نوشته شده در دیدگاه‌تان را بنویسید

فلور روده و متابولیسم آنتی‌اکسیدانت گلوتاتیون

مطالعات اخیر نشان می‌دهد که فلور میکروبی روده باعث تنظیم متابولیسم آنتی‌اکسیدانت گلوتاتیون و آمینو اسید در میزبان می‌شود. گلوتاتیون یک آنتی‌اکسیدانت کلیدی است که در تمامی سلول‌های بدن یافت می‌شود. کمبود گلوتاتیون باعث استرس اکسیداتیو می‌شود که نقش مهمی در بسیاری از بیماری‌های مرتبط با سبک زندگی دارد.

خروجی عملکردی و تنوع فلور میکروبی روده تنظیم‌کنندگان مهمی در بروز بیماری‌های مختلف انسان هستند.  چاقی، دیابت نوع ۲، آترواسکلروز، کبد چرب غیر الکی و سوء تغذیه از جمله این بیماری‌ها هستند. بنابراین واکنش بین فلور میکروبی روده، بافت‌ روده میزبان و سایر بافت‌های بدن با سلامت میزبان بسیار مرتبطند.

در مقاله‌ای که در نشریه Molecular Systems Biology توسط تیمی از دانشگاه‌های صنعتی چالمرز، انستیتو سلطنتی تکنولوژی و دانشگاه گوتنبرگ سوئد چاپ شده، عنوان شده است که فلور میکروبی روده باعث تنظیم متابولیسم گلوتاتیون و آمینو اسید در میزبان می‌شود.

گلوتاتیون قوی‌ترین آنتی‌اکسیدانت بدن و اصلی‌ترین ماده سم‌زدای (Detoxifying agent) بدن است. این ماده در سیستم ایمنی بدن، متابولیسم مواد غذایی و تنظیم سایر رخدادهای سلولی، نقش بسیار حیاتی دارد. گلوتاتیون پروتئین کوچکی است و در داخل سلول از ۳ آمینو اسید که بطور مداوم از طریق تغذیه وارد بدن می‌شوند، ساخته می‌شود. کمبود گلوتاتیون باعث بروز استرس اکسیداتیو می‌شود. همانطور که اشاره شد، استرس اکسیداتیو نقش بسیار مهمی در بیماری‌های متابولیک دارد.

در این مطالعه، نقشه‌ای کلی از متابولیسم موش طراحی شد و مدل‌های رایانه‌ای ویژه‌ای برای  هر بافت ایجاد گردید. به‌وسیله استفاده از داده‌های تجربی High throughput، محققین دریافتند که فلور میکروبی در روده گلایسین مصرف می‌کند. گلایسین یکی از ۳ آمینو اسیدی است که برای ساخت گلوتاتیون در بدن مورد نیاز است.

برای تایید نتایج به‌دست آمده از طریق شبیه‌سازی‌های مبتنی بر رایانه، سطوح آمینو اسید گلایسین در ورید پرتال کبدی موش اندازی‌گیری شد. علاوه‌براین سطوح پایین‌تری از گلایسین در بافت کبد و کولون یافت شد که نشان‌گر تنظیم متابولیسم گلوتاتیون نه تنها در روده کوچک، بلکه در کبد و کولون توسط فلور میکروبی روده است.

عادل ماردین اولو نویسنده مسئول این مقاله از دانشگاه چالمرز می‌گوید:”برخی از باکتری‌های روده گلایسین مصرف می‌کنند و عدم وجود تعادل در ترکیب باکتری‌های روده باعث ایجاد بیماری‌های مزمن می‌شود” در مطالعات مستقل قبلی نیز سطوح نامتعادل گلایسین و سایر آمینو اسیدهای پلاسما در بیماری‌های چاقی، دیابت نوع ۲ و کبد چرب غیر الکلی گزارش شده است.

این اکتشاف ممکن است به توسعه محصولات غذایی منجر شود که باکتری‌های مفید (پروبیوتیک‌ها) را به بدن انتقال دهند. نتایج این مطالعه به ما کمک می‌کند تا نقش باکتری‌ها در ایجاد و توسعه بیماری‌های متابولیکی چون دیابت نوع ۲، چاقی، کبد چرب غیر الکلی و سوء تغذیه چگونه است.

 

منبع:

 

Mardinoglu, A., Shoaie, S., Bergentall, M., Ghaffari, P., Zhang, C., Larsson, E., Bäckhed, F. and Nielsen, J., 2015. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular systems biology11(10), p.834.

نوشته شده در دیدگاه‌تان را بنویسید

عملکرد اسید آمینه سطح آنتی اکسیدانتی را افزایش می‌دهد

یک تیم تحقیقاتی در ژاپن برای اولین بار در دنیا پی بردند که ۲-آمینوبوتیریک اسید (2-AB) در متابولیسم آنتی‌اکسیدانتی تحت عنوان گلوتاتیون دخیل بوده و مصرف آن می‌تواند سطح این آنتی‌اکسیدانت را افزایش دهد.

گلوتاتیون، آنتی‌اکسیدانتی با اثرات آنتی‌دوتی است که نقش بسیار مهمی در حفظ سلامت دارد. نتایج این مطالعه می‌تواند در توسعه راه‌های جدید برای پیش‌گیری، تشخیص و حتی درمان برخی از بیماری‌های مرتبط با استرس اکسیداتیو موثر باشد. این بیماری‌ها طیف وسیعی از آلزایمر گرفته تا پیری و سرطان را شامل می‌شوند. همچنین بیماری‌های مرتبط با سبک زندگی از جمله آرترواسکلروز و آسیب‌های ناشی از دارو و سموم را نیز شامل می‌شوند.

گلوتاتیون اصلی‌ترین آنتی‌اکسیدانت سلول‌های بدن است و نقش سم‌زدایی مواد بیگانه را دارد. پایش متابولیسم گلوتاتیون از آنجایی که با مواجهه با استرس اکسیداتیو این ماده مورد مصرف قرار می‌گیرد، می‌تواند در تشخیص بیماری‌ها موثر باشد. با این وجود سطوح غلظت گلوتاتیون در خون ۱۰۰-۱۰۰۰ برابر کمتر از مقادیر آن در سلول است. از این جهت استفاده از آن به عنوان یک شاخص، دشواری‌های خاص خود را دارد. همچنین بدن ما برای مواقع ضروری ذخیره گلوتاتیونی دارد و کاهش سلولی آن بصورت کاهش قابل اندازه‌گیری در خون نمود نمی‌یابد. از این جهت امکان پایش این ماده تنها با سنجش مقادیر آن در خون مقدور نیست.

