نوشته شده در دیدگاه‌تان را بنویسید

فلور روده و متابولیسم آنتی‌اکسیدانت گلوتاتیون

مطالعات اخیر نشان می‌دهد که فلور میکروبی روده باعث تنظیم متابولیسم آنتی‌اکسیدانت گلوتاتیون و آمینو اسید در میزبان می‌شود. گلوتاتیون یک آنتی‌اکسیدانت کلیدی است که در تمامی سلول‌های بدن یافت می‌شود. کمبود گلوتاتیون باعث استرس اکسیداتیو می‌شود که نقش مهمی در بسیاری از بیماری‌های مرتبط با سبک زندگی دارد.

خروجی عملکردی و تنوع فلور میکروبی روده تنظیم‌کنندگان مهمی در بروز بیماری‌های مختلف انسان هستند.  چاقی، دیابت نوع ۲، آترواسکلروز، کبد چرب غیر الکی و سوء تغذیه از جمله این بیماری‌ها هستند. بنابراین واکنش بین فلور میکروبی روده، بافت‌ روده میزبان و سایر بافت‌های بدن با سلامت میزبان بسیار مرتبطند.

در مقاله‌ای که در نشریه Molecular Systems Biology توسط تیمی از دانشگاه‌های صنعتی چالمرز، انستیتو سلطنتی تکنولوژی و دانشگاه گوتنبرگ سوئد چاپ شده، عنوان شده است که فلور میکروبی روده باعث تنظیم متابولیسم گلوتاتیون و آمینو اسید در میزبان می‌شود.

گلوتاتیون قوی‌ترین آنتی‌اکسیدانت بدن و اصلی‌ترین ماده سم‌زدای (Detoxifying agent) بدن است. این ماده در سیستم ایمنی بدن، متابولیسم مواد غذایی و تنظیم سایر رخدادهای سلولی، نقش بسیار حیاتی دارد. گلوتاتیون پروتئین کوچکی است و در داخل سلول از ۳ آمینو اسید که بطور مداوم از طریق تغذیه وارد بدن می‌شوند، ساخته می‌شود. کمبود گلوتاتیون باعث بروز استرس اکسیداتیو می‌شود. همانطور که اشاره شد، استرس اکسیداتیو نقش بسیار مهمی در بیماری‌های متابولیک دارد.

در این مطالعه، نقشه‌ای کلی از متابولیسم موش طراحی شد و مدل‌های رایانه‌ای ویژه‌ای برای  هر بافت ایجاد گردید. به‌وسیله استفاده از داده‌های تجربی High throughput، محققین دریافتند که فلور میکروبی در روده گلایسین مصرف می‌کند. گلایسین یکی از ۳ آمینو اسیدی است که برای ساخت گلوتاتیون در بدن مورد نیاز است.

برای تایید نتایج به‌دست آمده از طریق شبیه‌سازی‌های مبتنی بر رایانه، سطوح آمینو اسید گلایسین در ورید پرتال کبدی موش اندازی‌گیری شد. علاوه‌براین سطوح پایین‌تری از گلایسین در بافت کبد و کولون یافت شد که نشان‌گر تنظیم متابولیسم گلوتاتیون نه تنها در روده کوچک، بلکه در کبد و کولون توسط فلور میکروبی روده است.

عادل ماردین اولو نویسنده مسئول این مقاله از دانشگاه چالمرز می‌گوید:”برخی از باکتری‌های روده گلایسین مصرف می‌کنند و عدم وجود تعادل در ترکیب باکتری‌های روده باعث ایجاد بیماری‌های مزمن می‌شود” در مطالعات مستقل قبلی نیز سطوح نامتعادل گلایسین و سایر آمینو اسیدهای پلاسما در بیماری‌های چاقی، دیابت نوع ۲ و کبد چرب غیر الکلی گزارش شده است.

این اکتشاف ممکن است به توسعه محصولات غذایی منجر شود که باکتری‌های مفید (پروبیوتیک‌ها) را به بدن انتقال دهند. نتایج این مطالعه به ما کمک می‌کند تا نقش باکتری‌ها در ایجاد و توسعه بیماری‌های متابولیکی چون دیابت نوع ۲، چاقی، کبد چرب غیر الکلی و سوء تغذیه چگونه است.

 

منبع:

 

Mardinoglu, A., Shoaie, S., Bergentall, M., Ghaffari, P., Zhang, C., Larsson, E., Bäckhed, F. and Nielsen, J., 2015. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular systems biology11(10), p.834.

نوشته شده در دیدگاه‌تان را بنویسید

بیماری‌های قلبی و کبدی دشمن آنتی‌اکسیدانت‌ های بدن

دانشمندان دانشگاه روتگرز پروتئینی را شناسایی کردند که باعث آسیب آنتی‌اکسیدانت و بیماری‌های بسیاری است.

بر اساس مطالعه جدید چاپ شده در Molecular cell، دانشمندان دریافتند که پروتئینی تحت عنوان P62 که در حالت عادی می‌بایست به‌عنوان یک آنتی‌اکسیدانت در جهت جلوگیری از صدمه سلولی عمل کند، در موش‌های آزمایشگاهی مبتلا به بیماری‌های قلبی و کبدی عملکرد مناسبی ندارد.

این امر باعث ایجاد استرس اکسیداتیو می‌شود و در نتیجه آن مولکول‌های مضر در بدن آزاد می‌شود که آن‌ها را رادیکال‌های آزاد می‌نامند. سیستم آنتی‌اکسیدانتی سلول‌های بدن به عنوان یکی از اولین سپرهای دفاعی بدن، می‌بایست از حمله این مولکول‌های مضر دفاع کند و از صدمه دیدن سایر سلول‌ها جلوگیری کند. پیشتر نیز در خصوص محافظت کبد در مقابل استرس اکسیداتیو مطلبی منتشر شده بود

دکتر وی-ژینگ-زونگ، رهبر این تیم تحقیقاتی می‌گوید: «علت این آسیب عملکرد عکس پروتئین دیگری به‌نام TRIM21 است که می‌بایست سیستم ایمنی بدن را علیه باکتری و ویروس تحریک کند اما در این موش‌های بیمار کاملا برعکس عمل کرده و باعث خاموش شدن پروتئین آنتی‌اکسیدانت شده و مانع از عملکرد آن می‌شود.

