نوشته شده در دیدگاه‌تان را بنویسید

درمان آنتی‌اکسیدانی ناباروری مردان

صنایع ناباروری لیست گسترده‌ای از آزمایشات و روش‌های گرا‌‌ن‌قیمت را برای کمک به زوج‌های نابارور، از قبیل( IVF (fertilization in vitroو تزریق اسپرم داخل سیتوپلاسمی (ICSI) ارائه می‌دهند. متأسفانه، تکنولوژی‌های تولید مثل کمکی (ART) می‌تواند یک طرف تاریکی داشته باشد که به سختی ذکر شده است. روش‌های پیشرفته تولید مثل با افزایش خطر ابتلا به ناهنجاری‌های مادرزادی و همچنین احتمال بیشتر بروز بیماری‌های مختلف به طور فزاینده‌ای ارتباط دارد.
اما اکنون یک بررسی جدید سیستماتیک از تحقیقات دانشمندان شواهدی ارائه می‌دهد که درمان طبیعی می‌تواند راه حل مشکلات ناباروری در بسیاری از مردان باشد. این تحقیق نشان داد مردان تیمار شده با مکمل‌های آنتی‌اکسیدان احتمال بیشتری در بهبود باروری در مقایسه با مردانی که مکمل مصرف نمی‌کنند، دارا هستند.
محققان زنان و زایمان در مقاله جدید تحقیقی، اشاره کردند که مواد شیمیایی شناخته شده به عنوان گونه‌های فعال اکسیژن (ROS) باعث آسیب به سلول‌ها، به ویژه سلول‌های اسپرم می‌شوند. این ممکن است دلیلی باشد بر این‌که چرا برخی از مردان تعداد اسپرم کمتر و توانایی باروری کمتری دارند. اما یک عامل آنتی‌اکسیدانی، مانند برخی از ویتامین‌ها و مواد معدنی، به منظور کاهش آسیب‌های ناشی از ROS شناخته شده‌است.
این آزمایش برروی 34 زوج تحت درمان‌های ناباروری از جمله لقاح آزمایشگاهی و تزریق اسپرم انجام شد. اغلب مردان در این مطالعات دارای تعداد کم اسپرم یا حرکت کم اسپرم بوده‌اند. محققان درمان ناباروری مردان را با انواع مختلف آنتی‌اکسیدان، از جمله ویتامین E، L-کارنیتین، روی و منیزیم انجام دادند. نتایج نشان داد که در مقایسه با گروه کنترلی، در صورت درمان آنتی‌اکسیدانی مرد،‌ احتمال باروری افزایش می‌یابد. در سایر آزمایشات اثرات آنتی‌اکسیدان‌ها بر روی غلظت اسپرم و تحرک و هم‌چنین پیشرفت های مثبت با مکمل آنتی‌اکسیدانی یافت شده است.
اطلاعات کافی برای مقایسه آنتی‌اکسیدان‌های مختلف در دسترس نیست تا مشخص شود کدام مکمل‌ها ممکن است در کمک به مردان در پدر شدن، موثر باشند در نتیجه نیاز به مقایسه و مطالعه بیشتر در این زمینه است تا مشخص شود کدام آنتی‌اکسیدان در مقایسه با آنتی‌اکسیدان‌های دیگر بهتر عمل می‌کند.

منابع:

SIKKA, S.C., RAJASEKARAN, M. and HELLSTROM, W.J., 1995. Role of oxidative stress and antioxidants in male infertility. Journal of andrology, 16(6), pp.464-468.

Agarwal, A., Nallella, K.P., Allamaneni, S.S. and Said, T.M., 2004. Role of antioxidants in treatment of male infertility: an overview of the literature. Reproductive biomedicine online8(6), pp.616-627.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها و گسترش سرطان ؟

طبق یک مطالعه منتشر شده در آوریل و در مجله  Science Translational Medicine، دو نوع از داروهای مورد استفاده برای درمان دیابت نوع 2 می‌تواند متاستاز تومورهای انسان را در موش‌ها گسترش دهد.  این دو نوع ترکیب حاوی مهارکننده‌های دی‌پپتیدیل پپتیداز 4 (DPP-4) و  بازدارنده آلفالیپوئیک‌اسید (ALA) است که باعث سرعت بخشیدن به متاستاز ناشی از فعال شدن یک مسیر پاسخ آنتی‌اکسیدانی می‌شود. در این مسیر پروتئین‌های متاستاز فعال می‌شوند. نتایج این تیم نشان‌دهنده ارتباط بین آنتی‌اکسیدان‌ها و گسترش سرطان است.

مهم‌ترین یافته در این زمینه بیان می‌کند که متاستاز، سرطان‌های موجود را با فعال شدن پاسخ آنتی‌اکسیدانی ترویج می‌دهد.

زاکاری شافر، زیست‌شناس سلولی از دانشگاه نوتردام، گفت: “این اطلاعات محرمانه هستند و نتیجه تحقیق با مطالعات دیگر مطابقت دارد که فعالیت آنتی‌اکسیدانی می‌تواند برای متاستاز سلول‌های سرطانی مفید باشد.”