ماده‌ای به نام ۲-آمینوبوتیریک اسید به عنوان بخش اصلی اوفتالمیک اسید شناخته می‌شود که همزمان با سنتز گلوتاتیون تولید می‌شود. تاکنون اثرات فیزیولوژیک و متابولیسم 2-AB ناشناخته بود. این گروه تحقیقاتی کار خود را با آنالیز متابولیت‌های موجود در خون بیماران مبتلا به عارضه دیواره دهلیز Atrial Septal Defect توسط تکنیک کروماتوگرافی گازی پرداختند. نتایج نشان داد که سطوح 2-AB در این بیماران بالاتر از افراد عادی است و این سطوح پس از برطرف شدن عارضه کاهش یافت. این گروه برای اولین بار دریافتند که 2-AB یک محصول فرعی سیستئین، از آمینواسیدهای سازنده گلوتاتیون است (شکل ۱) همچنین مشخص شد که فعال شدن مسیر سنتز گلوتاتیون در شرایط استرس اکسیداتیو باعث تجمع AB-2 می‌شود. از آنجایی که مقادیر خونی 2-AB نشانگر متابولیسم گلوتاتیون در بدن است، بنابراین این ماده بصورت بالقوه می‌تواند به‌عنوان بیومارکری برای تشخیص زودهنگام استرس اکسیدایتو مطرح گردد.

newlyreveale-min

به طرز جالبی این گروه تحقیقاتی دریافتند که 2-AB باعث تحریک سنتز گلوتاتیون می‌شود. داروی ضد سرطان دوکسوروبیسین Doxorubicin با واسطه اثرات سوء خود استرس اکسیداتیوی ایجاد می‌کند که صدمه قلبی ایجاد می‌کند. این گروه مشخص کردند که در صورت مصرف دهانی 2-AB، این ماده باعث افزایش غلظت گلوتاتیون در جریان خون و قلب شده و باعث تخفیف صدمات ایجاد شده با دوکسوروبیسین می‌شود (شکل۲)

نتایج این تحقیق نشان می‌دهد علاوه بر اینکه 2-AB یک بیومارکر است، بصورت یک آنتی‌اکسیدانت نیز عمل می‌کند. 2-AB یک آمینواسید طبیعی است که در بسیاری از موادغذایی یافت می‌شود. تحقیقات بعدی می‌تواند موادغذایی با مقادیر بالای 2-AB و مقادیر پیشنهادی دریافت آن‌ را مشخص سازد. همچنین می‌تواند در مورد مصرف آن به‌عنوان یک آنتی‌اکسیدانت برای ارگان‌های مختلف و داروهای مختلف راهگشا باشد.

 

منابع:

Yasuhiro Irino et al. 2-Aminobutyric acid modulates glutathione homeostasis in the myocardium, Scientific Reports (2016). DOI: 10.1038/srep36749 

نوشته شده در دیدگاه‌تان را بنویسید

آیا با کاهش رادیکال‌های آزاد در زخم‌های دیابتی می‌توان به روند درمان آن‌ها کمک کرد؟

زخم‌های مزمن از جمله زخم‌های دیابتیک که معمولا پا و ساق پا را درگیر می‌کنند. در آمریکا سالانه 6.5 میلیون نفر را درگیر و ضرر مالی که برای آمریکا دارد در حدود 25 میلیارد دلار می‌باشد. سوال اینجاس که چرا این زخم‌ها هزینه زیادی را دربر دارند؟

پروفسور مانولا مارتینز-گرینز از دانشگاه کالیفرنیا در این مورد دو فرضیه را بیان می‌کند که یکی مربوط به عدم تعادل بین رادیکال‌های آزاد و سیستم آنتی اکسیدانتی می‌باشد ودیگری اینکه باکتری‌ها با ساخت بیوفیلم مانع از تاثیر آنتی‌بیوتیک و یا داروها  بر روی زخم شده و آنها را به سمت مزمن شدن می‌برد.

همانطور که میدانید رادیکال‌های آزاد در هوموستاز و انتقال پیام‌ها نقش داشته و به صورت طبیعی در بدن تولید می‌شوند، ولی افزایش نامتعارف آنها باعث التهابات مزمن می‌شود که در زخم‌های دیابتیک هم مزمن بودن زخم هست که درمان را مشکل می‌کند.

در تحقیقی که این پروفسور و همکارانش بر روی موش‌های دیابتی انجام داده‌اند متوجه شده‌اند که با کاهش گونه‌های فعال اکسیژن (ROS) زخم‌های دیابتی روند ترمیم بهتری را نشان می‌دهند. برای دستیابی به این نتیجه، تیم تحقیقاتی آنها دو آنزیم کاتالاز و گلوتاتیون پراکسیداز را که نقش اصلی در تعادل ROS در سلول را دارند را در موش‌های دیابتی مهار کرده و در این حیوانات زخم‌ها با سرعت کمتری بهبود یافت و در ادامه برای نشان دادن نقش آنتی‌اکسیدانت‌ها، ویتامین E و ان استیل سیستئین را به گروه‌ها اضافه نمودند که نتایج حاکی از روند سریع بهبود زخم‌ها نسبت به گروه‌هایی که آنزیم‌ها مهار شده بودند، را نشان می‌داد. با کاهش ROS، بیوفیلم باکتری نیز از هم می‌پاشد و همه اینها در کنار هم بهبود زخم را می‌تواند تسریع کند. محققین بر این باورند که برای دستیابی به درمان موفق در زخم‌های مزمن باید به ظرفیت آنتی اکسیدانتی بدن توجه ویژه‌ایی داشته و در طول درمان تعادل را بین میزان ROS و ظرفیت آنتی اکسیدانتی برقرار نمود. این تحقیق با توجه به اینکه برای اولین بار هست که با حذف آنزیم‌های آنتی‌اکسیدانتی توانسته زخم‌های مزمن را ایجاد کند در نتیجه مسیر جدیدی برای تحقیق بر روی درمان زخم‌های مزمن را برای دانشمندان و محققین جوان فراهم کرده است.

منبع:

17 in New Orleans, La., at the 53rd annual meeting of the American Society for Cell Biology. (Article)

نوشته شده در دیدگاه‌تان را بنویسید

پایش لحظه‌ای گلوتاتیون

محققین دانشگاه پزشکی بیلور یک پراب فلورسنت توسعه داده‌اند که می‌تواند تغییرات لحظه‌ای گلوتاتیون را در سلول‌های زنده نشان دهد.

گلوتاتیون فراوان‌ترین آنتی‌اکسیدانت طبیعی سلول‌های بدن است. این ماده سلول‌ها را در مقابل آسیب‌های احتمالی محافظت می‌کند. همچنین روندهای سلولی از جمله تقسیم، مرگ، سنتز مواد ژنتیکی و پروتئینی و فعال‌سازی بیان ژن را نیز کنترل می‌کند. تمامی این موارد با تغییر در غلظت گلوتاتیون اتفاق می‌افتد اما متدهای کنونی امکان پایش لحظه‌ای گلوتاتیون در سلول زنده را ارائه نمی‌دهد.

محققین دانشکده پزشکی بیلور، بیمارستان کودکان تگزاس و دانشگاه رایس پا فراتر گذاشته و یک پراب فلورسنت با نام RealThiol طراحی کرده‌اند که به‌صورت لحظه‌ای مقادیر گلوتاتیون را نشان می‌دهد.