رهبر این تیم تحقیقاتی همچنین می‌افزاید:‌«پروتئین TRIM21 در حالت نرمال در بدن وجود دارد و بدون آن بدن ما در مقابل بسیاری از عفونت‌های قابل کنترل مغلوب خواهد شد. اما این تحقیق به ما نشان می‌دهد که در شرایطی که بدن دچار روندهای پاتولوژیکی همزمان می‌شود، بهتر است که پروتئين TRIM21 را مهار کنیم چرا که مانع از حفاظت سلول در مقابل آسیب می‌شود.»

در این مطالعه دانشمندان با بررسی آسیب‌های قلبی و کبدی در موش‌های آزمایشگاهی دریافتند که در موش‌هایی که ژن TRIM21 غیرفعال شده داشتند در مقایسه با موش‌های دارای ژن و در شرایط بیماری‌های قلبی و کبدی، آسیب کمتری را متحمل شده‌اند.

دکتر زونگ عنوان می‌کند: «قلب و کلیه در موش‌های فاقد ژن TRIM21 در مقایسه با موش‌های گروه شم به‌نحو مناسبی محافظت شده‌اند. این داده‌ها به ما کمک می‌کند تا شرایط مشابه را در انسان بهتر مدیریت کنیم.»

بیماری‌های قلبی یکی از اصلی‌ترین دلایل مرگ‌ومیر در ایالات متحده آمریکاست و این درحالی است که ۱۰٪ آمریکایی‌ها به یکی از انواع بیماری‌های کبدی مبتلا هستند. جالب است بدانید بر اساس اعلام رئیس انجمن قلب ایران شیوع مرگ‌ومیر ناشی از بیماری‌های قلبی در ایران بالاتر از آمارهای جهانی است.

این تیم تحقیقاتی امیدوار است با طراحی و توسعه داروهای مناسب، فعالیت این پروتئین کاهش یا متوقف شود تا بتوان از بروز آسیب‌های اشاره شده جلوگیری نمود.

 

منبع:

 

Pan J-A, Sun Y, Jiang Y-P, et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Molecular cell. 2016;61(5):720-733. doi:10.1016/j.molcel.2016.02.007.

نوشته شده در دیدگاه‌تان را بنویسید

پروتئین داروهای آنتی‌اکسیدانی عامل اصلی بروز آترواسکلروز

محققان UCLA دریافتند پروتئینی که نقش مهمی در برخی از داروهای آنتی‌اکسیدانی دارد، ممکن است به دلیل مکانیسم‌های اضافی، موجب بروز آترواسکلروز و یا مسدود شدن عروق شوند. این یافته ممکن است سرنخ‌هایی درباره این‌که چرا برخی از درمان‌های آنتی‌اکسیدانی نتایج مثبت نداشته‌اند، مفید باشد.

پروتئین  Nrf2، به عنوان مهم‌ترین هدف درمان دارویی برای بیماری‌هایی مانند سرطان به شمار می‌رود، زیرا می‌تواند با پیوستن به توالی‌های خاص DNA، منجر به بیان ژن‌های آنتی‌اکسیدانی و ضدالتهابی متعدد شده و فعالیت آنزیم‌های درگیر در بروز سرطان را کاهش یا مهار کند. محققان معتقدند که Nrf2 با توانایی بالا ممکن است در جهت تقویت آنتی‌اکسیدان‌ها، مبارزه با آسیب سلولی و بافت یا اکسیداسیون، مفید باشد که منجر به آترواسکلروز می‌شود.

با این حال، دانشمندان UCLA دریافتند در حالی که Nrf2 خواص آنتی‌اکسیدانی را در یک مدل حیوانی افزایش داد، هم‌چنین با افزایش سطح کلسترول کل و میزان کلسترول در کبد، باعث افزایش آترواسکلروز می‌شود. به گفته محققان، این اولین مطالعه است که اثرات اضافی را بر متابولیسم کلسترول همراه با تشکیل پلاك در شریان‌ها نشان می‌دهد. در واقع عوامل بروز آترواسکلروز بیشتر از مزایای آنتی‌اکسیدانی است. توسعه درمان‌های آنتی‌اکسیدانی جدید بسیار مهم است و این تحقیق در درمان‌های مبتنی بر این پروتئین تاثیر می‌گذارد.

برای مطالعه بیشتر جداسازی و شناسایی عملکرد Nrf2 ، بررسی متابولیسم و نقش آن در موش‌هایی که بدون پروتئین به طور خاص تولید می‌شوند انجام می‌گیرد. محققان دریافتند که موش‌های نر بدون Nrf2 سطوح آنتی‌اکسیدان‌ها را کاهش داده‌اند، اما در مقایسه با حیوانات عادی، 53٪ کاهش در پلاک‌های آترواسکلروز در آئورت مشاهده شد. موش‌هایی که تنها نیمی از بیان ژن برای Nrf2 را نشان می‌دادند، همان میزان تشکیل پلاک را داشتند.

سپس محققان تلاش کردند تا درک درستی از تاثیر پروتئین Nrf2 بر عوامل دیگر به دست بیاورند. دانشمندان متوجه شدند که موش‌های بدون Nrf2 سطح کلسترول تام خون پایین‌تر و کلسترول کبدی کمتری دارند. کمبود پروتئین نیز منجر به کاهش بیان ژن‌های درگیر در تولید و ذخیره چربی و تنظیم گلوکز در کبد می‌شود که بخشی از روند تولید کلسترول است.

یافته‌های این تحقیق به اثرات جدید و مهم پروتئین Nrf2 در تنظیم تولید کلسترول و هم‌چنین مسیرهای آنتی‌اکسیدانی اشاره دارد. ممکن است اثرات کلسترول در هنگام ایجاد درمان‌های آنتی‌اکسیدانی با استفاده از این پروتئین مورد توجه قرار گیرد هم‌چنین مقدار یا سطح بیان این ژن برای تعادل دو اثر مهم است.

علاوه بر این، محققان دریافتند که بیشتر اثرات Nrf2 در موش‌های نر بسیار شایع است. برای بررسی این‌که آیا این اختلالات جنسی مدل حیوانات، مشابه انسان است یا خیر، مطالعات بیشتری لازم است و هم‌چنین تحقیقات بیشتری در پاسخ به این سوال که آیا سایر عوامل محیطی، متابولیکی و ژنتیکی در تأثیر Nrf2  بر کلسترول و آنتی‌اکسیدان‌ها نقش دارند، نیاز است.