ژنگ و همکاران برای اولین بار از داروهای ضد دیابتی معمول استفاده کردند، از جمله متفورمین و آنالوگ‌های انسولین وتوانایی آن‌ها را برای افزایش تکثیر یا افزایش مهاجرت سلول‌های سرطانی در آزمایشگاه بررسی کردند. محققان نشان دادند که مهارکننده‌های DPP-4  از مهاجرت و تهاجم سلول‌ها جلوگیری می‌کند اما بر روی تکثیر سلول‌های سرطانی ملانوم، کبد، کولون، پستان، ریه و تخمدان تاثیرگذار نیست.

در موش‌ها، این داروها موجب انتشار بیشتر سلول‌های تومور کبدی و کولون و همچنین افزایش میکرومتاستاز در مقایسه با حیوانات با همان تومورهایی بود که هیچ داروهای ضددردی دریافت نکردند. آزمایش‌های بیشتر در آزمایشگاه نشان داد که اثرات مهار‌کننده DPP-4  بر روی انتقال تومور سلول با توانایی ترکیبات برای کاهش استرس‌اکسیداتیو سلول‌های سرطانی همراه است: داروها منجر به کاهش گونه‌های فعال اکسیژن (ROS) ، افزایش گلوتاتیون و افزایش آنتی‌اکسیدان آندوژنز می‌شود. محققان نشان می‌دهند که مهارکننده سنتز گلوتاتیون در سلول‌های سرطانی علاوه بر مهارکردن DPP-4 مانع از انتقال سلول‌های تومور می‌شود.

برای درک این‌که چگونه این ترکیبات بر روی مسیرهای استرس اکسیداتیو سلولی اثر می‌گذارند، محققان فاکتور رونویسی (NRF2) را که از طریق بازدارنده DPP-4 فعال می‌شوند، هم در کشت سلولی و هم در موش بررسی کردند.. پنج مهار‌کننده متفاوت DPP-4  همه در NRF2 فعال شده‌اند. هنگامی که محققان NRF2 را در پروتئین بازدارنده DPP-4 و سلول‌های سرطانی کبد از بین بردند، سلول‌ها کاهش مهاجرت سلول‌های تومور و بیان پروتئین‌های مرتبط با متاستاز را نشان دادند.

محققان اثر مشابهی را در in vivo مشاهده کردند. موش‌هایی که با سلول‌های نابودکننده NRF2 تلقیح شده بودند، متاستازهای ناشی از مهارکننده DPP-4 کمتری داشتند. محققان گزارش دادند که NRF2 هم‌چنین متاستازهای مستقل از هرگونه درمان دارویی دیابت را تحت تاثیر قرار داده است. فعال‌سازی فاکتور رونویسی باعث بیان پروتئین‌های متاستاز و مهاجرت سلولی در کشت شده و فعال‌سازی فارماکولوژیک NRF2 در موش، باعث افزایش میکرومتاستاز شد.

یکی دیگر از فعال کننده NRF2 شناخته شده، با نام ALA که برای درمان نوروپاتی دیابتی استفاده می‌شود، و اثرات مشابهی را به عنوان مهارکننده DPP-4 دارد، مورد مطالعه قرار گرفت. تجزیه و تحلیل داده‌های بیان اولیه تومور و متاستاتیک، نشان داد که در نمونه‌های با متاستاتیک بیشتر، احتمال افزایش بیان NRF2 را با متاستاز گره لنفاوی مرتبط می‌کند. مطالعات قبلی نشان داده است که NRF2 توسط آنکوژن‌ها فعال می‌شود، که تومورها را قادر می‌سازد تا ROS را خنثی کنند که مانع رشد آن‌ها می‌شود. شافر اشاره کرد که آیا سایر داروها با فعالیت آنتی‌اکسیدانی با یک مکانیزم مشابه کار می‌کنند یا اینکه سلول‌های سرطانی، خود نیز از مکانیسم‌های دیگر برای حفظ آنتی‌اکسیدان استفاده می‌کنند.

گام بعدی این است که مطالعه متاستاز تومور در موش‌های دیابتی داشته باشیم، که به اندازه کافی منعکس‌کننده کاربرد بالینی فعلی داروهای ضدویروسی خواهد بود.

برگئو تأکید کرد: “آنتی اکسیدان‌ها و داروهایی که NRF2 را فعال می‌کنند باعث ایجاد سرطان نمی‌شوند.” “در عوض، آن‌ها به سلول‌های سالم کمک می‌کنند سالم بمانند و به سلول‌های سرطانی کمک می کنند تا در بدن گسترش پیدا کنند.

 

منابع:

Caglayan, A., Katlan, D.C., Tuncer, Z.S. and Yüce, K., 2019. Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. Journal of Trace Elements in Medicine and Biology52, pp.254-262.

Shrivastava, A., Aggarwal, L.M., Mishra, S.P., Khanna, H.D., Shahi, U.P. and Pradhan, S., 2019. Free radicals and antioxidants in normal versus cancerous cells—An overview.