چگونه گلوتاتیون به‌صورت لحظه‌ای اندازه‌گیری می‌شود؟

روش‌های قبلی بر واکنش‌های شیمیایی غیرقابل بازگشت تکیه دارد که تمام گلوتاتیون را در داخل سلول‌ها گرفته و در یک مقطع زمانی خاص مقدار آن‌را معین می‌سازد. این تیم بر روی واکنش شیمیایی برگشت‌پذیر تمرکز کردند که سنجش غلظت این ماده را بصورت مستمر در یک سلول ممکن می‌سازد. پیش‌تر، این روش در مورد سنجش روی و کلسیم رخ امتحان شده بود.

در سال ۲۰۱۵ همین تیم تحقیقاتی، مطالعه‌ی Proof of concept از یک واکنش برگشت‌پذیر چاپ نمودند که ادامه همین مطالعات به کشف جدید رسیده است.

با استفاده از RealThiol، محققین توانستند ظرفیت آنتی‌اکسیدانتی فعال شده در نورون‌ها و تغییرات گلوتاتیون را طی نوع خاصی از مرگ سلولی به‌نام فِروپتوز  Ferroptosis اندازه‌گیری کنند. این دستاورد در نهایت به توسعه روش‌های جدید در درمان بیماری‌های با دخالت گلوتاتیون خواهد انجامید

 

منبع:

Xiqian Jiang, Jianwei Chen, Aleksandar Bajić, Chengwei Zhang, Xianzhou Song, Shaina L. Carroll, Zhao-Lin Cai, Meiling Tang, Mingshan Xue, Ninghui Cheng, Christian P. Schaaf, Feng Li, Kevin R. MacKenzie, Allan Chris M. Ferreon, Fan Xia, Meng C. Wang, Mirjana Maletić-Savatić, Jin Wang. Quantitative real-time imaging of glutathione. Nature Communications, 2017; 8: 16087 DOI: 10.1038/NCOMMS16087

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌ اکسیدانت‌ها و نقش آنها در دستگاه تناسلی مردان

به سبب کمبود آنزیم‌های سیتوپلاسمی،‌‌ اسپرم‌ها قادر به ترمیم آسیب‌های ناشی از استرس اکسیداتیو نمی‌باشند. مطالعات نشان داده‌اند که آنتی‌اکسیدانت‌ها دارای اثرات گسترده‌ای‌ در آندرولوژی می‌باشند و قادرند از اسپرم‌ها در برابر ناهنجاری‌های ناشی از گونه‌های فعال اکسیژن (ROS) محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت‌ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نابهنگام اسپرم‌ها جلوگیری می‌کنند. سه سیستم آنتی‌اکسیدانتی متفاوت وابسته به هم که نقش کلیدی در کاهش استرس‌اکسیداتیو در جنس نر ایفا می‌کنند عبارتند از: آنتی‌اکسیدان‌های رژیم غذایی‌،‌‌ آنتی‌اکسیدان‌های آندوژن و پروتئین‌های شلاته کننده ‌یون‌های فلزی.

آنتی‌اکسیدانت‌­های موجود در پلاسمای منی و اسپرم در گروه آنتی‌اکسیدانت­‌های آندوژن قرار می‌گیرند. پلاسمای منی دارای سه ­آنتی‌اکسیدان آنزیمی ‌اصلی سوپراکسیددیسموتاز (SOD)،‌‌ کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانت­‌های غیرآنزیمی ‌مانند آسکوربات‌،‌‌ اورات‌،‌‌ ویتامینE‌،‌‌ ویتامین A‌،‌‌ پیروات،‌‌ گلوتاتیون‌،‌‌ آلبومین،‌‌ یوبی کوئیتول(Ubiquitol)‌،‌‌ تائورین (Taurine)، هایپوتائورین و سلنیوم می­باشد. اسپرم­ها علاوه بر SOD که عمده­ترین آنتی‌اکسیدانت موجود در آنها را تشکیل می­‌دهد،‌‌ دارای آنتی‌ اکسیدانت­‌های آنزیمی‌ اولیه نیز می‌­باشند. آنتی‌اکسیدان‌های رژیم غذایی غالباً به شکل ویتامین C‌،‌‌ ویتامین E، بتاکاروتن­ها،‌‌ کاروتنوئیدها و فلاونوئیدها می­‌باشند. پروتئین‌های شلاته کننده‌ یون­های فلزی نظیر آلبومین،‌‌ سرولوپلاسمین‌،‌‌ متالوتیونئین (Metallothionein)‌،‌‌ ترانسفرین‌،‌‌ فریتین و میوگلوبولین،‌‌ به واسطه غیرفعال کردن انتقال یون­های فلزی که تولید رادیکال‌های آزاد را کاتالیز می‌­کنند‌،‌‌ عمل می­‌کنند. این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می‌کنند و موجب حفظ یکپارچگی آن می‌­گردند. بررسی­‌های آزمایشگاهی صورت گرفته نیز نقش آنتی ­اکسیدانت­‌ها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است. در همین راستا،‌‌ گزارشات دیگری نیز بر نقش آنتی‌اکسیدانت­‌ها در کاهش آسیب DNA  و آپوپتوز در اسپرم­‌ها و نیز افزایش میزان بارداری و لانه‌گزینی بالینی صحه­ گذارده­‌اند.

 

منابع:

Walczak–Jedrzejowska, R., Wolski, J. K., & Slowikowska–Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European journal of urology66(1), 60.

Agarwal, A., Tadros, H., Panicker, A., & Tvrdá, E. (2016). Role of oxidants and antioxidants in male reproduction. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 221-252.

Wroblewski, N., Schill, W. B., & Henkel, R. (2003). Metal chelators change the human sperm motility pattern. Fertility and sterility79, 1584-1589.

Greco, E., Iacobelli, M., Rienzi, L., Ubaldi, F., Ferrero, S., & Tesarik, J. (2005). Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of andrology26(3), 349-353.

Agarwal, A., Nallella, K. P., Allamaneni, S. S., & Said, T. M. (2004). Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), 616-627.

Sies, H. (1993). Strategies of antioxidant defense. The FEBS Journal215(2), 213-219.

 

نوشته شده در دیدگاه‌تان را بنویسید

درمورد علل استرس اکسیداتیو بیشتر بدانید…

رادیکال‌های آزاد اتم‌ها یا مولکول‌هایی با الکترون آزاد هستند که بسیار ناپایدار و واکنش پذیر می‌باشند. این ذرات با مولکول‌های دیگر در بدن واکنش داده و باعث تغییر ساختار مولکولی می‌گردند. این مولکول‌ها تبدیل به رادیکال‌های آزاد شده که یک واکنش زنجیره‌ای را ایجاد می‌کنند که میلیون‌ها مولکول را در یک نانوثانیه تحت تاثیر قرار می‌دهند. رادیکال‌های آزاد با عنوان گونه‌‌فعال‌اکسیژن بیان‌شده (ROS)، بنابراین استرس رادیکال آزاد به عنوان استرس اکسیداتیو شناخته می‌شود. علل بسیاری جهت بروز استرس‌ اکسیداتیو وجود دارد که به عنوان مکانیسم اصلی در بیماری‌های مزمن و پیری شناخته می‌شود.