 

منابع:

Seifried, H.E., Anderson, D.E., Fisher, E.I. and Milner, J.A., 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of nutritional biochemistry18(9), pp.567-579.

Tabas, I., 2010. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circulation research107(7), pp.839-850.

Matés, J.M. and Sánchez-Jiménez, F.M., 2000. Role of reactive oxygen species in apoptosis: implications for cancer therapy. The international journal of biochemistry & cell biology32(2), pp.157-170.

نوشته شده در دیدگاه‌تان را بنویسید

اسکن MRI زوال مغز را در اسکیزوفرنی نشان می‌دهد

طبق مطالعه ارائه شده در دانشگاه آمریکایی نوروفارماسایکولوژی عدم تعادل شیمیایی مخرب در مغز می‌تواند منجر به اسکیزوفرنی شود. متخصصان مغز و اعصاب با استفاده از روش نوین اندازه‌گیری MRI سطح بالایی از استرس اکسیداتیو را در بیماران اسکیزوفرنی در مقایسه با افراد سالم و بیماران اختلال دو قطبی گزارش کردند.

 طبق گفته‌ی محققان روانپزشکی در کالج پزشکی هاروارد تقاضای انرژی شدید در سلول‌های مغزی منجر به تجمع انواع اکسیژن واکنش پذیر از جمله رادیکال‌های آزاد و هیدروژن پراکسید می‌شود. در اسکیزوفرنی اکسیداسیون بیش از حد- که شامل همان نوع واکنش‌هایی است که باعث می شود فلز به زنگ آهن تبدیل شود- تصور بر این است که به طور گسترده باعث التهاب و آسیب سلولی می شود. با این حال اندازه‌گیری این پروسه در سلول‌های زنده مغز انسان به صورت یک چالش باقی مانده است.

دکتر دو[1] و همکارانش در بیمارستان مک کین با تکنیک طیف سنجی رزونانس مغناطیسی استرس اکسیداتیو را اندازه‌گیری کردند. این روش از اسکنر‌های مغز برای اندازه‌گیری غیر تهاجمی غلظت دو مولکول NAD+ و NADH استفاده می کند و یک بازخوانی از چگونگی مصونیت مغز در برابر شمار زیاد اکسیدانت‌ها ارئه می دهد. دو مشاهده کرد که از بین 21 بیمار مزمن اسکیزوفرنی 53٪ افزایش سطح NADH را در مقایسه با هم سن و سالان خود نشان می دهند. سطح مشابهی از NADH در افرادی که به تازگی بیماری آن‌ها شناسایی شده است مشاهده گردید که بیانگر عدم تعادل اکسیداسیون در مراحل اولیه‌ی بیماریست.

بیشترین افزایش متوسط NADH در افراد مبتلا به اختلال دو قطبی مشاهده گردید که همپوشانی ژنتیکی و بالینی با بیماران اسکیزوفرنی نشان می‌دهند. علاوه بر ارئه‌ی بینش جدید در بیولوژی اسکیزوفرنی این یافته‌ها روش بالقوه‌ای برای آزمایش اثر بخشی مداخلات جدید فراهم کرده‌اند. دو می‌گوید: ما امیدواریم این فعالیت‌ها منجر به یافت استراتژی جدید برای محافظت از مغز در برابر استرس اکسیداتیو و بهبود عملکرد مغز در اسکیزوفرنی شوند.

[1] Dr. Fei Du

منبع:

https://goo.gl/Pfmzgt

نوشته شده در دیدگاه‌تان را بنویسید

آلزایمر و امکان درمان با داروی گلوکوم

بنا‌ بر گزارش دانشمندان دانشگاه UCL دارویی که در درمان بیماری‌های معمول چشم‌(گلوکوم)‌ استفاده می‌شود ممکن است که پتانسیل درمان آلزایمر را داشته باشد .

در یک آزمایش روی رت‌ها‌، داروی بریمونیدین که به‌طور روتین در بیماران مبتلا به گلوکوم جهت کاهش فشار مایع داخل چشمی استفاده می‌شود‌،متوجه شدند که موجب کاهش تشکیل پروتئین آمیلوئید در شبکیه‌ی چشم می‌شود،چیزی که بر‌این باورند که مرتبط با آلزایمر است.این تحقیق در ژورنال Cell Death And Disease گزارش شده است.
پلاک‌های آمیلوئید در شبکیه‌ی چشم بیماران مبتلا به بیماری آلزایمر قابل مشاهده است،بنابراین پژوهشگران بر این باورند که شبکیه‌ی چشم ادامه‌ی آن بخش از مغز است که فرصت تشخیص و پیگیری پیشرفت آلزایمر را فراهم می‌کند.
دانشمندان دریافتند که بریمونیدین دژنراسیون عصبی سلول‌های شبکیه‌ی چشم را با کم کردن میزان بتا‌ آمیلوئید در چشم کاهش می‌دهد. این امر حاصل استفاده از این دارو جهت تحریک تولید یک پروتئین غیر‌سمی جایگزین است که سلول‌های عصبی را نمی‌کشد.
محققان امیدوارند که دارو اثر مشابهی روی مغز داشته باشد،اگرچه این اثر در مطالعه فعلی بررسی نشده‌است.
با توجه به اینکه میزان ابتلا به آلزایمر افزایش یافته است،نتایج مطالعه ما در زمان بهتر از‌این نمی‌توانست ارائه گردد. سرگروه این تیم تحقیقاتی می‌گوید: با افزایش طول عمر نیاز به روش‌های درمانی مختلف که این بیماری مخرب را کنترل کنند افزایش می‌یابدو ما باور داریم که یافته‌های ما در این زمینه کمک بسزایی خواهد کرد

منبع:

Non-amyloidogenic effects of α2 adrenergic agonists: implications for Brimonidine-mediated neuroprotection,

نوشته شده در دیدگاه‌تان را بنویسید

محافظت از کبد در برابر استرس اکسیداتیو با روغن زیتون

روغن زيتون فوق خالص می‌تواند كبد را در مقابل استرس اكسيداتيو محافظت نمايد. دانشمندان موش‌هایی را در معرض علف كشی با سمیت متعادل (كه به خالی كردن بدن از آنتی اكسيدانت‌ها معروف است) قرار دادند و دريافتند، موش‌هايی كه با رژيم غذايی حاوی روغن زيتون تيمار شده بودند آسيب كبدی كمتری نشان دادند بدين معنی كه روغن زيتون به طور نسبی از آسيب كبدی آنها جلوگيری كرده بود. دانشمندان تونسی و عربستانی با همكاری در اين تحقيق به دنبال انجام آزمايشاتی بر روی ٨٠ موش بودند. محمد همامی نويسنده‌ی مقاله مي گويد زيتون جز كاملی از رژيم غذايی مديترانه‌ای است. شواهد رو به رشدی در مورد مفيد بودن زيتون برای سلامتی از جمله كاهش خطرات بيماري های عروق كرونر قلب، پيشگيري از برخي سرطان ها و تغييرات در سيستم ايمنی و پاسخ اتهابی وجود دارد.

