نوشته شده در

فلور روده و متابولیسم آنتی‌اکسیدانت گلوتاتیون

مطالعات اخیر نشان می‌دهد که فلور میکروبی روده باعث تنظیم متابولیسم آنتی‌اکسیدانت گلوتاتیون و آمینو اسید در میزبان می‌شود. گلوتاتیون یک آنتی‌اکسیدانت کلیدی است که در تمامی سلول‌های بدن یافت می‌شود. کمبود گلوتاتیون باعث استرس اکسیداتیو می‌شود که نقش مهمی در بسیاری از بیماری‌های مرتبط با سبک زندگی دارد.

خروجی عملکردی و تنوع فلور میکروبی روده تنظیم‌کنندگان مهمی در بروز بیماری‌های مختلف انسان هستند.  چاقی، دیابت نوع ۲، آترواسکلروز، کبد چرب غیر الکی و سوء تغذیه از جمله این بیماری‌ها هستند. بنابراین واکنش بین فلور میکروبی روده، بافت‌ روده میزبان و سایر بافت‌های بدن با سلامت میزبان بسیار مرتبطند.

در مقاله‌ای که در نشریه Molecular Systems Biology توسط تیمی از دانشگاه‌های صنعتی چالمرز، انستیتو سلطنتی تکنولوژی و دانشگاه گوتنبرگ سوئد چاپ شده، عنوان شده است که فلور میکروبی روده باعث تنظیم متابولیسم گلوتاتیون و آمینو اسید در میزبان می‌شود.

گلوتاتیون قوی‌ترین آنتی‌اکسیدانت بدن و اصلی‌ترین ماده سم‌زدای (Detoxifying agent) بدن است. این ماده در سیستم ایمنی بدن، متابولیسم مواد غذایی و تنظیم سایر رخدادهای سلولی، نقش بسیار حیاتی دارد. گلوتاتیون پروتئین کوچکی است و در داخل سلول از ۳ آمینو اسید که بطور مداوم از طریق تغذیه وارد بدن می‌شوند، ساخته می‌شود. کمبود گلوتاتیون باعث بروز استرس اکسیداتیو می‌شود. همانطور که اشاره شد، استرس اکسیداتیو نقش بسیار مهمی در بیماری‌های متابولیک دارد.

در این مطالعه، نقشه‌ای کلی از متابولیسم موش طراحی شد و مدل‌های رایانه‌ای ویژه‌ای برای  هر بافت ایجاد گردید. به‌وسیله استفاده از داده‌های تجربی High throughput، محققین دریافتند که فلور میکروبی در روده گلایسین مصرف می‌کند. گلایسین یکی از ۳ آمینو اسیدی است که برای ساخت گلوتاتیون در بدن مورد نیاز است.

برای تایید نتایج به‌دست آمده از طریق شبیه‌سازی‌های مبتنی بر رایانه، سطوح آمینو اسید گلایسین در ورید پرتال کبدی موش اندازی‌گیری شد. علاوه‌براین سطوح پایین‌تری از گلایسین در بافت کبد و کولون یافت شد که نشان‌گر تنظیم متابولیسم گلوتاتیون نه تنها در روده کوچک، بلکه در کبد و کولون توسط فلور میکروبی روده است.

عادل ماردین اولو نویسنده مسئول این مقاله از دانشگاه چالمرز می‌گوید:”برخی از باکتری‌های روده گلایسین مصرف می‌کنند و عدم وجود تعادل در ترکیب باکتری‌های روده باعث ایجاد بیماری‌های مزمن می‌شود” در مطالعات مستقل قبلی نیز سطوح نامتعادل گلایسین و سایر آمینو اسیدهای پلاسما در بیماری‌های چاقی، دیابت نوع ۲ و کبد چرب غیر الکلی گزارش شده است.

این اکتشاف ممکن است به توسعه محصولات غذایی منجر شود که باکتری‌های مفید (پروبیوتیک‌ها) را به بدن انتقال دهند. نتایج این مطالعه به ما کمک می‌کند تا نقش باکتری‌ها در ایجاد و توسعه بیماری‌های متابولیکی چون دیابت نوع ۲، چاقی، کبد چرب غیر الکلی و سوء تغذیه چگونه است.

 

منبع:

 

Mardinoglu, A., Shoaie, S., Bergentall, M., Ghaffari, P., Zhang, C., Larsson, E., Bäckhed, F. and Nielsen, J., 2015. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular systems biology11(10), p.834.

نوشته شده در

بیماری‌های قلبی و کبدی دشمن آنتی‌اکسیدانت‌ های بدن

دانشمندان دانشگاه روتگرز پروتئینی را شناسایی کردند که باعث آسیب آنتی‌اکسیدانت و بیماری‌های بسیاری است.

بر اساس مطالعه جدید چاپ شده در Molecular cell، دانشمندان دریافتند که پروتئینی تحت عنوان P62 که در حالت عادی می‌بایست به‌عنوان یک آنتی‌اکسیدانت در جهت جلوگیری از صدمه سلولی عمل کند، در موش‌های آزمایشگاهی مبتلا به بیماری‌های قلبی و کبدی عملکرد مناسبی ندارد.

این امر باعث ایجاد استرس اکسیداتیو می‌شود و در نتیجه آن مولکول‌های مضر در بدن آزاد می‌شود که آن‌ها را رادیکال‌های آزاد می‌نامند. سیستم آنتی‌اکسیدانتی سلول‌های بدن به عنوان یکی از اولین سپرهای دفاعی بدن، می‌بایست از حمله این مولکول‌های مضر دفاع کند و از صدمه دیدن سایر سلول‌ها جلوگیری کند. پیشتر نیز در خصوص محافظت کبد در مقابل استرس اکسیداتیو مطلبی منتشر شده بود

دکتر وی-ژینگ-زونگ، رهبر این تیم تحقیقاتی می‌گوید: «علت این آسیب عملکرد عکس پروتئین دیگری به‌نام TRIM21 است که می‌بایست سیستم ایمنی بدن را علیه باکتری و ویروس تحریک کند اما در این موش‌های بیمار کاملا برعکس عمل کرده و باعث خاموش شدن پروتئین آنتی‌اکسیدانت شده و مانع از عملکرد آن می‌شود.