 

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها و هزار مسیر تاثیر بر سلول سرطانی

یک فرم جایگزین آنزیمی که در مسیر متابولیسم گلوکز دخیل است، سلول‌های سرطانی را از استرس‌اکسیداتیو محافظت می‌کند.

محققان با فعال کردن آنزیمی که در تجزیه گلوکز دخالت دارند، می‌توانند رشد سلول‌های سرطانی ریه را تسکین دهند و آسیب‌های تولید شده توسط گونه‌های فعال اکسیژن(ROS) تولید شده در متابولیسم طبیعی را کاهش دهند. این گونه‌های فعال اکسیژن می‌توانند باعث آسیب به سلول در غلظت‌های بالا شود. یافته‌های منتشر شده در Science Express می‌تواند در جهت تحت تاثیر قرار دادن درمان‌های سرطان مورد استفاده قرار گیرد و رشد تومور را به حداقل برساند.
Karen Vousden از مؤسسه تحقیقات سرطان گلاسکو، گفت: این مطالعه نشان می‌دهد که چگونه تومورها به طور طبیعی با افزایش استرس اکسیداتیو روبرو می‌شوند و راه را برای تبدیل این مکانیسم علیه سرطان فراهم می‌کند.

دانشمندان مدت‌هاست دریافته‌اند که سلول‌های سرطانی تمایل دارند فرم دیگری از آنزیم پیرووات کیناز (PKM1) داشته باشند که بخشی از مسیر گلیکولیزی است و گلوکز را به پیروات و ATP می‌شکند. بر خلاف PKM1 که سطح فعالیت آن‌ها ثابت است، فعالیت PKM2 می‌تواند بالا یا پایین باشد و فرم جایگزینی آنزیم در کمک به رشد سلول‌های تومور نقش مهمی ایفا می‌کند.
دانشمندان هم‌چنین با این واقعیت که سلول‌های سرطانی می‌توانند از آسیب به اجزای سلولی اصلی که به طور ناگهانی در نتیجه سطوح بالای ROS پایدار می‌باشند، تحریک شوند، سلول‌های سرطانی ROS بیشتری تولید می‌کنند، اما به طریقی از عواقب معمولی اجتناب می‌کنند. کار قبلی نشان داد که مسیر PKM2 در این مسیر آسیب اکسیداتیو نقش مهمی ایفا می‌کند.
Anastasiou و همکارانش خطوط سلولی سرطان ریه را با عوامل اکسیدکننده افزایش دادند و سطوح ROS و PKM2 را افزایش دادند اما متوجه شدند که این سلول‌ها فعالیت PKM2 را کاهش داده‌اند. از سوی دیگر، هنگامی که عامل‌های کاهش دهنده را اضافه می‌کنند تا سطوح ROS را کاهش دهند و اکسیداسیون PKM2 را معکوس کنند، فعالیت آنزیمی افزایش می‌یابد و این نشان می‌دهد که PKM2 به عنوان سنسور برای ROS عمل می‌کند.

سپس محققان فرم جهش PKM2 را ایجاد کردند که همچون PKM1 هم‌چنان به عنوان سطح “ROS” عمل می‌کند. سلول‌های سرطانی با فرم جهش PKM2 باعث آسیب بیشتر نسبت به کنترل سرطان‌ها شدند، که نشان می‌دهد توانایی سلول سرطانی برای کاهش فعالیت PKM2 در پاسخ به میزان ROS بالا نقش کلیدی در حفظ سلول‌ها از آسیب دارد. هم‌چنین محققان دریافتند که کاهش فعالیت PKM2 موجب می‌شود که سلول‌های سرطانی با بازسازی گلوتاتیون، یک مولکول خنثی کننده ROS، زنده بمانند.
آزمایش به گونه‌ای طراحی شد که سلول‌هایی با جهش اکسیداتیو PKM2 طراحی شده و به موش‌ها تزریق کرده و رشد آن‌ها را بررسی کردند. سلول‌های با فرم جهش‌یافته، تومورهای کوچک‌تر از همتایان نوع وحشی داشتند.

یافته‌های این پژوهش نشان می‌دهد که محققان ممکن است یک روز بتوانند PKM2 را فعال کنند تا سلول‌های سرطانی بیشتر به درمان‌های سرکوب کننده مانند شیمی‌درمانی و رادیوتراپی آسیب پذیر باشند.
هم‌چنین پرسش مهم این است که آیا می‌توان از مکانیزم‌هایی استفاده کرد که بتواند PKM2 را فعال کند؟ اگر بتوان PKM2 را فعال کرد، آیا می‌توان به عنوان درمان اصلی بیماری سرطان کاربرد داشته باشد؟

منابع:

Alexander, B.M., Wang, X.Z., Niemierko, A., Weaver, D.T., Mak, R.H., Roof, K.S., Fidias, P., Wain, J. and Choi, N.C., 2012. DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology* Biology* Physics83(1), pp.164-171.

Zhao, C., Tang, Z., Chung, A.C.K., Wang, H. and Cai, Z., 2019. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicology and environmental safety170, pp.495-501.