ما نشان داديم كه روغن زيتون و عصاره هاي آن بافت كبد را در مقابل استرس اكسيداتيو محافظت مي نمايند. دانشمندان موش‌ها را به گروه‌های كنترل، گروه گيرنده‌ی روغن زيتون و ٦ گروه در معرض علف كش ٢،٤- دي كلروفنوكسي استيك اسيد، همراه و يا بدون روغن زيتون كامل و يكي از دو نوع عصاره‌ی روغن زيتون عصاره‌ی آب دوست و عصاره‌ی چربی دوست تقسيم كردند. تمام موش‌هایی كه علف كش را دريافت كرده بودند علائم جدی آسيب كبدی را نشان دادند. اما گروه گيرنده‌ی روغن زيتون خالص و عصاره‌ی آب دوست افزايش معنا داری را در فعاليت آنزيم آنتي اكسيدانت و كاهش ماركرهای آسيب كبدی نشان دادند. همامي مي گويد به نظر ميرسد عصاره‌ی آب دوست روغن زيتون در استرس اكسيداتيو حاصل از القاء توكسين موثر باشد كه اين عمل مي تواند نشانگر تاثير مستقيم آنتی اكسيدانتی عصاره‌ی آب دوست بر روي سلول هاي كبدی باشد.

منبع:

Nakbi, A., Tayeb, W., Grissa, A., Issaoui, M., Dabbou, S., Chargui, I., … Hammami, M. (2010). Effects of olive oil and its fractions on oxidative stress and the liver’s fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats. Nutrition & Metabolism, 7, 80. http://doi.org/10.1186/1743-7075-7-80

نوشته شده در دیدگاه‌تان را بنویسید

آیا کنجد آنتی‌اکسیدانت است؟

بر طبق مقاله‌ی مروری چاپ شده در مجله‌ی Medicinal Food خاصيت آنتی اکسيدانتی كنجد بویژه روغن كنجد می‌تواند تاثير فراوانی بر روی استرس اكسيداتيو داشته باشد. دانشمندان دانشگاه ايالتی ريودوژانيرو و دانشگاه فدرال ريودوژانيرو در تلاشند شواهد تاثيرات مصرف مواد حاوی كنجد را در ماركرهای استرس اكسیداتيو بر روی افراد افرادی با فشار خون بالا، كلسترول بالا و ديابت نوع ٢ منتشر نمايند. همچنين آزمايشات گوناگون بالينی افزايش آنتی اكسيدانت ها و كاهش استرس اكسيداتيو را با مصرف كنجد به ويژه در افرادی با فشار خون بالا و و ديابت نوع ٢ گزارش داده اند. مقاله‌ی مذكور شامل موارد بیشتری از تاثیر مثبت كنجد در جوامع مختلف می باشد. با کنکاش در نتايج مورد مطالعه در اين مقاله می‌توان دريافت كه برخی مطالعات پيش بالينی، نشان دهنده‌ی تاثیر روغن كنجد در پيشگيری از تصلب شرايين می باشد.

منبع

Vittori Gouveia, L. D. A., Cardoso, C. A., de Oliveira, G. M. M., Rosa, G., & Moreira, A. S. B. (2016). Effects of the Intake of Sesame Seeds (Sesamum indicum L.) and Derivatives on Oxidative Stress: A Systematic Review. Journal of medicinal food, 19(4), 337-345.

نوشته شده در دیدگاه‌تان را بنویسید

راهی برای جلوگیری از آلزایمر

محققان معتقدند که یک ساختار پروتئینی به نام آمیلوئید بتا، عامل اصلی آسیب عصبی در بیماری آلزایمر است.
مطالعه‌ای در دانشگاه کالیفرنیا سان دیگو که در مجله Journal of Biological Chemistry به چاپ رسیده، نشان می‌دهد که آمیلوئید بتا یکی از پروتئین‌های آنتی‌اکسیدانتی مغز را مختل می‌کند، همچنین در این مطالعه راهی برای محافظت از اثرات مضر آمیلوئید بر روی پروتئین‌های آنتی اکسیدانتی پیشنهاد شده است.
پروفسور جری یانگ در این رابطه می‌گوید: به نظر می‌رسد آمیلوئید، سبب آسیب به سلول‌ها می‌شود. در مطالعه حاضر شیوه بسیار دقیقی از یک فعل و انفعال بالقوه، در رابطه با اینکه آمیلوئید چطور می‌تواند باعث ایجاد بیماری شود و راه مقابله با آن چیست را پیدا کردیم.
این مطالعه بر روی کاتالاز (آنزیمی که اکسیدانت‌های اضافی را از بین می‌برد) تمرکز داشته، زیرا کاتالاز به طور معمول به جلوگیری از آسیب مغزی در بیماران مبتلا به آلزایمر کمک می‌کند و در مطالعات قبلی نشان داده شده که پروتئین‌های کاتالاز در پلاک‌های آمیلوئیدی ذخیره می‌شوند.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

واکنش میان رشته‌های تجمع یافته سمی پپتیدهای بتا آمیلوئیدی (یکی از نشانه‌های بیماری آلزایمر است) با پروتئین‌هایی مانند آنزیم کاتالاز (بعنوان یک آنتی‌اکسیدانت) که با رنگ قرمز نشان داده شده است. این واکنش، کاتالاز را غیرفعال می‌کند، که سبب آسیب اکسیداتیو به سلول‌های عصبی کشت داده شده، می‌شود. پوشش مقاوم در برابر پروتئین (آبی) بر روی آمیلوئید‌های تجمع یافته مانع از آسیب‌های اکسیداتیو شده و سلول را از سمیت بتا آمیلوئیدی مصون نگه‌می‌دارد.