آنتی‌اکسیدان‌ها
آنتی‌اکسیدان‌ها مکانیسم دفاعی بدن علیه رادیکال‌های آزاد هستند که این ذرات آسیب پذیر را خنثی می‌کنند. برخی از رادیکال‌های آزاد به عنوان بخش مهمی از فرایندهای بدن تولید می‌شوند، اما نباید تولید رادیکال‌های آزاد از ظرفیت بدن در خنثی‌سازی آن فراتر رود.
آنتی‌اکسیدان‌های داخلی بدن عبارتند از: گلوتاتیون، کوآنزیم Q10، سوپراکسید دیسموتاز و گلوتاتیون پراکسید

عوامل بیرونی ایجاد رادیکال‌های آزاد عبارتند از:
• نگهدارنده‌ها و مواد شیمیایی در غذاها
• آفت‌کش‌ها در غذاهای غیر آلی
• داروهای تجویزی
• آلودگی و تابش و آفتاب سوختگی
• فلزات سنگین مانند جیوه، آلومینیوم و سرب
• الکل و سیگار
• ترانس و چربی‌های هیدروژنه شده

عوامل درونی ایجاد رادیکال‌های آزاد عبارتند از:
سیستم ایمنی بدن رادیکال‌های آزاد را در جهت از بین بردن باکتری‌ها، ویروس‌ها و قارچ‌ها تولید می‌کند. اگر سیستم ایمنی بدن بیش از حد فعال باشد (در موارد التهاب مزمن)، بار اضافی از استرس اکسیداتیو در بدن ایجاد می‌شود. در شرایط خاصی که عملکرد سیستم ایمنی بدن کاهش می‌یابد، عفونت های مزمن و بیماری مزمن متنوعی در بدن ایجاد می‌شود.
بدن به طور طبیعی رادیکال‌های آزاد را به عنوان یک محصول جانبی از تولید انرژی سلولی و سم‌زدایی از کبد تولید می‌کند. استرس به طور قابل توجهی باعث افزایش بار رادیکال آزاد در بدن می‌شود. همانطور که استرس موجب ترشح هورمون‌ها می‌شود، بدن آمادگی لازم جهت مبارزه و پاسخ ایمنی را به دست می‌آورد که باعث ایجاد تغییرات زیست شیمیایی و افزایش استرس اکسیداتیو در بدن می‌گردد.

 

منابع:

Halliwell, B. and Gutteridge, J.M., 1990. [1] Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology186, pp.1-85.

Halliwell, B., 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. The lancet344(8924), pp.721-724.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology39(1), pp.44-84.

نوشته شده در دیدگاه‌تان را بنویسید

مصرف خوراکی گلوتاتیون

گلوتاتیون به عنوان آنتی‌اکسیدان اصلی شناخته می‌شود، زیرا  بعد از هر بار تشدید بار رادیکال‌های آزاد، می‌تواند خود را در کبد تجدید کند. رادیکال‌های آزاد اغلب به عنوان فرآورده اکسیداسیون سلولی و بار سمی، منجر به بیماری‌های خود ایمنی، سرطان یا حملات قلبی می‌شوند. آنتی‌اکسیدان‌ها جهت از بین بردن رادیکال‌های آزاد، فلزات سنگین و سموم کاربرد دارند.

تا چندی پیش، مطالعات به طور گسترده‌ای بیان می‌کرد که مکمل‌های خوراکی نرمال باعث افزایش سطح گلوتاتیون نمی‌شوند، زیرا گلوتاتیون خوراکی از اسید معده عبور نمی‌کند و به روده کوچک جذب می‌شود. اما مطالعه اخیر نتایجی خلاف این مساله را نشان می‌دهد.

گلوتاتیون هنگامی که از انجام کار خود  در خنثی‌سازی رادیکال‌های آزاد اشباع شود غیرفعال می‌گردد، اما تمایل دارد خود را دوباره بسازد. در شرایط ایده‌آل، 10٪ گلوتاتیون غیرفعال یا اکسید شده باقی می‌ماند در حالیکه 90٪ دیگر فعال یا کاهش می‌یابند و سموم را حذف می‌کنند.

هنگامی که سموم به وجود می‌آیند، گلوتاتیون فعال کاهش می‌یابد. گلوتاتیون فعال نیز به عنوان GSH شناخته می‌شود، در حالی که گلوتاتیون غیر فعال GSSG نامیده شده است. هنگامی که GSH به زیر 70٪ سقوط می‌کند، توانایی سیستم ایمنی بدن کاهش می‌یابد. با افزایش سن، توانایی بدن برای تبدیل GSSG به GSH نیز کاهش می‌یابد و  بسیاری از بیماری‌های پیری در طی این اختلال ایجاد می‌شود، بنابراین حفظ سطح بالای GSH یک کلید ضد پیری است.

مطالعه اخیر نشان می‌دهد مکمل‌های خوراکی می‌تواند سطح GSH را افزایش دهد. کالج پزشکی ایالت پنسیلوانیا آزمایش بالینی انسانی را انجام داد که در آن 54 بالغ سالم (41 زن / 13 مرد)، 28-تا 72 ساله، با گلوتاتیون خوراکی تیمار و ارزیابی شدند. آن‌ها به دو گروه تقسیم و هر دو با گلوتاتیون تیمار شدند، یک گروه با دوز کم، 250 میلی‌گرم در روز و گروه دیگر 1000 میلی‌گرم در روز. آزمایش برای شش ماه انجام شد تا میزان GSH و تفاوت مارکر سیستم ایمنی تعیین شود.

پس از سه ماه، گروه تیمار شده با دوز بالا،  فعاليت طبیعی سلولی  نشان دادند. و پس از شش ماه کامل، GSH کلی در گروه با دوز بالا 35٪ افزایش یافت. پس از یک ماه بدون مکمل، اکثر افراد سطح GSH را به سطح پایه قبل از آزمایش کاهش دادند. محققان به این نتیجه رسیدند که تیمار طولانی مدت یک روش موثر برای افزایش ذخایر GSH  بدن است.

در حالی که فرض بر عدم توانایی مکمل‌های خوراکی GSH برای حفظ فعالیت در طی عبور از دستگاه گوارش مطرح بود، تکنولوژی کپسوله‌سازی لیپوزومی (LET) از ویتامین C فراتر رفت و شامل گلوتاتیون شد. LET اجازه می‌دهد تا همه چیز بسته بندی شده برای عبور از طریق معده و روده کوچک برای جذب خون فراهم شود. این روش کمی گران است، اما بسیار موثر خواهد بود.

 

منابع:

Wierzbicka, G.T., Hagen, T.M. and Tones, D.P., 1989. Glutathione in food. Journal of Food Composition and Analysis2(4), pp.327-337.

Loguercio, C. and Di Pierro, M., 1999. The role of glutathione in the gastrointestinal tract: a review. Italian journal of gastroenterology and hepatology31(5), pp.401-407.