رهبر این تیم تحقیقاتی همچنین می‌افزاید:‌«پروتئین TRIM21 در حالت نرمال در بدن وجود دارد و بدون آن بدن ما در مقابل بسیاری از عفونت‌های قابل کنترل مغلوب خواهد شد. اما این تحقیق به ما نشان می‌دهد که در شرایطی که بدن دچار روندهای پاتولوژیکی همزمان می‌شود، بهتر است که پروتئين TRIM21 را مهار کنیم چرا که مانع از حفاظت سلول در مقابل آسیب می‌شود.»

در این مطالعه دانشمندان با بررسی آسیب‌های قلبی و کبدی در موش‌های آزمایشگاهی دریافتند که در موش‌هایی که ژن TRIM21 غیرفعال شده داشتند در مقایسه با موش‌های دارای ژن و در شرایط بیماری‌های قلبی و کبدی، آسیب کمتری را متحمل شده‌اند.

دکتر زونگ عنوان می‌کند: «قلب و کلیه در موش‌های فاقد ژن TRIM21 در مقایسه با موش‌های گروه شم به‌نحو مناسبی محافظت شده‌اند. این داده‌ها به ما کمک می‌کند تا شرایط مشابه را در انسان بهتر مدیریت کنیم.»

بیماری‌های قلبی یکی از اصلی‌ترین دلایل مرگ‌ومیر در ایالات متحده آمریکاست و این درحالی است که ۱۰٪ آمریکایی‌ها به یکی از انواع بیماری‌های کبدی مبتلا هستند. جالب است بدانید بر اساس اعلام رئیس انجمن قلب ایران شیوع مرگ‌ومیر ناشی از بیماری‌های قلبی در ایران بالاتر از آمارهای جهانی است.

این تیم تحقیقاتی امیدوار است با طراحی و توسعه داروهای مناسب، فعالیت این پروتئین کاهش یا متوقف شود تا بتوان از بروز آسیب‌های اشاره شده جلوگیری نمود.

 

منبع:

 

Pan J-A, Sun Y, Jiang Y-P, et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Molecular cell. 2016;61(5):720-733. doi:10.1016/j.molcel.2016.02.007.

نوشته شده در

پروتئین داروهای آنتی‌اکسیدانی عامل اصلی بروز آترواسکلروز

محققان UCLA دریافتند پروتئینی که نقش مهمی در برخی از داروهای آنتی‌اکسیدانی دارد، ممکن است به دلیل مکانیسم‌های اضافی، موجب بروز آترواسکلروز و یا مسدود شدن عروق شوند. این یافته ممکن است سرنخ‌هایی درباره این‌که چرا برخی از درمان‌های آنتی‌اکسیدانی نتایج مثبت نداشته‌اند، مفید باشد.

پروتئین  Nrf2، به عنوان مهم‌ترین هدف درمان دارویی برای بیماری‌هایی مانند سرطان به شمار می‌رود، زیرا می‌تواند با پیوستن به توالی‌های خاص DNA، منجر به بیان ژن‌های آنتی‌اکسیدانی و ضدالتهابی متعدد شده و فعالیت آنزیم‌های درگیر در بروز سرطان را کاهش یا مهار کند. محققان معتقدند که Nrf2 با توانایی بالا ممکن است در جهت تقویت آنتی‌اکسیدان‌ها، مبارزه با آسیب سلولی و بافت یا اکسیداسیون، مفید باشد که منجر به آترواسکلروز می‌شود.

با این حال، دانشمندان UCLA دریافتند در حالی که Nrf2 خواص آنتی‌اکسیدانی را در یک مدل حیوانی افزایش داد، هم‌چنین با افزایش سطح کلسترول کل و میزان کلسترول در کبد، باعث افزایش آترواسکلروز می‌شود. به گفته محققان، این اولین مطالعه است که اثرات اضافی را بر متابولیسم کلسترول همراه با تشکیل پلاك در شریان‌ها نشان می‌دهد. در واقع عوامل بروز آترواسکلروز بیشتر از مزایای آنتی‌اکسیدانی است. توسعه درمان‌های آنتی‌اکسیدانی جدید بسیار مهم است و این تحقیق در درمان‌های مبتنی بر این پروتئین تاثیر می‌گذارد.

برای مطالعه بیشتر جداسازی و شناسایی عملکرد Nrf2 ، بررسی متابولیسم و نقش آن در موش‌هایی که بدون پروتئین به طور خاص تولید می‌شوند انجام می‌گیرد. محققان دریافتند که موش‌های نر بدون Nrf2 سطوح آنتی‌اکسیدان‌ها را کاهش داده‌اند، اما در مقایسه با حیوانات عادی، 53٪ کاهش در پلاک‌های آترواسکلروز در آئورت مشاهده شد. موش‌هایی که تنها نیمی از بیان ژن برای Nrf2 را نشان می‌دادند، همان میزان تشکیل پلاک را داشتند.