لیلا حبیب، دانشجوی کارشناسی ارشد مهندسی زیستی و نویسنده نخست این مقاله می‌افزاید: در این مطالعه، آمیلوئید به محیط کشت سلول‌های عصبی اضافه شد و اثرات آن مورد بررسی قرار گرفت. وی گفت: ما توانستیم تعامل میان بتا آمیلوئید و کاتالاز را ارزیابی کرده و به این نتیجه برسیم که در این بین، عملکرد فیزیولوژیکی کاتالاز دچار اختلال شده و تبدیل پراکسید هیدروژن به اکسیژن و آب به درستی صورت نمی‌پذیرد.
این محققان جهت جلوگیری از تعامل آمیلوئید با دیگر پروتئین‌ها، اقدام به پوشاندن آمیلوئید توسط مولکول‌های کوچکی کردند و توانستند فعالیت کاتالاز و پراکسید هیدروژن درون سلول‌ها را به سطوح نرمال بازگردانند. این پوشش که محققان برای بررسی اثر متقابل آمیلوئید و کاتالاز استفاده کردند، نامزدی برای پیدایش یک داروست که در آزمایشگاه پروفسور یانگ توسعه یافته است.

 

منبع:

Habib, Lila K., Michelle TC Lee, and Jerry Yang. “Inhibitors of catalase-amyloid interactions protect cells from β-amyloid-induced oxidative stress and toxicity.” Journal of Biological Chemistry 285.50 (2010): 38933-38943.

نوشته شده در دیدگاه‌تان را بنویسید

اینوزین و افزایش TAC در پلاسما

پیشرفت بیماری پارکینسون در افرادی که اوره بالای سرم دارند کند می‌کند. اینوزین دهانی می تواند ظرفیت آنتی اکسیدانتی پلاسما یا CSF یا مارکرهای ادراری را از آسیب اکسیداتیو در پارکینسون زودرس را تغییر دهد و این تغییر وابسته به دوز می‌باشد.

اورات، که به واسطه اثرات آنتی اکسیدانت مستقیم و غیر مستقیم که  دارد، می تواند فرد را در برابر بیماری پارکینسون و آسیب های نورونی محافظت نماید. از طرفی اینوزین باعث افزایش سطح اورات پلاسما و CSF در بدن می شود. طی تحقیقاتی که صورت گرفته متوجه شده اند که ارزیابی میزان ظرفیت آنتی اکسیدانتی بدن (TAC) می تواند در پروگنوز بیماری مفید بوده و افزایش آسیب در بافت عصبی وابسته به ظرفیت آنتی اکسیدانتی می باشد.

منبع:

Bhattacharyya S, Bakshi R, Logan R, Ascherio A, Macklin EA, Schwarzschild MA. Oral Inosine Persistently Elevates Plasma antioxidant capacity in Parkinson’s disease. Movement Disorders. 2016 Jan 1.

نوشته شده در دیدگاه‌تان را بنویسید

مهندسی ژنتیکی مخمر،‌روش جدید درمان استرس اکسیداتیو

بسیاری‌ از انواع استرس‌ها در سلول‌های دارای ژن HD (بیماری هانتینگتون) رخ می‌دهد و بررسی مکانیزم آن می‌تواند روش جدیدی را در جهت معرفی داروهای HD معرفی کند. در مطالعه جدید، مخمر برای تعیین این‌که کدام پروتئین می‌تواند این سلول‌ها را از آسیب و مرگ محافظت کند و کشف یک آنتی‌اکسیدان محافظ و یک داروی مرتبط بررسی شد.

ژن‌ها الگوی ساخت پروتئین‌ها در هر موجود زنده هستند که هر پروتئین نقش منحصر به فردی در سلول دارد.‌ ژنی که باعث بروز بیماری هانتینگتون می‌شود الگوی نادرست فولدینگ پروتئین را کد کرده و باعث بروز بیماری هانتینگتون می‌شود. مکانیسم این جهش به درستی مشخص نشده است اما حضور آن به سلول‌های مغزی آسیب می‌رساند.

بروز علایم HD و سایر اختلالات عصبی به صورت ناگهانی اتفاق می‌افتد، زیرا سلول‌های مغزی دارای مکانیسم‌های مبارزه با عوارض جانبی پروتئین‌های معیوب هستند. در حقیقت، برخی از مکانیسم‌های مولکولی به طور خاص جهت کمک به سلول‌ها برای محافظت در برابر اشتباهات ژنتیکی که باعث بیماری می‌شوند، ایجاد شده است. بنابراین، کدام بخش‌ مهمترین دفاع در برابر محیط سمی تولید شده توسط هانتینگتون جهش یافته ارائه می‌دهد؟ اگر محققان بتوانند مشخص کنند که کدام پروتئین‌ها به سلول‌ها کمک می‌کنند تا از مرگ سلولی در امان باشند، داروهای موثر برای تقویت دفاع سلولی معرفی می‌شود.

اما حتی ساده‌ترین سلول‌ها از هزاران پروتئین تشکیل شده‌است و این چالشی برای یافتن پروتئین موثر در این سیستم دفاعی است. اخیرا گروهی از محققین به مطالعه HD در سیستم بسیار ساده مخمر پرداختند. محققان می‌توانند قطعه کوچک از ژن HD انسان را به یک سلول مخمر وارد کنند تا مخمر بتواند پروتئین هانتینگتون جهش یافته تولید کند. سلول‌های مخمر تحت تاثیر ژن جهش یافته قرار گرفته و رشد این سلول‌ها را طی چند روز متوقف می‌کند. جهت بررسی مکانیسم تاثیرگذار در دفاع از مرگ سلولی جمعیت بزرگی از مخمرهای جهش‌یافته بررسی شدند و این آزمایش برای همه پروتئین‌های سلولی تکرار شد. اکثر گروه‌های مخمر دچار مرگ سلولی شدند اما برخی دیگر که دارای پروتئین اضافی بودند محافظت شدند.