Jin, Q., Li, Y., Huo, J. and Zhao, X., 2016. The “off–on” phosphorescent switch of Mn-doped ZnS quantum dots for detection of glutathione in food, wine, and biological samples. Sensors and Actuators B: Chemical227, pp.108-116.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها می‌توانند به درمان کودکان مبتلا به سلیاک کمک کنند

  1. یک مطالعه برجسته که توسط محققان دانشگاه بلگراد صربستان انجام شده پیشنهاد کرده است که درمان آنتی‌اکسیدانی قادر به کاهش علائم بیماری سلیاک می‌باشد.
    بیماری سلیاک یک بیماری جدی و غیر قابل درمان است که تقریبا 1 درصد کودکان و 1.2 درصد بزرگسالان را تحت تاثیر قرار می‌دهند. افراد مبتلا به بیماری سلیاک، از واکنش‌های شدید و خطرناک گوارشی نسبت به گلوتن، پروتئین اصلی موجود در گندم و بسیاری از دانه‌های دیگر رنج‌ می‌برند. به طور‌کلی فعال شدن سیستم ایمنی توسط پپتیدهای گلوتن مسئول پاتوژنز و پیشرفت بیماری سلیاک است. گلوتن توازن آنتی‌اکسیدانی را در مخاط روده، احتمالا از طریق تولید بیش از حد رادیکال‌های آزاد به هم می‌زند.
    محققان، بیوپسی روده‌ای را در 39 کودک مبتلا به بیماری سلیاک فعال یا خاموش و در 19 فرد سالم با سن معادل انجام دادند تا این ارتباط را بین بیماری سلیاک، رادیکال‌های آزاد و آنتی‌اکسیدان‌ها بررسی کنند. محققان دریافتند که کودکان مبتلا به هر دو نوع بیماری سلیاک به طور قابل توجهی دارای سطوح آنتی‌اکسیدان معروف گلوتاتیون پایین‌تری هستند، در حالی که بیومارکر فعالیت آنتی‌اکسیدانی به طور معنی‌داری بیشتر است.

سطوح پایین مشاهده شده گلوتاتیون قابل توجه است، زیرا این ماده شیمیایی اغلب به عنوان آنتی‌اکسیدان اصلی شناخته می‌شود که مسئول اعطای الکترون به دیگر آنتی‌اکسیدان‌ها می‌باشد تا توانایی مبارزه با رادیکال آزاد را افزایش دهد. یافته‌های بیوشیمی بالینی نشان می‌دهد که در بیماران مبتلا به سلیاک، گلوتن ممکن است موجب سیل رادیکال‌های آزاد در روده شود. این سیل چنان شدید است که به طور کامل ذخایر گلوتاتیون بدن را از بین می‌برد، در نتیجه اثربخشی همه آنتی‌اکسیدان‌های دیگر بدن را کاهش داده و منجر به افزایش آسیب اکسیداتیو و استرس در دستگاه گوارش می‌گردد. این نشان می‌دهد که رژیم غذایی با میزان آنتی‌اکسیدان‌ها می‌تواند به کاهش شدت علائم سلیاک کمک کند.

استرس اکسیداتیو عامل مهمی در پاتوژنز بیماری سلیاک است. آنتی‌اکسیدان‌های طبیعی و مکمل‌های غذایی مناسب می‌توانند مکمل‌های مهم برای درمان کلاسیک بیماری سلیاک باشند. تحقیقات نشان می‌دهد که مصرف آنتی‌اکسیدانی علائم بیماری را کاهش می دهد.
با افزایش مصرف غذاهای غنی از آنتی‌اکسیدان، سطح سلامت بهبود می‌یابد. مطالعات نشان داده‌اند که انواع توت‌ها، انار، زغال اخته، تمشک، خربزه، توت فرنگی، گیلاس و سیب در میان مواد غذایی بیشترین مقدار آنتی‌اکسیدانی را دارا می‌باشند، به طور کلی، رنگ عمیق قرمز یا بنفش، محتوای آنتی‌اکسیدان بالاتری دارند.
میوه‌های خشک شده نیز دارای سطح آنتی‌اکسیدانی بالایی هستند، کشمش، آلو، سبزیجات، لوبیای سیاه، آجیل، چای سبز، قهوه و کاکائو تیره نیز منابع غنی از آنتی‌اکسیدان به شمار می‌آیند.

منابع:

Stojiljković, V., Todorović, A., Pejić, S., Kasapović, J., Saičić, Z.S., Radlović, N. and Pajović, S.B., 2009. Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease. Clinical biochemistry, 42(13), pp.1431-1437.

Stojiljković, V., Pejić, S.A., Kasapović, J., Gavrilović, L., Stojiljković, S., Nikolić, D. and Pajović, S.A.B., 2012. Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients. Anais da Academia Brasileira de Ciencias84(1), pp.175-184.

Boda, M. and Nemeth, I., 1992. Decrease in the antioxidant capacity of red blood cells in children with celiac disease. Acta paediatrica Hungarica32(3), pp.241-255.

نوشته شده در دیدگاه‌تان را بنویسید

تغییرات میزان آنزیم گلوتاتیون پراکسیداز در دیابت و علل آن

از آنزیم‌های آنتی‌اکسیدان مهم شناخته شده می‌توان به گلوتاتیون پراکسیداز اشاره کرد. گلوتاتیون پراکسیداز (GPx) نام عمومی خانواده‌ای از آنزیم‌ها با فعالیت پراکسیدازی است که نقش بیولوژیکی اصلی آن‌ها محافظت ارگانیسم‌ها در برابر آسیب‌های اکسیداتیو می‌باشد. عملکرد بیوشیمیایی آنزیم گلوتاتیون پراکسیداز کاهش هیدروپراکسیدهای لیپیدی به الکل‌های مربوطه و کاهش پراکسید هیدروژن آزاد به آب است. آنزیم‌های GPx با استفاده از گلوتاتیون، پراکسیدها را به الکل کاهیده و از تشکیل رادیکال‌های آزاد جلوگیری می‌کنند. در واقع گلوتاتیون پراکسیدازها کاهش پراکسید هیدروژن (آب اکسیژنه) و طیف گسترده ای از پراکسیدهای آلی به الکل مربوطه و آب را با استفاده از گلوتاتیون سلولی کاتالیز می‌کنند. گلوتاتیون فراوان‌ترین ترکیب تیول دار غیرپروتئینی با جرم مولکولی پایین می‌باشد که نقش مهمی را در دفاع سلولی علیه استرس اکسیداتیو به عنوان کوفاکتور گلوتاتیون پراکسیداز برعهده دارد؛ همچنین گلوتاتیون در تنظیم بیان ژن،‌ انتقال سیگنال، تکثیر و مرگ سلولی، تولید سیتوکین‌ها و پاسخ ایمنی دخیل می‌باشد. نسبت گلوتاتیون احیا/ گلوتاتیون اکسید مهمترین شاخص کارایی و سلامتی یک سلول می‌باشد. کمبود گلوتاتیون در فرایند پیری و پاتوژنز بسیاری از بیماری‌ها شامل بیماری‌های قلبی – عروقی، دیابت، ایدز، بیماری‌های سیستم عصبی و تنفسی نقش ایفا می‌کند. استفاده از مواد پروتئینی حاوی پیش‌ماده سنتز گلوتاتیون و دوری از عوامل اکسیدان خارجی مانند اشعه‌های یونیزه کننده، سیگار، ورزش‌های شدید و مصرف بی‌رویه برخی داروها همگی می‌توانند راهکارهای مناسبی در جهت جلوگیری از تهی شدن سلول‌ها از منابع گلوتاتیون باشند.