سپس محققان تلاش کردند تا درک درستی از تاثیر پروتئین Nrf2 بر عوامل دیگر به دست بیاورند. دانشمندان متوجه شدند که موش‌های بدون Nrf2 سطح کلسترول تام خون پایین‌تر و کلسترول کبدی کمتری دارند. کمبود پروتئین نیز منجر به کاهش بیان ژن‌های درگیر در تولید و ذخیره چربی و تنظیم گلوکز در کبد می‌شود که بخشی از روند تولید کلسترول است.

یافته‌های این تحقیق به اثرات جدید و مهم پروتئین Nrf2 در تنظیم تولید کلسترول و هم‌چنین مسیرهای آنتی‌اکسیدانی اشاره دارد. ممکن است اثرات کلسترول در هنگام ایجاد درمان‌های آنتی‌اکسیدانی با استفاده از این پروتئین مورد توجه قرار گیرد هم‌چنین مقدار یا سطح بیان این ژن برای تعادل دو اثر مهم است.

علاوه بر این، محققان دریافتند که بیشتر اثرات Nrf2 در موش‌های نر بسیار شایع است. برای بررسی این‌که آیا این اختلالات جنسی مدل حیوانات، مشابه انسان است یا خیر، مطالعات بیشتری لازم است و هم‌چنین تحقیقات بیشتری در پاسخ به این سوال که آیا سایر عوامل محیطی، متابولیکی و ژنتیکی در تأثیر Nrf2  بر کلسترول و آنتی‌اکسیدان‌ها نقش دارند، نیاز است.

 

منابع:

Seifried, H.E., Anderson, D.E., Fisher, E.I. and Milner, J.A., 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of nutritional biochemistry18(9), pp.567-579.

Tabas, I., 2010. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circulation research107(7), pp.839-850.

Matés, J.M. and Sánchez-Jiménez, F.M., 2000. Role of reactive oxygen species in apoptosis: implications for cancer therapy. The international journal of biochemistry & cell biology32(2), pp.157-170.

نوشته شده در

اسکن MRI زوال مغز را در اسکیزوفرنی نشان می‌دهد

طبق مطالعه ارائه شده در دانشگاه آمریکایی نوروفارماسایکولوژی عدم تعادل شیمیایی مخرب در مغز می‌تواند منجر به اسکیزوفرنی شود. متخصصان مغز و اعصاب با استفاده از روش نوین اندازه‌گیری MRI سطح بالایی از استرس اکسیداتیو را در بیماران اسکیزوفرنی در مقایسه با افراد سالم و بیماران اختلال دو قطبی گزارش کردند.

 طبق گفته‌ی محققان روانپزشکی در کالج پزشکی هاروارد تقاضای انرژی شدید در سلول‌های مغزی منجر به تجمع انواع اکسیژن واکنش پذیر از جمله رادیکال‌های آزاد و هیدروژن پراکسید می‌شود. در اسکیزوفرنی اکسیداسیون بیش از حد- که شامل همان نوع واکنش‌هایی است که باعث می شود فلز به زنگ آهن تبدیل شود- تصور بر این است که به طور گسترده باعث التهاب و آسیب سلولی می شود. با این حال اندازه‌گیری این پروسه در سلول‌های زنده مغز انسان به صورت یک چالش باقی مانده است.

دکتر دو[1] و همکارانش در بیمارستان مک کین با تکنیک طیف سنجی رزونانس مغناطیسی استرس اکسیداتیو را اندازه‌گیری کردند. این روش از اسکنر‌های مغز برای اندازه‌گیری غیر تهاجمی غلظت دو مولکول NAD+ و NADH استفاده می کند و یک بازخوانی از چگونگی مصونیت مغز در برابر شمار زیاد اکسیدانت‌ها ارئه می دهد. دو مشاهده کرد که از بین 21 بیمار مزمن اسکیزوفرنی 53٪ افزایش سطح NADH را در مقایسه با هم سن و سالان خود نشان می دهند. سطح مشابهی از NADH در افرادی که به تازگی بیماری آن‌ها شناسایی شده است مشاهده گردید که بیانگر عدم تعادل اکسیداسیون در مراحل اولیه‌ی بیماریست.

بیشترین افزایش متوسط NADH در افراد مبتلا به اختلال دو قطبی مشاهده گردید که همپوشانی ژنتیکی و بالینی با بیماران اسکیزوفرنی نشان می‌دهند. علاوه بر ارئه‌ی بینش جدید در بیولوژی اسکیزوفرنی این یافته‌ها روش بالقوه‌ای برای آزمایش اثر بخشی مداخلات جدید فراهم کرده‌اند. دو می‌گوید: ما امیدواریم این فعالیت‌ها منجر به یافت استراتژی جدید برای محافظت از مغز در برابر استرس اکسیداتیو و بهبود عملکرد مغز در اسکیزوفرنی شوند.

[1] Dr. Fei Du

منبع:

https://goo.gl/Pfmzgt

نوشته شده در

آلزایمر و امکان درمان با داروی گلوکوم

بنا‌ بر گزارش دانشمندان دانشگاه UCL دارویی که در درمان بیماری‌های معمول چشم‌(گلوکوم)‌ استفاده می‌شود ممکن است که پتانسیل درمان آلزایمر را داشته باشد .

