط با ROS ضروری است و باید مشخص شود آیا ROS هدف موثر برای تغییر در COPD است یا خیر؟

 

منبع:

McGuinness, A.J.A. and Sapey, E., 2017. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of clinical medicine6(2), p.21.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای استرس اکسیداتیو

بیومارکر چیست ؟ ( قسمت اول )

بیومارکرهای سرطان ( قسمت دوم )

 

استرس اکسیداتیو، قسمت سمی اکسیژن و متابولیسم را نشان می‌دهد. استرس اکسیداتیو به عنوان عدم تعادل بین اکسیدان‌ها و آنتی‌اکسیدان‌ها به نفع اکسیدان‌ها شناخته شده که منجر به اختلال در سیگنالینگ مجدد، کنترل چرخه سلولی و آسیب مولکولی می‌شود.

بیومارکرهای استرس اکسیداتیو به سه دسته اصلی تقسیم می‌شوند:
– گونه‌های فعال اکسیژن ROS
– DNA / RNA، چربی‌ها و پروتئین‌هایی که توسط اکسیداسیون آسیب دیده‌اند
– آنتی‌اکسیدان‌ها

درباره این سه گروه این توضیح را باید افزود که:
– ROS نشان‌دهنده عواملي هستند كه استرس‌اكسيداتيو را تحريك مي كنند و باعث آسیب به اجزاي سلول می‌شوند.
– آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، آسیب‌های ناشی از اکسیداسیون را نشان می‌دهد
– آنتی‌اکسیدان‌ها سیستم‌های مبارزه با استرس اکسیداتیو را نشان می‌دهند

• گونه فعال اکسیژن ROS

گونه فعال اکسیژن، گونه‌های شیمیایی واکنشی هستند که حاوی اکسیژن فعال می‌باشند. آن‌ها عبارتند از پراکسید، سوپراکسید، هیدروکسیل رادیکال، اکسیژن مجزا و آلفا اکسیژن.
با توجه به ماهیت گذار آن‌ها، به راحتی در سلول‌های زنده با استفاده از تست‌های رنگ‌سنجی، مانند DCFDA، اندازه‌گیری می‌شوند. این بیومارکرها قابل اندازه‌گیری در خون، پلاسما، بافت و ادرار هستند.

• آسیب DNA / RNA، پراکسیداسیون لیپید، و اکسیداسیون / نیترات پروتئین

استرس اکسیداتیو را می‌توان به طور غیرمستقیم با اندازه‌گیری سطوح آسیب DNA / RNA، پراکسیداسیون لیپید و اکسیداسیون / نیترات پروتئین، به جای اندازه‌گیری مستقیم گونه‌های فعال اکسیژن، اندازه‌گیری کرد. بیومارکرهای استرس اکسیداتیو پایدارتر از انواع اکسیژن فعال هستند.

آسیب DNA / RNA

انواع مختلفی از آسیب DNA / RNA وجود دارد که می‌تواند به عنوان بیومارکرهای استرس اکسیداتیو اندازه‌گیری شود.  8-hydroxydeoxyguanosine احتمالا به عنوان یکی از رایج ترین بیومارکرهای آسیب DNA برای استرس اکسیداتیو است. تست‌های مکان‌های apurinic / apyrimidinic و آزمون‌های آسیب ناشی از آلدهید می‌تواند به عنوان اندازه‌گیری‌های مستقیم از آسیب DNA استفاده شود که به طور بالقوه مرتبط با استرس اکسیداتیو است.

پراکسیداسیون لیپید

مالون‌دی‌آلدئید MDA یکی از معمول‌ترین شاخص‌های لیپیدی استرس اکسیداتیو است. این ماده از طریق پراکسیداسیون اسیدهای چرب غیراشباع تشکیل شده است و معمولا با استفاده از آزمون TBARS اندازه‌گیری می‌شود. تست TBARS به طور کامل برای MDA خاص نیست، همانطور که سایر آلدهید‌ها نیز سیگنال مشابهی را با این تست تولید می‌کنند، با این حال، تست TBARS عموما راحت‌تر از استفاده از HPLC برای اندازه گیری MDA است. آزمون‌های ELISA رقابتی برای MDA نیز در دسترس هستند.
دیگر بیومارکرهای پراکسیداسیون چربی شامل 4-HNA، 8-ایزوپروستان، هیدروپراکسید لیپیدها و LDL اکسید شده است.

اکسیداسیون / نیترات پروتئین

آسیب اکسیداتیو به پروتئین‌ها می‌تواند به شکل کربن لیپتین پروتئین و نیتراسیون پروتئین (3-نیتروتیروزین) باشد. گونه‌های فعال اکسیژن هم‌چنین می‌توانند تولید محصولات پیشرفته گلیکوزیله AGE و پروتئین‌های AOPP را ایجاد کنند. همه این بیومارکرها را می‌توان با روش‌های استاندارد اندازه‌گیری کرد.

• آنتی‌اکسیدان‌ها

آنزیم‌های آنتی‌اکسیدانی و دیگر مولکول‌های ROS، باعث آسیب اکسیداتیو می شوند. سه نوع آنتی‌اکسیدان به عنوان بیومارکر استرس اکسیداتیو وجود دارد: مولکول‌های کوچک، آنزیم‌ها و پروتئین‌ها (مانند آلبومین).
برای اندازه گیری ظرفیت کل‌آنتی اکسیدانی نمونه، از جمله مولکول‌کوچک و ظرفیت آنتی‌اکسیدانی پروتئین، تعدادی از تست‌ها وجود دارد. یکی از رایج‌ترین تست‌های کلسترول آنتی‌اکسیدانی، تست آنتی‌اکسیدانیTEAC است. تست آنتی‌اکسیدانی رادیکال اکسیژن ORAC یکی دیگر از آزمون‌های معمول استرس اکسیداتیو است که ظرفیت آنتی‌اکسیدان را با اندازه‌گیری توانایی آنتی‌اکسیدان‌ها برای کاهش رنگ فلورسنت توسط ROS اندازه‌گیری می‌کند.
فعالیت آنتی‌اکسیدانی نیز می‌تواند در سطح آنالیت‌های خاص اندازه‌گیری شود. به عنوان مثال با نگاه کردن به سطوح نسبی GSH و GSSG ، سطح آنالیت اندازه‌گیری می‌شود. گلوتاتیون احیا GSH به عنوان مولکولی فراوان در میان آنتی‌اکسیدان‌های درون سلولی در نظر گرفته می‌شود که GSSG را در فرم اکسید شده تشکیل می‌دهد. این واکنش توسط آنزیم گلوتاتیون ردوکتاز فعال می‌شود.
در غیر این صورت، سطح فعالیت آنزیم‌های آنتی‌اکسیدانی مانند GST و سوپراکسید‌دیسموتاز می‌تواند در رابطه با سطوح استرس اکسیداتیو اندازه‌گیری شود.

 

منابع:

Valavanidis, A., Vlachogianni, T. and Fiotakis, C., 2009. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C27(2), pp.120-139.

Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P., 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical chemistry43(7), pp.1209-1214.

Lykkesfeldt, J., 2007. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica chimica acta380(1-2), pp.50-58.