رادیکال‌های آزاد مولکول‌هایی هستند که از نظر شیمیایی بسیار فعال بوده و طی واکنش‌های متابولیسمی بدن یا در نتیجه موارد دیگر نظیر استعمال دخانیات، قرار گرفتن در معرض اشعه‌های یونیزان، انجام فعالیت‌های شدید بدنی یا در ادامه‌ی برخی بیماری‌ها مانند دیابت ممکن است تولید گردند. ترکیبات ناپایدار رادیکال‌های آزاد بر روی چربی، پروتیین، DNA و کربوهیدرات‌های سلول‌ها تاثیر می‌گذارند؛ که از بین این مواد چربی‌ها بیشترین حساسیت را نسبت به رادیکال‌های آزاد دارا می‌باشند. تاثیر این رادیکال‌ها توسط سیستم دفاعی بدن در حالت طبیعی خنثی می‌گردد. عدم تعادل بین تاثیر دفاعی بدن و کاهش ظرفیت تولید آنتی‌اکسیدانی بدن باعث ایجاد استرس اکسیداتیو می‌شود. این حالت که از تولید اکسیدان‌هایی مثل اکسیژن فعال به‌وجود می‌آید، ممکن است باعث بروز آسیب سلولی شده و در ظهور برخی بیماری‌ها نقش اساسی ایفا کند.

بیماری دیابت یکی از بیماری‌های اصلی در کشورهای پیشرفته می‌باشد. میزان مرگ و میر بیماران دیابتی تیپ ۲ نسبت به افراد سالم به خصوص در رابطه با بیماری‌های قلبی و عروقی افزایش معناداری نشان داده است. مطالعات جدید نشان داده که دیابت با استرس اکسیداتیو در ارتباط بوده و باعث افزایش تولید رادیکال‌های آزاد می‌گردد.هایپرگلیسمی که از نتایج بیماری دیابت می‌باشد نیز یکی از عوامل ایجاد این استرس است. دیابت با افزایش گلوکز و تغییرات بیوشیمیایی در پراکسیداسیون قند و چربی‌ها همراه است. افزایش قند خون از یک سو و از سوی دیگر اختلال در سیستم دفاع آنتی‌اکسیدانی در دیابت، سبب تولید بیش از حد رادیکال‌های آزاد می‌شود. مطالعات آزمایشگاهی نشان داده‌اند استرس اکسیداتیو ناشی از افزایش قند خون مدت‌ها پیش از این که عوارض دیابت به صورت بالینی نمود کند، رخ می‌دهد. درنتیجه این استرس علاوه بر افزایش مقاومت به انسولین و تشدید دیابت، نقش مهمی در پاتوژنز عوارض و تشدید پیامدهای بعدی دیابت دارد. با این وجود مطالعات مختلفی که بر روی مدل‌های حیوانی و همچنین در گروه‌های مختلف بیماران دیابتی صورت گرفته، نتایج ضد و نقیضی در مورد تغییر فعالیت آنزیم‌های آنتی‌اکسیدانی در ابتلا به دیابت نوع ۲ نشان داده‌اند.
در آزمایش صورت گرفته توسط مرجانی و همکاران (۱۳۸۴) بر روی افراد دیابتی، میانگین فعالیت آنزیم گلوتاتیون پراکسیداز در بیماران دیابتی بالاتر از افراد سالم و دارای اختلافی معنادار بوده است. در مطالعه‌ای دیگر توسط Pasaoglu و همکاران درباره‌ی بررسی وضعیت آنتی‌اکسیدانی در افراد سالم و دیابتی، نتایج نشان داده که پراکسیداسون لیپیدها در بیماران دیابتی بالاتر و سطح گلوتاتیون احیا در گلبول‌های قرمز پایین‌تر از افراد سالم است. همچنین در این بررسی گزارش شده که در بیماران دیابتی در مراحل اولیه بیماری، سیستم دفاع آنتی‌اکسیدانی به مقابله با رادیکال‌های آزاد می‌پردازد ولی با پیشرفت مراحل بیماری به تدریج سیستم آنتی‌اکسیدانی دچار اختلال شده و فعالیت آنزیم‌های آنتی‌اکسیدانی کاهش می‌یابد.
با توجه به نتایج جدیدتر حاصل از تحقیقات طاهری و همکاران (۱۳۹۱) اختلاف در نتایج می‌تواند به علت تفاوت مطالعات در زمینه جنس، مدت ابتلا به دیابت، میزان و نحوه کنترل قند خون و گونه‌های مورد مطالعه مدل‌های حیوانی باشد. این تفاوت‌ها در آزمایشات انسانی نیز مطرح است. در این مطالعات بیان می‌شود که افزایش سطح آنزیم‌های گلوتاتیون پراکسیداز می‌تواند ناشی از پاسخ جبرانی بدن به شرایط اکسیداتیو باشد. همچنین در همان مقاله ذکر شده است که احتمالا پس از بالارفتن سطح آنزیم به دلیل پاسخ جبرانی بدن، با رشد و شدت یافتن بیماری یا کنترل ضغیف قند خون، سطوح آنزیمی گلوتاتیون پراکسیداز با کاهش روبرو خواهد شد.
دیابت نوع ۲ تا حد زیادی ناشی از پیروی ناسالم از سبک زندگی‌های پرخطر و ماشینی شدن بیش از اندازه آن‌ها است. همه روزه راهکارهایی برای جوگیری از دچار شدن به آسیب‌های ناشی از کاهش توان بدن در مقابله با استرس اکسیداتیو ارائه می‌شود. این راهکارها شامل توصیه‌های تجویزی و هم‌چنین دستورهایی جهت اجتناب از مصرف برخی مواد یا انجام ندادن برخی کارهای روزمره و پرخطر می‌شود. شما نیز برای سهیم شدن در مبارزه و پیشگیری با این بیماری تلخ و خطرناک، اطلاعات خود را در رابطه با این بیماری و مقابله با استرس اکسیداتیو ناشی از آن زیر این مطلب با دیگران به اشتراک بگذارید؛ یا برای اطلاع از راهکارهای جدید مقابله در خبرنامه ما عضو شوید.

منابع:

Pasaoglu, H., Sancak, B. and Bukan, N., 2004. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. The Tohoku journal of experimental medicine, 203(3), pp.211-218.

PeerapatditMD, T., 2007. Glutathione and glutathione peroxidase in type 1 diabetic patients. J Med Assoc Thai, 90(9), pp.1759-67.

Sailaja Devi, M.M., Suresh, Y. and Das, U.N., 2000. Preservation of the antioxidant status in chemically‐induced diabetes mellitus by melatonin. Journal of pineal research29(2), pp.108-115.