در یک آزمایش روی رت‌ها‌، داروی بریمونیدین که به‌طور روتین در بیماران مبتلا به گلوکوم جهت کاهش فشار مایع داخل چشمی استفاده می‌شود‌،متوجه شدند که موجب کاهش تشکیل پروتئین آمیلوئید در شبکیه‌ی چشم می‌شود،چیزی که بر‌این باورند که مرتبط با آلزایمر است.این تحقیق در ژورنال Cell Death And Disease گزارش شده است.
پلاک‌های آمیلوئید در شبکیه‌ی چشم بیماران مبتلا به بیماری آلزایمر قابل مشاهده است،بنابراین پژوهشگران بر این باورند که شبکیه‌ی چشم ادامه‌ی آن بخش از مغز است که فرصت تشخیص و پیگیری پیشرفت آلزایمر را فراهم می‌کند.
دانشمندان دریافتند که بریمونیدین دژنراسیون عصبی سلول‌های شبکیه‌ی چشم را با کم کردن میزان بتا‌ آمیلوئید در چشم کاهش می‌دهد. این امر حاصل استفاده از این دارو جهت تحریک تولید یک پروتئین غیر‌سمی جایگزین است که سلول‌های عصبی را نمی‌کشد.
محققان امیدوارند که دارو اثر مشابهی روی مغز داشته باشد،اگرچه این اثر در مطالعه فعلی بررسی نشده‌است.
با توجه به اینکه میزان ابتلا به آلزایمر افزایش یافته است،نتایج مطالعه ما در زمان بهتر از‌این نمی‌توانست ارائه گردد. سرگروه این تیم تحقیقاتی می‌گوید: با افزایش طول عمر نیاز به روش‌های درمانی مختلف که این بیماری مخرب را کنترل کنند افزایش می‌یابدو ما باور داریم که یافته‌های ما در این زمینه کمک بسزایی خواهد کرد

منبع:

Non-amyloidogenic effects of α2 adrenergic agonists: implications for Brimonidine-mediated neuroprotection,

نوشته شده در

محافظت از کبد در برابر استرس اکسیداتیو با روغن زیتون

روغن زيتون فوق خالص می‌تواند كبد را در مقابل استرس اكسيداتيو محافظت نمايد. دانشمندان موش‌هایی را در معرض علف كشی با سمیت متعادل (كه به خالی كردن بدن از آنتی اكسيدانت‌ها معروف است) قرار دادند و دريافتند، موش‌هايی كه با رژيم غذايی حاوی روغن زيتون تيمار شده بودند آسيب كبدی كمتری نشان دادند بدين معنی كه روغن زيتون به طور نسبی از آسيب كبدی آنها جلوگيری كرده بود. دانشمندان تونسی و عربستانی با همكاری در اين تحقيق به دنبال انجام آزمايشاتی بر روی ٨٠ موش بودند. محمد همامی نويسنده‌ی مقاله مي گويد زيتون جز كاملی از رژيم غذايی مديترانه‌ای است. شواهد رو به رشدی در مورد مفيد بودن زيتون برای سلامتی از جمله كاهش خطرات بيماري های عروق كرونر قلب، پيشگيري از برخي سرطان ها و تغييرات در سيستم ايمنی و پاسخ اتهابی وجود دارد.

ما نشان داديم كه روغن زيتون و عصاره هاي آن بافت كبد را در مقابل استرس اكسيداتيو محافظت مي نمايند. دانشمندان موش‌ها را به گروه‌های كنترل، گروه گيرنده‌ی روغن زيتون و ٦ گروه در معرض علف كش ٢،٤- دي كلروفنوكسي استيك اسيد، همراه و يا بدون روغن زيتون كامل و يكي از دو نوع عصاره‌ی روغن زيتون عصاره‌ی آب دوست و عصاره‌ی چربی دوست تقسيم كردند. تمام موش‌هایی كه علف كش را دريافت كرده بودند علائم جدی آسيب كبدی را نشان دادند. اما گروه گيرنده‌ی روغن زيتون خالص و عصاره‌ی آب دوست افزايش معنا داری را در فعاليت آنزيم آنتي اكسيدانت و كاهش ماركرهای آسيب كبدی نشان دادند. همامي مي گويد به نظر ميرسد عصاره‌ی آب دوست روغن زيتون در استرس اكسيداتيو حاصل از القاء توكسين موثر باشد كه اين عمل مي تواند نشانگر تاثير مستقيم آنتی اكسيدانتی عصاره‌ی آب دوست بر روي سلول هاي كبدی باشد.

منبع:

Nakbi, A., Tayeb, W., Grissa, A., Issaoui, M., Dabbou, S., Chargui, I., … Hammami, M. (2010). Effects of olive oil and its fractions on oxidative stress and the liver’s fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats. Nutrition & Metabolism, 7, 80. http://doi.org/10.1186/1743-7075-7-80

نوشته شده در

آیا کنجد آنتی‌اکسیدانت است؟

بر طبق مقاله‌ی مروری چاپ شده در مجله‌ی Medicinal Food خاصيت آنتی اکسيدانتی كنجد بویژه روغن كنجد می‌تواند تاثير فراوانی بر روی استرس اكسيداتيو داشته باشد. دانشمندان دانشگاه ايالتی ريودوژانيرو و دانشگاه فدرال ريودوژانيرو در تلاشند شواهد تاثيرات مصرف مواد حاوی كنجد را در ماركرهای استرس اكسیداتيو بر روی افراد افرادی با فشار خون بالا، كلسترول بالا و ديابت نوع ٢ منتشر نمايند. همچنين آزمايشات گوناگون بالينی افزايش آنتی اكسيدانت ها و كاهش استرس اكسيداتيو را با مصرف كنجد به ويژه در افرادی با فشار خون بالا و و ديابت نوع ٢ گزارش داده اند. مقاله‌ی مذكور شامل موارد بیشتری از تاثیر مثبت كنجد در جوامع مختلف می باشد. با کنکاش در نتايج مورد مطالعه در اين مقاله می‌توان دريافت كه برخی مطالعات پيش بالينی، نشان دهنده‌ی تاثیر روغن كنجد در پيشگيری از تصلب شرايين می باشد.

منبع

Vittori Gouveia, L. D. A., Cardoso, C. A., de Oliveira, G. M. M., Rosa, G., & Moreira, A. S. B. (2016). Effects of the Intake of Sesame Seeds (Sesamum indicum L.) and Derivatives on Oxidative Stress: A Systematic Review. Journal of medicinal food, 19(4), 337-345.