محققین بیش از 300 پروتئین سرکوب کننده را کشف کردند که هنگام سنتز، مخمرها را از مرگ توسط هانتینگتون محافظت می‌کرد. آن‌ها از پایگاه‌های داده ژنتیکی و نرم‌افزار بررسی عملکرد پروتئین مخمر استفاده کردند تا مشخص شود کدام یک از آن‌ها مشابه پروتئین بدن است. یکی از قوی‌ترین پروتئین‌های سرکوب کننده، گلوتاتیون‌پراکسیداز1 یا Gpx1 نامیده می‌شود. از 300 پروتئین که به مخمرهای HD برای زنده‌مانی کمک کرد، Gpx1 نقش به‌سزایی داشته و می‌تواند به کاهش اثرات آنتی‌اکسیدانی کمک کند.

شواهد قوی وجود دارد که  نشان می‌دهد ROS در سلول‌های مغزی بیماران مبتلا به هانتینگتون افزایش می‌یابد. تاکنون، استراتژی‌های آنتی‌اکسیدانی برای درمان HD بسیار موثر بوده‌اند. بااین حال، Ebselen، که نقش پروتئین Gpx1 را تقلید می‌کند، نقش اندکی در مطالعات بالینی اولیه برای اختلالات سکته مغزی که در اثر افزایش تولید ROS به وجود آمده‌اند نشان می‌دهد.

مخمر دارای ژن HD زمانی‌که پروتئین آنتی‌اکسیدانی Gpx1 را دریافت می‌کند زنده‌مانی بهتری از خود نشان می‌دهد. اما چه موجودی نزدیکی سلولی بیشتری به انسان نسبت به مخمر دارد؟ مگس دارای ژن HD دارای مشکلات خواب و حرکت پروازی است و سلول‌های عصبی نور سنجی در چشمشان دچار اختلال می‌شود. زمانی‌که Gpx1 به صورت ژنتیکی به مگس‌های بیمار وارد شود، رفتار و سلول‌های عصبی آن‌ها بهبود می‌یابد. مگس های تیمارشده با Ebselen پیشرفت بیشتری را در بهبودی نشان می‌دهند. افزایش مقدار Gpx1 و یا تیمار با Ebselen سلول‌های موش را از افزایش مقدار ROS و دیگر مولکول‌های مضر محافظت می‌کند.

این‌ها یافته‌های هیجان انگیزی است، اما اگر آنتی‌اکسیدان‌های دیگر در مدل‌های حیوانی و آزمایش‌های بالینی HD بی‌اثر باشند، چرا Gpx1 یا Ebselen تاثیرگذارند؟ یک دلیل برای شکست درمان‌های آنتی‌اکسیدانی این است که آن‌ها با روش‌های متفاوت از سلول‌های مغزی HD عمل می‌کنند.

واقعیت این است که Gpx1 و Ebselen به بهبود تقریبی ​​در مخمر، سلول‌های موش و مگس منجر شده‌است اما به این معنی نیست که Ebselen آماده آزمایش‌های بالینی در HD است زیرا مطالعات نشان نمی‌دهند که آیا این ماده بر بهبود مستقیم سلول‌های مغزی تاثیرگذار هستند یا نه؟ با این وجود این دارو نقش محافظتی یک پروتئین آنتی‌اکسیدان را تقلید می‌کند و می‌تواند گام مهمی در درمان‌های مبتنی بر Ebselen باشد.

یکی از نتایج مهم این مطالعه که با استفاده از یک ارگانیسم ساده انجام شده است، معرفی 300 پروتئین است که احتمالا در حفاظت سلولی در HD نقش دارند. هم‌چنین مطالعات بیشتر نشان داد برخی از پروتئین‌ها به صورت تعاونی عمل کرده و در یک شبکه مشترک به رغم حضور ژن معیوب باعث زنده‌مانی بیشتر سلول می‌شوند.

 

منابع:

Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S.C. and Muchowski, P.J., 2005. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington’s disease. Nature genetics37(5), p.526.

Bates, G.P., MacDonald, M.E., Baxendale, S., Sedlacek, Z., Youngman, S., Romano, D., Whaley, W.L., Allitto, B.A., Poustka, A., Gusella, J.F. and Lehrach, H., 1990. A yeast artificial chromosome telomere clone spanning a possible location of the Huntington disease gene. American journal of human genetics46(4), p.762.

Mason, R.P. and Giorgini, F., 2011. Modeling Huntington disease in yeast: perspectives and future directions. Prion5(4), pp.269-276.

نوشته شده در دیدگاه‌تان را بنویسید

آیا آنتی‌اکسیدان‌های جدید می‌توانند در میزان موفقیت درمان‌های سلولی تاثیرگذار باشند؟

تحقیقات نشان می‌دهد که درمان‌های سلولی با یک ترکیب شیمیایی که بقای آن را پشتیبانی می‌کند برای درمان طیف وسیعی از بیماری‌ها مفید هستند. بررسی‌های آزمایشگاهی نشان می‌دهد که مولکول ساخته شده جدید توسط انسان – یک نوع آنتی‌اکسیدان – از سلول‌های سالم در برابر آسیب‌هایی که به هنگام بیماری و در طول درمان سلول به بیمار منتقل می‌شوند، محافظت می‌کند. چنین روش‌هایی در حال حاضر برای درمان افراد مبتلا به اختلالات خون و هم‌چنین رشد بافت پوست برای بیماران مبتلا به سوختگی شدید استفاده می‌شود.

مطالعه برروی ترکیب جدید آزمایش‌شده نشان می‌دهد که این ترکیب 10 برابر از قوی‌ترین آنتی اکسیدان موجود در طبیعت در محافظت از سلول‌ها در مقابل آسیب‌ موثرتر است. تا حدود 90 درصد سلول‌ها می‌توانند در طول پروسه پیوند، آسیب‌دیده یا کشته شوند، این می‌تواند احتمال موفقیت درمان را تحت تأثیر قرار دهد. کارشناسان می‌گویند که قبل از درمان سلول‌ها و قبل از این‌که به بیماران پیوند زده شود، می‌تواند به بهبود میزان موفقیت درمان‌های مبتنی بر سلول کمک کند.

محققان در حال تلاش برای ایجاد چنین روشی برای درمان بیماری‌هایی مانند بیماری پارکینسون و مولتیپل اسکلروز هستند. دانشمندان دانشگاه ادینبورگ سلول‌ها را در معرض یک ماده سمی قرار می‌دهند که تقلید از شوک‌هایی است که سلول‌ها هنگام پیوند آن‌ را تجربه می‌کنند. سپس آن‌ها آزمایش کردند که درمان سلول‌ها با آنتی‌اکسیدان‌ها می‌تواند آن‌ها را از آسیب محافظت کند.