Nangle, M.R., Gibson, T.M., Cotter, M.A. and Cameron, N.E., 2006. Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats. Planta medica72(6), p.494.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها و هزار مسیر تاثیر بر سلول سرطانی

یک فرم جایگزین آنزیمی که در مسیر متابولیسم گلوکز دخیل است، سلول‌های سرطانی را از استرس‌اکسیداتیو محافظت می‌کند.

محققان با فعال کردن آنزیمی که در تجزیه گلوکز دخالت دارند، می‌توانند رشد سلول‌های سرطانی ریه را تسکین دهند و آسیب‌های تولید شده توسط گونه‌های فعال اکسیژن(ROS) تولید شده در متابولیسم طبیعی را کاهش دهند. این گونه‌های فعال اکسیژن می‌توانند باعث آسیب به سلول در غلظت‌های بالا شود. یافته‌های منتشر شده در Science Express می‌تواند در جهت تحت تاثیر قرار دادن درمان‌های سرطان مورد استفاده قرار گیرد و رشد تومور را به حداقل برساند.
Karen Vousden از مؤسسه تحقیقات سرطان گلاسکو، گفت: این مطالعه نشان می‌دهد که چگونه تومورها به طور طبیعی با افزایش استرس اکسیداتیو روبرو می‌شوند و راه را برای تبدیل این مکانیسم علیه سرطان فراهم می‌کند.

دانشمندان مدت‌هاست دریافته‌اند که سلول‌های سرطانی تمایل دارند فرم دیگری از آنزیم پیرووات کیناز (PKM1) داشته باشند که بخشی از مسیر گلیکولیزی است و گلوکز را به پیروات و ATP می‌شکند. بر خلاف PKM1 که سطح فعالیت آن‌ها ثابت است، فعالیت PKM2 می‌تواند بالا یا پایین باشد و فرم جایگزینی آنزیم در کمک به رشد سلول‌های تومور نقش مهمی ایفا می‌کند.
دانشمندان هم‌چنین با این واقعیت که سلول‌های سرطانی می‌توانند از آسیب به اجزای سلولی اصلی که به طور ناگهانی در نتیجه سطوح بالای ROS پایدار می‌باشند، تحریک شوند، سلول‌های سرطانی ROS بیشتری تولید می‌کنند، اما به طریقی از عواقب معمولی اجتناب می‌کنند. کار قبلی نشان داد که مسیر PKM2 در این مسیر آسیب اکسیداتیو نقش مهمی ایفا می‌کند.
Anastasiou و همکارانش خطوط سلولی سرطان ریه را با عوامل اکسیدکننده افزایش دادند و سطوح ROS و PKM2 را افزایش دادند اما متوجه شدند که این سلول‌ها فعالیت PKM2 را کاهش داده‌اند. از سوی دیگر، هنگامی که عامل‌های کاهش دهنده را اضافه می‌کنند تا سطوح ROS را کاهش دهند و اکسیداسیون PKM2 را معکوس کنند، فعالیت آنزیمی افزایش می‌یابد و این نشان می‌دهد که PKM2 به عنوان سنسور برای ROS عمل می‌کند.

سپس محققان فرم جهش PKM2 را ایجاد کردند که همچون PKM1 هم‌چنان به عنوان سطح “ROS” عمل می‌کند. سلول‌های سرطانی با فرم جهش PKM2 باعث آسیب بیشتر نسبت به کنترل سرطان‌ها شدند، که نشان می‌دهد توانایی سلول سرطانی برای کاهش فعالیت PKM2 در پاسخ به میزان ROS بالا نقش کلیدی در حفظ سلول‌ها از آسیب دارد. هم‌چنین محققان دریافتند که کاهش فعالیت PKM2 موجب می‌شود که سلول‌های سرطانی با بازسازی گلوتاتیون، یک مولکول خنثی کننده ROS، زنده بمانند.
آزمایش به گونه‌ای طراحی شد که سلول‌هایی با جهش اکسیداتیو PKM2 طراحی شده و به موش‌ها تزریق کرده و رشد آن‌ها را بررسی کردند. سلول‌های با فرم جهش‌یافته، تومورهای کوچک‌تر از همتایان نوع وحشی داشتند.

یافته‌های این پژوهش نشان می‌دهد که محققان ممکن است یک روز بتوانند PKM2 را فعال کنند تا سلول‌های سرطانی بیشتر به درمان‌های سرکوب کننده مانند شیمی‌درمانی و رادیوتراپی آسیب پذیر باشند.
هم‌چنین پرسش مهم این است که آیا می‌توان از مکانیزم‌هایی استفاده کرد که بتواند PKM2 را فعال کند؟ اگر بتوان PKM2 را فعال کرد، آیا می‌توان به عنوان درمان اصلی بیماری سرطان کاربرد داشته باشد؟

منابع:

Alexander, B.M., Wang, X.Z., Niemierko, A., Weaver, D.T., Mak, R.H., Roof, K.S., Fidias, P., Wain, J. and Choi, N.C., 2012. DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology* Biology* Physics83(1), pp.164-171.

Zhao, C., Tang, Z., Chung, A.C.K., Wang, H. and Cai, Z., 2019. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicology and environmental safety170, pp.495-501.

نوشته شده در دیدگاه‌تان را بنویسید

دفاع میکروارگانیسم‌ها در برابر رادیکال‌های آزاد

محققان نشان داده‌اند که چگونه میکروارگانیسم‌ها خود را در برابر رادیکال‌های آزاد محافظت می‌کنند.

مطالعات مختلف بی‌شماری وجود دارد که در آن، میکروارگانیسم‌ها در معرض مولکول‌های بسیار واکنشی شناخته شده به عنوان رادیکال‌های آزاد قرار دارند. این مولکول‌ها قادر به آسیب رساندن به اجزای مهم سلول هستند و ممکن است در طول متابولیسم سلول طبیعی یا در پاسخ به عوامل محیطی تولید شوند. رادیکال‌های آزاد نقش مهمی در اثربخشی آنتی بیوتیک ، ایجاد بیماری‌ها و عملکرد طبیعی سیستم ایمنی بدن انسان دارند. تیمی از محققان در  برلین مکانیسم قبلاً ناشناخته را کشف کرده است که میکروارگانیسم‌ها را قادر می‌سازد از خود در برابر رادیکال‌های آزاد محافظت کنند. یافته‌های آن‌ها ممکن است به بهبود اثربخشی مواد ضدمیکروبی کمک کند. نتایج حاصل از این تحقیق در Nature منتشر شده است.