نوشته شده در

مصرف آمفتامین‌ها می‌تواند روند پیری قلب را تسریع بخشد!

سوء مصرف آمفتامین‌ها بصورت چشمگیری در حال افزایش میان کشورهای مختلف می‌باشد. در حالیکه عوارض جانبی این داروها مشتمل بر افزایش ضربان قلب، سردرد، احساس دلپیچه و درد در ناحیه شکم و تغییرات حالات روحی افراد می‌باشد، تاثیرات این دسته دارویی تا‌کنون بر روی قلب به وضوح مطالعه نشده است. هم‌اکنون مطالعه‌ی جدیدی در نشریه Heart Asia به چاپ رسیده است که بر‌مبنای آن مصرف تفننی آمفتامین ها موجب تسریع پیری قلب می گردد.

آمفتامین های تفننی با نام‌های یخ (Ice)، سرعت (Speed) و اکستازی (Ecstasy) نامیده می‌شوند که به عنوان محرک سیستم عصبی مرکزی معرفی می شوند. آمفتامین‌ها موجب افزایش ضربان قلب، تسریع جریان خون در عروق، افزایش فشار خون و تولید هورمون ستیز و گریز آدرنالین برای بازدهی بیشتر بدن می شوند.

در مورد اثرات سوء مصرف آمفتامین‌ها بر روی ضربان قلب، فشار خون و جریان خون که به نوعی مشابه القاء اثرات شرایط استرس‌زا بر روی سیستم قلبی‌ـ‌عروقی می‌باشد که در گذشته مطالعات اندکی به آن پرداخته‌اند. بر‌مبنای شواهد موجود اثرات طولانی مدت محرک‌ها موجب پیری زودرس سلول‌های پوستی نابالغ می‌شود؛ حال اینکه بر‌مبنای این مطالعات محققان دانشگاه Western Australia هدف خود را بر‌اساس بررسی اثرات آمفتامین‌ها بر‌ روی سلول‌های قلبی متمرکز نموده‌اند. محققان برای این منظور جریان خون در شریان بازویی در قسمت فوقانی بازو و همینطور جریان خون شریان Radial ساعد را در 713 نفر مورد بررسی قرار دادند.

لازم به ذکر است، شریان‌ها با افزایش سن افراد دچار تغییراتی در دیواره‌های خود می‌شوند که منجر به کاهش خاصیت ارتجاعی دیواره و در نتیجه سخت تر شدن آن می گردد، بنابراین محققان پیری قلب را با بهره‌مندی از راهکار مذکور محاسبه نمودند. افراد مورد مطالعه در دهه 30 و 40 زندگی خود به سر می‌برند که دارای سابقه استفاده از آمفتامین‌ها بودند.

محققان برای جمع آوری اطلاعات لازم روش استاندارد اندازه‌گیری فشار خون در بازوی افراد و سیستم  مانیتورینگ غیر تهاجمی به نام Sphygmocor را بر روی ساعد استفاده کردند. Sphygmocor با استفاده از نرم افزار خود می‌تواند سن بیولوژیکی عروق افراد را با استفاده از سن، جنس و قد افراد به همراه محدوده سختی عروق آنها ارائه نماید.

افراد مورد مطالعه بر مبنای میزان استفاده آنها از دارو به 4 گروه تقسیم بندی شدند: 483 نفر بدون سابقه استعمال دخانیات، 107 نفر با سابقه استعمال دخانیات، 68 نفر مصرف‌کننده متادون به عنوان جایگزین هروئین، 55 نفر با سابقه استفاده از آمفتامین.

در 66 مورد بررسی انجام شده بر روی افراد حاضر در گروه مصرف کننده آمفتامین،  94 درصد از افراد سابقه مصرف آن را در هفته گذشته و نزدیک به نیمی از آنها طی روز قبل از انجام مانیتورینگ سابقه مصرف آمفتامین داشتند.

 

مصرف کنندگان آمفتامین دارای قلبی مسن تر نسبت به افراد سیگاری و افراد استفاده کننده از متادون بودند!

نتایج حاکی از این بود که  افراد با سوء مصرف آمفتامین ها نسبت به افراد سیگاری و آنان که متادون مصرف می کنند از روند سریعتری برای پیری قلب برخوردار بودند.

این نتایج زمانی معنی دار و چشمگیر ظاهر شدند که برخی فاکتورهای ریسک آفرین در بیماری های قلبی و عروقی مانند وزن بالا، میزان کلسترول و شاخص التهابی C  مد نظر قرار داده شدند. از آنجائیکه استفاده از آمفتامین ها بصورت مکرر  و طولانی مدت می باشد، قلب همواره تحت تاثیر محرک ها بصورت رفتاری، مزمن و طولانی مدت قرار می‌گیرد. تمام این موارد به این دلیل است که سوء مصرف محرک‌هایی همچون آمفتامین‌ها مضرات فیزیولوژیک و قلبی عروقی فراوانی در بر دارد. محققان همین طور خاطر نشان‌کردند مشخص نیست کدامیک از عوارض افراد کدامیک از علايم را بروز دهند.

باید بدانیم پیری از پروسه خاصی در طول زندگی پیروی می‌کند، همچون سایر روند‌های فیزیولوژیک بدن که به صورت پیشرونده دارای آغاز و پایان خاص خود در طول زندگی فردی می باشند. با این حال یافته‌های جدید حاکی از تسریع دژنراسیون سیستم های فیزیولوژیکی بدن در اثر سوء مصرف محرک‌ها می‌باشد. به عقیده نویسنده این مقاله: طبق نتایج بدست آمده از این تحقیق آسیب حاصل از محرک‌ها با گذشت زمان شدیدتر می شود که آگاهی از آن مستلزم جمع آوری اطلاعات اپیدمیک مربوط به محرک‌ها از تمام نقاط جهان می باشد و تا کنون به طور جد به آن پرداخته نشده است.