محققان ترکیب جدید مصنوعی را Proxison نامیده‌اند که 90 درصد از سلول‌ها را از مرگ نجات می‌دهد. مطالعات دیگری نیز در مورد zebrafish انجام شده است، آنتی‌اکسیدان ساخته شده توسط انسان که می‌تواند سلول‌ها را از مرگ محافظت کند. برای رسیدن به نتیجه مشابه، بیش از 10 برابر غلظت قوی آنتی‌اکسیدان طبیعی مورد آزمایش قرار گرفت.

محققان علاقه‌مندند بدانند که آیا آنتی‌اکسیدان‌ها می‌توانند به افزایش شانس انواع درمان‌های سلول‌ کمک کنند یا نه؟ بسیاری از بیماران ممکن است بتوانند از این درمان‌ها بهره مند شوند اگر بقای سلولی بتواند به طور قابل توجهی بهبود یابد. آنتی‌اکسیدان جدید بر اساس ترکیب طبیعی موجود در میوه و سبزیجات طراحی شده است. این تیم تغییرات کمی را در ساختار شیمیایی ایجاد کرد تا یک آنتی‌اکسیدان فوق‌العاده تولید کند که امیدوار است به یک داروی بالقوه جدید تبدیل شود.

دكتر تیلو کونات مدير ارشد پژوهشگاه علوم پزشكي دانشگاه ادينبورگ، گفت: “ما Proxison را به عنوان يك آنتي‌اكسيدان قدرتمند تشخيص داديم كه در محافظت از سلول‌ها از استرس اكسيداتيو و آسيب‌هاي راديكال آزاد بسيار موثر است.” این مطالعه در ادینبورگ یک گام مهم در جلوگیری از کنار گذاشتن موانع درمانی با پتانسیل افزایش کارایی سلول‌های پیوند شده در بیماران است و اجازه می‌دهد تا بیماران کمتر با منابع گران قیمت درمان شوند.”

 

منابع:

Halliwell, B., 1994. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. The lancet344(8924), pp.721-724

Drummond, N.J., Davies, N.O., Lovett, J.E., Miller, M.R., Cook, G., Becker, T., Becker, C.G., McPhail, D.B. and Kunath, T., 2017. A novel mitochondrial enriched antioxidant protects neurons against acute oxidative stress. bioRxiv, p.109439

Sidransky, E., Nalls, M.A., Aasly, J.O., Aharon-Peretz, J., Annesi, G., Barbosa, E.R., Bar-Shira, A., Berg, D., Bras, J., Brice, A. and Chen, C.M., 2009. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. New England Journal of Medicine361(17), pp.1651-1661.

نوشته شده در دیدگاه‌تان را بنویسید

آیا بیومارکرها در بیماری هانتینگتون می‌توانند مفید باشند؟

نوع خاصی از آسیب به نام “استرس اکسیداتیو” ممکن است به سلول‌های بیمار و مرگ در بیماری هانتینگتون کمک کند. گزارش‌های قبلی نشان می‌دهد که بیومارکر استرس اکسیداتیو می‌تواند به عنوان یک بیومارکر برای آزمایشات بالینی HD ( بیماری هانتینگتون) بررسی شود. اما به تازگی مطالعه‌ای منتشر شده که نشان می‌دهد که این بیومارکر مفید محسوب نمی‌شود. آیا این خبر بد است؟

هدف اکثر مطالعات بر روی بیماری هانتینگتون، ایجاد درمان موثر برای بیماران است. برای رسیدن به این هدف ، باید صنعت دارو را در این زمینه گسترش داد و برای دریافت دارو، باید آزمایش‌های بالینی صورت بگیرد تا اثر بخشی آنان مشخص گردد. اما چگونه می‌توانیم بدانیم که درمان موثر است؟

درباره برخی داروها به راحتی می‌توان اثربخشی آنان را تایید کرد زیرا به روشنی بر علایم HD تأثیر مثبتی دارند، همانند تاثیر بر حرکات فیزیکی مربوط به بیماری. اما ایده‌آل محققین رسیدن به دارویی است که درواقع باعث جلوگیری، کند شدن و یا توقف ساخت سلول‌های مغزی شود که باعث ایجاد HD می‌گردد. این مساله در بیماری هانتینگتون و سایر بیماری‌های مغزی بسیار سخت است، زیرا نمی‌توان به طور مستقیم مغز را بررسی و عملکرد دارو را سنجید. بیومارکر چیزی است که می‌تواند در مغز سنجیده شود و اطلاعاتی درباره اتفاقاتی که در مغز می‌افتد در اختیار قرار دهد.

بیومارکرها واقعا مهم هستند، زیرا آنها توانایی پیشرفت به سوی درمان‌های موثر را دارند. محققان نیاز به سنجش‌های قابل اعتماد و ساده دارند و این‌که بدانند در مغز بیماران هانتینگتون چه اتفاقی می‌افتد، بدون این‌که مجبور شوند جمجمه‌ها را باز کنند. هم‌چنین یک بیومارکر خوب می‌تواند در تعیین این‌که آیا یک داروی جدید دارای اثر مفید بر HD بوده یا نه مورد استفاده قرار بگیرد

 

استرس اکسیداتیو در HD

یکی از مواد تولیدشده توسط تمام سلولهای بدن، از جمله مغز، یک ماده شیمیایی به نام 8OhdG است. نام شیمیایی آن 8‌هیدروکسی دزوکسی گوانوزین بوده و تشخیص آن بسیار ساده است. سلول‌های ما به طور مداوم در معرض انواع استرس هستند. یکی از مهم‌ترین انواع استرس‌ها، استرس اکسیداتیو نامیده می‌شود. اساسا ما به اکسیژن نیاز داریم تا نیاز به انرژی را تامین کنیم، اما اکسیژن مولکول مضر نیز می‌تواند باشد و 8OhdG یک ماده شیمیایی است که وقتی اکسیژن DNA را تخریب می‌کند، تولید می‌شود.

در سال 1997، دکتر فلینت بیال از کالج پزشکی Weil Cornell، سطوح بالای 8OhdG را در مغز افرادی که در اثر بیماری هانتینگتون جان خود را از دست داده بودند،نشان داد و این مطالعه در کارهای بعدی منجر به این ایده شده است که HD با افزایش استرس اکسیداتیو همراه است.