اصطلاح رادیکال‌های آزاد اکسیژن به مولکول‌های اکسیژن بسیار واکنش پذیر اشاره دارد که قادرند به طیف وسیعی از ساختارهای سلولی مهم مانند پروتئین ، DNA  و غشای سلولی آسیب برساند. برخی از سلول‌های سیستم ایمنی بدن رادیکال‌های آزاد را به عنوان بخشی از مبارزه با میکروارگانیسم‌های مهاجم تولید می‌کنند. فرآیندهای متابولیک هم‌چنین در هنگام تماس سلول‌های میکروبی با آنتی بیوتیک‌ها منجر به تولید رادیکال‌های آزاد می‌شوند. این یک عامل مهم در فعالیت آن‌هاست. میکروارگانیسم‌ها مکانیسم‌های مختلفی را برای رهگیری و خنثی کردن این مولکول‌های بسیار واکنش پذیر ایجاد کرده اند تا بتوانند حمله سیستم ایمنی را خنثی کنند. یک تیم بین المللی از محققان به سرپرستی پروفسور دکتر مارکوس رالسر ، مدیر موسسه بیوشیمی شیمیایی Charité ، اکنون توانسته است نشان دهد که میکروارگانیسم‌ها همچنین یک استراتژی دفاعی دیگر را نیز در اختیار دارند. در مقایسه با سازوکارهای قبلاً مستند ، این استراتژی می‌تواند بسیار مؤثر باشد.

محققان، تحقیقات خود را با استفاده از مخمر نانوائی به عنوان ارگانیسم مدل شروع کردند و مشاهده کردند که سلول‌های مخمر مقادیر زیادی لیزین ، یک مونومر را که در تولید پروتئین‌های مخمر مورد استفاده قرار می‌گیرد ، جمع می‌کنند. پس از جذب محیط ، لیزین در سطوح 70 تا 100 برابر بیشتر از مقدار لازم برای رشد طبیعی ذخیره می‌شود. محققان با استفاده از مدل‌سازی ریاضی و تجزیه و تحلیل ژنتیکی برای تعیین هدف این “برداشت لیزین” ، دریافتند که سلول‌های مخمر از لیزین تجمع یافته برای تغییر متابولیسم خود استفاده می‌کنند. یکی از پیامدهای این تنظیم مجدد ، تولید مقادیر خارق العاده گلوتاتیون ، یکی از مهم‌ترین مولکولهای اصلاح رادیکال موجود در موجودات زنده بود. پس از برداشت لیزین ، سلول‌های مخمر مقاومت قابل توجهی در برابر رادیکال‌های آزاد افزایش داده‌اند. این امر به آن‌ها امکان می‌دهد مقادیر رادیکال‌های آزاد را که معمولاً منجر به مرگ سلولی می‌شوند ، تجزیه کنند. محققان نشان دادند كه این مکانیسم مقاومت، نه تنها توسط انواع مختلفی از مخمرها بلكه توسط باكتری‌ها نیز مورد استفاده قرار می‌گیرد.

مطالعات محققان نشان می‌دهد که میکروارگانیسم‌ها نه تنها برای فعال کردن رشد ، بلکه به عنوان یک اقدام احتیاطی ، مواد مغذی را از محیط اطراف خود جذب می‌کنند ، اما در برابر حمله احتمالی رادیکال‌های آزاد آماده می‌شوند. این دانش می‌تواند در آینده مفید باشد. اگر موفق شدیم این مکانیسم مقاومت را مختل کنیم ، می‌توانیم به طور بالقوه اثربخشی مواد ضدمیکروبی را بهبود بخشیم. این گروه تحقیق با استفاده از این هدف کار خود را ادامه می دهند. ما هم‌چنین مکانیسم‌های مقاومت ناشناخته دیگر را جستجو خواهیم کرد. از این گذشته ، درک فرایندهای بنیادی سلولی پیش شرط لازم برای تولید مواد ضد میکروبی است.

 

منابع:

Olin-Sandoval, V., Yu, J.S.L., Miller-Fleming, L., Alam, M.T., Kamrad, S., Correia-Melo, C., Haas, R., Segal, J., Navarro, D.A.P., Herrera-Dominguez, L. and Méndez-Lucio, O., 2019. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature, p.1.

نوشته شده در دیدگاه‌تان را بنویسید

حضور گلوتاتیون در التهاب دستگاه گوارش

کاهش میزان آنتی‌اکسیدان در روده بزرگ ممکن است تأثیر مثبتی بر التهاب GI داشته باشد

یک مطالعه جدید نشان می‌دهد که کاهش سطح آنتی‌اکسیدان در روده بزرگ تأثیر غیر منتظره‌ای در التهاب دستگاه گوارش (GI) دارد. این مقاله در مجله آمریکایی فیزیولوژی دستگاه گوارش و فیزیولوژی کبد منتشر شده است.

آنتی‌اکسیدان‌ها به طور کلی مواد مفیدی در نظر گرفته می‌شوند که به مبارزه با آسیب سلول و بیماری کمک می‌کند. بدن انسان باعث کاهش گلوتاتیون (GSH) می‌شود ، GSH یا همان گلوتاتیون احیا، آنتی‌اکسیدانی است که به سیستم عصبی مرکزی و محیطی کمک می‌کند تا به درستی کار کند. همچنین برای زنده نگه داشتن سلول‌های عصبی در سیستم عصبی روده ضروری است. سیستم عصبی شبکه‌ای است که عملکرد دستگاه گوارش را کنترل می‌کند. تحقیقات قبلی نشان داده است که نورون‌های روده‌ای قادر به تولید GSH هستند و داشتن GSH بسیار کمی باعث آسیب سلولی (استرس اکسیداتیو) و مرگ نورون‌ها می‌شود.

محققان دانشگاه ایالتی میشیگان تأثیر کاهش GSH در موش‌های مبتلا به التهاب روده بزرگ (کولیت) را به عنوان الگوی بیماری التهابی روده بررسی کردند. قبل از شروع التهاب ، یک گروه از موش‌ها با ماده‌‌ای که سطح GSH در دستگاه گوارش را کاهش می‌داد، تحت درمان قرار گرفتند. گروه دوم سطح طبیعی GSH قبل از التهاب را حفظ کردند (“کولیت درمان نشده”).

گروه کولیت تحت درمان با تجمع کمتری از سلول‌های ایمنی بدن (نفوذ نوتروفیل) اطراف سلول‌های عصبی GI در مقایسه با گروه کولیت درمان نشده وجود دارد. نفوذ نوتروفیل پاسخی به التهاب است. بنابراین ، نفوذ کمتر ممکن است با کاهش آسیب التهابی همراه باشد. موش‌های تحت درمان نیز از نظر کاهش وزن ناشی از کولیت تجربه نکردند ، که نشان می‌دهد سطح GSH کاهش می‌یابد. در این مدل از روده بزرگ در برابر صدمات ناشی از التهاب شدید محافظت می‌کند. نویسندگان نوشتند: “این مشاهدات یک هدف درمانی بالقوه برای بهبود آسیب شناسی دستگاه گوارش در هنگام التهاب دارند.”

 

منابع:

Hamer, H.M., Jonkers, D.M., Vanhoutvin, S.A., Troost, F.J., Rijkers, G., de Bruïne, A., Bast, A., Venema, K. and Brummer, R.J.M., 2010. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clinical nutrition29(6), pp.738-744.

Şengül, N., Işık, S., Aslım, B., Uçar, G. and Demirbağ, A.E., 2011. The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Digestive diseases and sciences56(3), pp.707-714.