در نهایت محققان خاطر نشان شدند مصرف آمفتامین در تداخل با عملکرد سلول های بنیادین بوده و منجر به اختلال در تقسیمات سلولی سایر سلول ها می باشد. از اینرو آمفتامین ها مضاف بر‌اینکه می‌توانند مانع ترمیم بافتی شوند قادر به افزایش آسیب‌های بافتی نیز می‌باشند.

منبع:

Reece AS, Norman A, Hulse GK Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age Heart Asia 2017; 9: 30-38. doi: 10.1136/heartasia-2016-010832

نوشته شده در

انتقال دارو به سلول با حباب کاتالاز

آنزیم طبیعی کاتالاز ممکن است پتانسیل بسیاری در درمان بیماری‌های نورولوژیک از جمله پارکینسون داشته باشد. این آنزیم آنتی‌اکسیدان قوی قادر است التهابِ کشنده‌ی نورون‌ها را با روشی غیرموازی با داروهای ریزمولکول، از بین ببرد. اما یک مشکل بزرگ وجود دارد. این آنزیم بسیار بزرگ هستند. تا حدی که عبور از سد خونی-مغزی و رسیدن به سلول‌های مغزی برای آن‌ها تقریبا غیرممکن است. اما محققین روشی را پیدا کرده‌اند که بارگذاری این آنزیم در حباب‌های کوچک و طبیعی خون، عبور آن‌ها را از سیستم ایمنی مغز ممکن ساخته و راه جدیدی برای درمان بیماری‌های مغزی ایجاد می‌کند.

در تحقیقی که در دانشگاه کارولینای شمالی توسط دکتر النا باتراکوا رهبری می‌شود، دانشمندان اگزوزوم‌های سلول‌های ایمنی را جداسازی کردند. این حباب‌های ریز در بیماری‌هایی از جمله ایدز و سرطان تولید می‌شوند و باعث می‌شوند بیماری با سرعت بیشتری در بدن انتشار یابد. در این مورد، محققین توانستند این حباب‌ها را با کاتالاز بارگذاری کنند تا در بافت مغز پروتئین‌های عامل التهاب مقابله کند.

باتراکوا عنوان کرد:

اگزوزوم‌ها به‌وسیله طبیعت به عنوان یک حامل عالی برای پروتئین‌ها و محتوای ژنتیکی طراحی شده‌اند. کاتالاز پروتئین بزرگی است و تقریبا عبور آن از سد خونی-مغزی امکان ناپذیر است. ما از اگزوزوم‌های گلبول‌های سفید بدین منظور استفاده کردیم. این اگزوزوم‌ها علاوه بر اینکه از نظر سیستم ایمنی نامرئی هستند، با پیوستن به سد خونی-مغزی باعث انتقال محتویات آن به مغز می‌شوند.

این محققین اذعان می‌کنند که هر مولکول کاتالاز می‌تواند تا یک میلیون مولکول مخرب را در هر ثانیه خنثی کنند. این واکنش ادامه پیدا می‌کند چرا که کاتالاز نقش کاتالیزور را ایفا می‌کند.

باتراکوا و همکاران امیدوارند بتوانند درمان‌های شخصی با استفاده از اگزوزوم‌های خود فرد توسعه دهند. به‌عنوان مثال یک اسپری نازال برای این درمان بسیار موثر خواهد بود.

 

منبع:

Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release. 2015 Jun 10;207:18-30.

نوشته شده در

آنتی‌اکسیدان‌ها، درمان جدید پارکینسون

محققان گزارش دادند که گروه جدید و قدرتمند آنتی­‌اکسیدان‌ها می‌­تواند درمانی قوی برای بیماری پارکینسون باشد.

طبق تحقیقات دکتر بابی توماس، دانشمند عصب دانشکده پزشکی گرجستان و نویسنده مقاله در مجله Antioxidants & Redox Signaling ،  یک گروه از آنتی اکسیدان ها با نام  triterpenoidمصنوعی مانع پیشرفت پارکینسون در یک مدل حیوانی شده است.

 

توماس و همکارانش توانستند از مرگ سلول‌های مغزی تولید کننده دوپامین که در طی پارکینسون رخ می­‌دهد جلوگیری کنند که این عمل با استفاده از داروهای تقویت کننده  Nrf2، یک آنتی‌­اکسیدان طبیعی و ضدالتهابی قوی صورت گرفته است.

استرس­ها و قرار گرفتن در معرض آسیب­‌های مختلف، باعث افزایش استرس اکسیداتیو می‌­شوند و بدن با التهاب که بخشی از روند بازسازی طبیعی است پاسخ می‌­دهد. این التهاب باعث ایجاد محیطی در مغز می­‌شود که برای عملکرد طبیعی آن مفید نیست. علائم آسیب اکسیداتیو در مغز پیش از آنکه سلول های عصبی در اثر پارکینسون از بین بروند، قابل تشخیص است.

 

ژن Nrf2 به عنوان تنظیم­‌کننده اصلی استرس اکسیداتیو و التهاب به طور قابل­‌توجهی در زمان شروع پارکینسون کاهش یافته و در واقع، فعالیت Nrf2 به طور معمول با افزایش سن کاهش می‌یابد. دکتر توماس بیان می­‌کند: “در بیماران پارکینسون شما به وضوح می­‌توانید افزایش قابل توجهی از استرس اکسیداتیو را مشاهده کنید، به همین دلیل از داروها به صورت انتخابی برای فعال کردن Nrf2 استفاده کردیم.”

