نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای محرومیت از خواب در انسان و موش صحرایی

خواب یک فرآیند بیولوژیکی ضروری است با این حال، مطالعات مکانیزم‌های مولکولی مبتنی بر اثرات کم‌خوابی هنوز در اولین مراحل آن است. خطر ابتلا به بسیاری از اختلالات متابولیک، از جمله افزایش وزن، دیابت، چاقی و بیماری‌های قلبی‌عروقی به علت کم‌ خوابی، اساس تحقیقات پایه در این زمینه می‌باشد.
در یک مطالعه که در مجله “آکادمی ملی علوم” منتشر شده است، آمیتا سگل، استاد علوم اعصاب در دانشکده پزشکی Perelman در دانشگاه پنسیلوانیا و محقق موسسه پزشکی Howard Hughes همراه با پیتر میرلو ، از دانشگاه گرونینگن هلند، مولکول‌های رایج درگیر در متابولیسم پاسخ به کم‌خوابی در آنالیز خون موش و انسان را یافته‌اند. یافته‌های آن‌ها نشان می‌دهد که تغییر کلی در چگونگی متابولیسم لیپیدها حاصل از استرس اکسیداتیو ناشی از کاهش خواب در هر دو گونه مشاهده می‌شود.
استرس اکسیداتیو و متابولیسم لیپید عامل مهمی در بیماری‌های متابولیکی هستند، اگرچه برای ایجاد یک ارتباط بین نشانگرهای موجود و بیماری‌های خاص، باید مطالعات بیشتری صورت بگیرد.
سگل می‌گوید: “یک احتمال این است که خواب باعث رفع متابولیت‌ها می‌شود و بنابراین به عنوان یک فرآیند ترمیم در سطح متابولیک عمل می‌کند.” متابولیت‌ها مواد واسطه شیمیایی یا محصولات متابولیسم هستند، بنابراین درحالی‌که از طریق تجزیه چربی‌ها، کربوهیدرات‌ها و پروتئین تولید می‌شوند، عملکرد آن‌ها محدود به این فرآیندها نیست. آن‌ها هم‌چنین در سیگنالینگ، تنظیم فعالیت آنزیمی و رشد نیز نقش دارند.
این تیم در طی پنج روز موش و انسان را در شرایط محدودیت خواب مزمن قرار دادند. در هر دو مطالعه، سطوح متابولیتی در خون موش و انسان، پس از خواب مناسب و کافی و بعد از محدودیت خواب مورد بررسی قرار گرفت. سپس متابولیت‌های خون موش‌ها و انسان‌های با محدودیت خواب شناسایی شده که 38 متابولیت منحصر به فرد را معرفی می‌کند که نیمی از آن‌ها لیپید هستند. اکثریت متابولیت‌ها در افراد کم‌خواب ترکیبات لیپید یا اسید چرب را دارند.
هفت نوع فسفولیپید به نام plasmalogens که با استرس اکسیداتیو در ارتباط هستند در موش‌های با محدودیت خواب یافت شدند. به طور کلی، سطوح بالاتر این فسفولیپیدها و نقش اساسی آن‌ها در متابولیسم لیپیدی موش‌ها و انسان‌های دارای محدودیت خواب مشخص شده‌است. هم‌چنین برخی از انتقال‌دهنده‌های عصبی و متابولیت های روده (احتمالا از میکروب‌های روده) نیز به علت محدودیت خواب تغییر کرده‌اند.

هنگامی که محققین متابولیت‌های تغییر یافته در موش و انسان را در مقایسه با شروع اولیه قبل از محدودیت خواب مقایسه کردند، متوجه شدند که دو متابولیت oxalic acid و diacylglycerol 36:3 در شرایط محدودیت خواب محو شده و بعد از بهبودی در هر دو گونه‌ دوباره مشاهده شدند. oxalic acid یک محصول زائد است که از فرآورده‌های غذایی در رژیم‌هایی مانند گیاهان، به طور عمده از تجزیه ویتامین C و برخی اسیدآمینه‌ها تولید می‌شود. Diacylglycerol یک مولکول پیش‌رونده در تولید تری‌گلیسیرید است و مولکولی است که اکثر چربی‌ها به این شکل در بدن ذخیره می‌شود و همچنین در سیگنالینگ سلولی عمل می‌کند. محققان معتقدند که این دو مولکول می‌توانند به عنوان نشانگرهای زیستی بالقوه از آن‌جایی که در هر دو گونه موجودند، به کار روند.