بر اساس این ایده‌ها در مورد افزایش استرس اکسیداتیو در بیماری هانتینگتون، در سال 2006 یک گروه تحت هدایت دیانا روسس و استیو هرش در بیمارستان عمومی ماساچوست در بوستون، میزان بیومارکر 8OhdG را در خون بیماران HD که تحت تیمار دارویی بودند، بررسی کردند . نتایج بسیار جالب توجه بودند، آن‌ها دریافتند که بیماران HD دارای میزان بالاتری از 8OhdG نسبت به افراد کنترل‌شده هستند که در حقیقت، 8OhdG بیش از سه برابر که افزایش چشم‌گیری است محاسبه شد. دارویی که مورد آزمایش قرار گرفت، creatine نامیده شد که به نظر می‌رسید استرس اکسیداتیو را کاهش می‌دهد. در واقع، مصرف این دارو میزان 8OhdG را کاهش می‌دهد.

بر پایه نتایج این آزمایش نسبتا کوتاه‌مدت ، creatine بر روی حدود 650 بیمار مبتلا به HD، برای مدت طولانی‌تری تست شده است. این آزمایش جدید که CREST-E نامیده می‌شود، سطوح 8OhdG را در خون نیز اندازه‌گیری می‌کند.

8OhdG بیانگر چیست ؟

مطالعات اخیر نشان داده است که 8OhdG کاملا به همان اندازه که انتظار می‌رفت مفید نیست. به عنوان یک بیومارکر مفید، انتظار می‌رفت تغییرات سطوح آن در افراد قبل از ابتلای شدید به بیماری هانتینگتون مشاهده شود. در سال 2012 مطالعه‌ای تحت عنوان PREDICT-HD ( پیش‌بینی بیماری هانتینگنون ) بر اساس بیومارکر 8OhdG انجام شد. این مطالعه علایم افراد مبتلا به جهش HD را بررسی می‌کند، اما هنوز نشانه‌هایی از بیماری را نشان نمی‌دهند. این‌ها افرادی هستند که در آینده درمان خواهند شد و نتیجه بررسی تغییرات در این جمعیت، گامی مهم در جهت توسعه آزمایش‌های دارویی مناسب است.

سطح 8OhdG در خون افراد در مطالعه PREDICT-HD اندازه گیری شد. در این گروه، تغییرات بسیار کمی در سطوح 8OhdG وجود دارد. تجزیه و تحلیل پیچیده ریاضی نشان داد که ممکن است افزایش سطح 8OhdG در افرادی که دارای جهش HD هستند، افزایش یابد، اما تغییر بسیار کم خواهد بود. محققان PREDICT-HD با استفاده از دو تکنولوژی متفاوت برای اندازه‌گیری 8OhdG به نتایج متضاد رسیدند که یکی از آن‌ها بیان‌گر افزایش اندک و دیگری هیچ تغییری را نشان نداد.

مطالعات جدید در جهت بررسی اهمیت 8OhdG

این مطالعات گیج‌کننده بودند و دانستن اینکه آیا 8OhdG می‌تواند در بیماران HD به عنوان یک بیومارکر اندازه‌گیری شود یا نه را دشوار می‌کرد. به امید روشن شدن این مسئله، دانشمندان بنیاد CHDI و TRACK-HD مطالعه جدیدی را انجام دادند که به طور اختصاصی در مورد درک آنچه برای8OhdG در خون بیماران HD و حامل‌های جهش اتفاق می‌افتد، طراحی شده است. در ابتدا این دانشمندان به دقت تکنولوژی اندازه گیری این بیومارکر را بررسی کردند، زیرا بدون اندازه‌گیری دقیق، هیچ نتیجه‌ای نمی‌تواند مورد استفاده قرار بگیرد.

با درک روشنی از دقیق بودن ابزارهای سنجش، تیم به 320 نمونه خون تحت مطالعه TRACK-HD تقسیم شد. این مطالعه به دقت افرادی که دارای جهش HD هستند را بررسی می‌کند. با استفاده از هر دو روش اندازه‌گیری، این مطالعه دقیق به وضوح ثابت می‌کند که در خون افراد مبتلا به جهش HD اختلاف سطح 8OhdG وجود ندارد. سطح بیومارکر در ابتدا و با پیشرفت بیماری تغییری نکرد. این بدان معنی است که سطوح 8OhdG یک نشانگر خوب برای آزمایشات HD نیست.

این ممکن است بد به نظر برسد، در ابتدا تصور می‌شد 8OhdG ممکن است یک بیومارکر خوب برای تیمارهای دارویی HD باشد، و اکنون مشخص شده است که این‌گونه نیست. اما در واقع این اطلاعات بسیار مفید است. دانستن اینکه 8OhdG مفید نیست، محققان را قادر می‌سازد که بر روی بیومارکرهای جدیدی که می‌تواند در این بیماری مورد سنجش قرار بگیرند، تمرکز کنند.

مطالعاتی مانند PREDICT-HD و TRACK-HD مجموعه عظیمی از بیومارکرهای بالقوه احتمالی برای پیگیری در اختیار قرار داده‌اند و این بدان معنی است که محققان یک گام به یافتن بیومارکر مفید در HD نزدیک شده‌اند.


منابع:

Rosas, H.D., Lee, S.Y., Bender, A.C., Zaleta, A.K., Vangel, M., Yu, P., Fischl, B., Pappu, V., Onorato, C., Cha, J.H. and Salat, D.H., 2010. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4), pp.2995-3004.

Lerch, J.P., Carroll, J.B., Dorr, A., Spring, S., Evans, A.C., Hayden, M.R., Sled, J.G. and Henkelman, R.M., 2008. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. Neuroimage, 41(2), pp.243-251.

Biglan, K.M., Ross, C.A., Langbehn, D.R., Aylward, E.H., Stout, J.C., Queller, S., Carlozzi, N.E., Duff, K., Beglinger, L.J. and Paulsen, J.S., 2009. Motor abnormalities in premanifest persons with Huntington’s disease: The PREDICT‐HD study. Movement Disorders, 24(12), pp.1763-1772.

Georgiou-Karistianis, N., Hannan, A.J. and Egan, G.F., 2008. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain research reviews, 58(1), pp.209-225.