 

آن­ها تعدادی از آنتی‌­اکسیدان‌هایی را که در حال حاضر تحت مطالعه برای طیف گسترده‌ای از بیماری‌­ها مانند نارسایی کلیه، بیماری­های قلبی و دیابت است، تجزیه و تحلیل کردند و تری­ترپنوئیدها را موثرترین ترکیب بر روی Nrf2 یافتند. دکتر مایکل اسپارن، استاد داروسازی، سم شناسی و پزشکی در دانشکده پزشکی داکوتای جنوبی، توانست ترکیب شیمیایی تری­ترپنوئیدها را جهت محافظت از بروز خونریزی مغزی تغییر دهد.

 

هم­چنین در نوروبلاستمای  انسانی و سلول‌های مغزی موش توانستند مقدار افزایش Nrf2 در پاسخ به تولید تریترپروئیدهای مصنوعی را ثبت کنند. سلول‌های dopaminergic انسان برای بررسی در دسترس نیست بنابراین دانشمندان از سلول­های نوروبلاستوما انسان استفاده می­‌کنند که درواقع سلول‌­های سرطانی هستند که خواصی مشابه با نورون دارند.

 

شواهد اولیه نشان می‌دهد که سنتز تریترپروئیدهای مصنوعی فعالیت Nrf2 در آستروسیت‌ها را افزایش می‌­دهد. آستروسیت نوعی سلول مغزی است که نورون­ها را تغذیه می‌­کند و برخی از پسماندهای آن­را از بین می‌­برد. این داروها در موش آزمایشگاهی که ژن nrf2 حذف شده است، از سلول­های مغز محافظت نمی‌کند که اثبات می­کند Nrf2 هدف این دارو است.

 

محققان از پروتئین قدرتمند نوروتوکسین MPTP برای مقابله با آسیب سلول‌های مغز مانند پارکینسون در عرض چند روز استفاده کردند. آنها اکنون به تاثیر تریترپنوئید‌های مصنوعی در یک مدل حیوانی می‌­پردازند که از نظر ژنتیکی برای پیشرفت آهسته بیماری مشابه انسان برنامه‌ریزی شده ­است. محققان در دانشکده پزشکی جانز هاپکینز، برروی سلول‌های بنیادی pluripotent التهابی، سلول‌های بنیادی بالغ تحقیق می­‌کنند که می‌توانند نورون‌های دوپامینرژیک برای آزمایش داروها ایجاد کنند.

 

منبع:

Kaidery, N.A., Banerjee, R., Yang, L., Smirnova, N.A., Hushpulian, D.M., Liby, K.T., Williams, C.R., Yamamoto, M., Kensler, T.W., Ratan, R.R. and Sporn, M.B., 2013. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxidants & redox signaling18(2), pp.139-157.

نوشته شده در

اینوزین و افزایش TAC در پلاسما

پیشرفت بیماری پارکینسون در افرادی که اوره بالای سرم دارند کند می‌کند. اینوزین دهانی می تواند ظرفیت آنتی اکسیدانتی پلاسما یا CSF یا مارکرهای ادراری را از آسیب اکسیداتیو در پارکینسون زودرس را تغییر دهد و این تغییر وابسته به دوز می‌باشد.

اورات، که به واسطه اثرات آنتی اکسیدانت مستقیم و غیر مستقیم که  دارد، می تواند فرد را در برابر بیماری پارکینسون و آسیب های نورونی محافظت نماید. از طرفی اینوزین باعث افزایش سطح اورات پلاسما و CSF در بدن می شود. طی تحقیقاتی که صورت گرفته متوجه شده اند که ارزیابی میزان ظرفیت آنتی اکسیدانتی بدن (TAC) می تواند در پروگنوز بیماری مفید بوده و افزایش آسیب در بافت عصبی وابسته به ظرفیت آنتی اکسیدانتی می باشد.

منبع:

Bhattacharyya S, Bakshi R, Logan R, Ascherio A, Macklin EA, Schwarzschild MA. Oral Inosine Persistently Elevates Plasma antioxidant capacity in Parkinson’s disease. Movement Disorders. 2016 Jan 1.

نوشته شده در

استرس اکسیداتیو در بیماری مزمن ریه COPD

بیماری مزمن انسداد ریوی (COPD) یک بیماری تنفسی مزمن با علائم سیستمیک است که به طور معنی‌داری بر کیفیت زندگی بیماران تاثیرگذار است. این بیماری با انسداد جریان هوا همراه با التهاب ریه و تخریب بافت ریوی همراه بوده و عموما یک بیماری در طی پروسه پیری است. نشانگرهای استرس اکسیداتیو در بیماری مزمن انسداد ریوی (COPD) و گونه‌های فعال اکسیژن (ROS) می‌توانند مولکول‌های بیولوژیکی، مسیرهای سیگنالینگ و عملکرد مولکولی آنتی‌اکسیدان را تغییر دهند که بسیاری از آن‌ها در پاتوژنز COPD دخالت دارند.

شواهد نشان می‌دهد که عملکرد چندین سلول کلیدی در بیماران COPD در طی بیماری تغییر می‌کند و سطوح بیان مولکول‌های مهم اکسیدان و آنتی‌اکسیدان ممکن است غيرطبيعی باشد. آزمایشات درمانی در جهت تلاش برای بازگرداندن تعادل به این مولکول‌ها بر تمام جنبه های بیماری تأثیر نگذاشته این درحالیست که تاثیر ROS در COPD با مدل های فعلی و مسیرهای مربوط به آسیب بافت اثبات شده است.

روش‌های مختلفی برای ارزیابی حضور استرس اکسیداتیو در ریه بیماران مبتلا به COPD مورد استفاده قرار گرفته است و شواهد واضحی از افزایش بار اکسیداتیو در COPD در مقایسه با گروه‌های کنترل غیر سیگاری وجود دارد.

بررسی مایع تنفس ریه (EBC) یک روش موثر برای شناسایی محصولات استرس اکسیداتیو موجود در ریه است. مطالعات متعدد نشان داده است که H2O2 به میزان قابل توجهی در تراکم انسداد تنفس COPD در مقایسه با کنترل‌های سالم افزایش می‌یابد. با افزایش سطح H2O2 اسید آراشیدونیک که اسید چرب اشباع نشده در غشای سلولی است، افزایش چشمگیری یافته و می‌تواند توسط رادیکال‌های آزاد در in vivo پراکسیده شود تا ایزوپروستان‌ها را تشکیل دهد که در EBC اندازه گیری می‌شوند و در بیماری COPD قابل مشاهده است. همچنین میزان تولید پروتئین اسیدچرب، مالون دی آلدهید (MDA) نیز در EBC بیماران مبتلا به COPD افزایش یافته است. سطوح سرمی MDA و GPx (تعیین شده توسط فعالیت) با شدت COPD ارتباط دارد، با افزایش MDA سرم و کاهش GPx شدت بیماری COPD افزایش می‌یابد.

با استفاده از رنگ‌آمیزی ایمونوهیستولوژیکی، می‌توان برخی از محصولات استرس اکسیداتیو مانند 4HNE، محصول نهایی پراکسیداسیون لیپید که به آسانی با چندین پروتئین واکنش می‌دهد را در اجزای مجزای سلولی ریه مشخص کرد. این رنگ‌آمیزی بیان‌گر افزایش نشانگرهای استرس اکسیداتیو نیتروژن، نیتروتیروسین و اکسید نیتریک القا شده (iNOS) در COPD است.

تحقیقات نشان داده است که مولکول‌های ضدالتهابی یا آنتی‌اکسیدان‌های مختلف توانایی کاهش التهاب و شدت علائم COPD در مدل موش را دارند. موش های ترانس‌ژنیک بیان‌کننده تریروتوكسین (TRX) كه مولكول آنتی‌اكسیدان است، كاهش بسیاری در شدت COPD نشان می‌دهد که می‌تواند یک روش درمانی باشد. در مدل‌های موش، تحت تاثیر قرار گرفتن در معرض ROS منجر به ابتلا به COPD و پیشرفت این بیماری می‌شود و شناسایی مکانیسم‌ آن می‌تواند یک روش درمانی مفید محسوب شود.

استرس اکسیداتیو از طریق H2O2 ناشی از اختلال عملکرد میتوکندری اختلال در COPD را  شدیدتر می‌کند. درمان آنتی‌اکسیدانی هدفمند میتوکندری باعث مهار و کاهش علایم بیماری COPD می‌گردد. علاوه بر این، شواهدی از اختلال عملکرد میتوکندری در ماکروفاژ بیمارهای مبتلا به COPD در طی فاگوسیتوز یافت شده و مطالعات دیگر از اختلال عملکرد میتوکندری طی استرس اکسیداتیو گزارش می‌دهد.

دلایل نظری قابل ملاحظه ای وجود دارد که چرا آزاد شدن ROS باعث ایجاد یا پیشرفت COPD می شود. افزایش میزان اکسیدان‌ها از 4700 ترکیب شیمیایی و بیش از 1015 اکسیدان / رادیکال‌های آزاد موجود در سیگار حاصل می‌شود با این حال، این محرک به تنهایی نمی‌تواند کافی یا ضروری باشد تا COPD در سیگاری‌ها ایجاد شود، و این نشان می‌دهد که باید فاکتورهای دیگری به صورت تعاونی با این عوامل در جهت بروز بیماری همکاری کنند.

بسیاری از محصولات استرس اکسیداتیو در COPD در مقایسه با کنترل افزایش می‌یابد، در حالی که سطح آنزیم‌های مربوط به حذف ROS در برخی مطالعات کاهش یافته است. مطالعات سلولی نشان می‌دهد که آزادی ROS از واسطه‌های اصلی واکنش التهابی در COPD، از جمله نوتروفیل‌ها، ماکروفاژهای هوا و مونوسیت‌ها، افزایش یافته است. اگر چه مدل حیوانی COPD وجود ندارد که تمام جنبه‌های بالینی بیماری بررسی شود، مدل‌های دیگر نشان‌دهنده افزایش بار اکسیداتیو در اثر قرار گرفتن در معرض دود سیگار و آسیب بافتی بعد از آن، از جمله ایجاد آمفیزم است که می‌تواند با هدف‌گیری مسیرهای اکسیداسیون، کاهش یابد.

ارائه درمان بالینی برای COPD با توجه به تغییر در پروتئین‌ها، آنزیم‌ها، مولکول‌ها و سلول‌های دخیل در این بیماری چالش مهم بوده و در حال حاضر مشخص نیست که آیا تغییرات نسبت اکسیدان‌ها به آنتی‌اکسیدان‌ها به صورت ثابت رخ می‌دهد که درک این موضوع برای تعیین درمان‌هایی که بیشتر از آنتی‌آکسیدان‌ها استفاده می‌کنند، حیاتی است. واضح است که تحقیقات پایه و تحلیلی بیشتر برای شناسایی بیماران حساس به آسیب های مرتبط با ROS ضروری است و باید مشخص شود آیا ROS هدف موثر برای تغییر در COPD است یا خیر؟

 

منبع:

McGuinness, A.J.A. and Sapey, E., 2017. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of clinical medicine6(2), p.21.