این بیومارکرهای بین گونه‌ای به دو دلیل مورد توجه هستند. اول این‌که نیاز به بیومارکر کمی در بررسی محدودیت خواب و کیفیت خواب وجود دارد و این رویکرد نشان می‌دهد که متابولیت‌ها در این زمینه مفید هستند. دوم این‌که متابولیت‌های مشابهی را در انسان‌ها و موش‌ها معرفی می‌کند و به همین طریق اثرات متابولیکی خواب در موش صحرایی که ممکن است دارای کاربرد بالینی و درمانی باشد مورد بررسی قرار می‌گیرد.
به طور کلی، این مطالعه یک ارتباط بالقوه بین آسیب‌شناسی شناخته شده محدودیت خواب و اختلال عملکرد متابولیکی ایجاد می‌کند و بیان‌گر این است که یکی از عملکردهای خواب ترمیم و پاک‌سازی متابولیت‌ها در مغز و بازگرداندن تعادل آنتی‌اکسیدانی در بافت‌های محیطی است و از سوی دیگر از دست دادن خواب، باعث ایجاد حالت اکسیداتیو در متابولیت‌ها می‌گردد.

منبع:

Weljie, A.M., Meerlo, P., Goel, N., Sengupta, A., Kayser, M.S., Abel, T., Birnbaum, M.J., Dinges, D.F. and Sehgal, A., 2015. Oxalic acid and diacylglycerol 36: 3 are cross-species markers of sleep debt. Proceedings of the National Academy of Sciences112(8), pp.2569-2574

نوشته شده در دیدگاه‌تان را بنویسید

آیا بیومارکرها در بیماری هانتینگتون می‌توانند مفید باشند؟

نوع خاصی از آسیب به نام “استرس اکسیداتیو” ممکن است به سلول‌های بیمار و مرگ در بیماری هانتینگتون کمک کند. گزارش‌های قبلی نشان می‌دهد که بیومارکر استرس اکسیداتیو می‌تواند به عنوان یک بیومارکر برای آزمایشات بالینی HD ( بیماری هانتینگتون) بررسی شود. اما به تازگی مطالعه‌ای منتشر شده که نشان می‌دهد که این بیومارکر مفید محسوب نمی‌شود. آیا این خبر بد است؟

هدف اکثر مطالعات بر روی بیماری هانتینگتون، ایجاد درمان موثر برای بیماران است. برای رسیدن به این هدف ، باید صنعت دارو را در این زمینه گسترش داد و برای دریافت دارو، باید آزمایش‌های بالینی صورت بگیرد تا اثر بخشی آنان مشخص گردد. اما چگونه می‌توانیم بدانیم که درمان موثر است؟

درباره برخی داروها به راحتی می‌توان اثربخشی آنان را تایید کرد زیرا به روشنی بر علایم HD تأثیر مثبتی دارند، همانند تاثیر بر حرکات فیزیکی مربوط به بیماری. اما ایده‌آل محققین رسیدن به دارویی است که درواقع باعث جلوگیری، کند شدن و یا توقف ساخت سلول‌های مغزی شود که باعث ایجاد HD می‌گردد. این مساله در بیماری هانتینگتون و سایر بیماری‌های مغزی بسیار سخت است، زیرا نمی‌توان به طور مستقیم مغز را بررسی و عملکرد دارو را سنجید. بیومارکر چیزی است که می‌تواند در مغز سنجیده شود و اطلاعاتی درباره اتفاقاتی که در مغز می‌افتد در اختیار قرار دهد.

بیومارکرها واقعا مهم هستند، زیرا آنها توانایی پیشرفت به سوی درمان‌های موثر را دارند. محققان نیاز به سنجش‌های قابل اعتماد و ساده دارند و این‌که بدانند در مغز بیماران هانتینگتون چه اتفاقی می‌افتد، بدون این‌که مجبور شوند جمجمه‌ها را باز کنند. هم‌چنین یک بیومارکر خوب می‌تواند در تعیین این‌که آیا یک داروی جدید دارای اثر مفید بر HD بوده یا نه مورد استفاده قرار بگیرد

 

استرس اکسیداتیو در HD

یکی از مواد تولیدشده توسط تمام سلولهای بدن، از جمله مغز، یک ماده شیمیایی به نام 8OhdG است. نام شیمیایی آن 8‌هیدروکسی دزوکسی گوانوزین بوده و تشخیص آن بسیار ساده است. سلول‌های ما به طور مداوم در معرض انواع استرس هستند. یکی از مهم‌ترین انواع استرس‌ها، استرس اکسیداتیو نامیده می‌شود. اساسا ما به اکسیژن نیاز داریم تا نیاز به انرژی را تامین کنیم، اما اکسیژن مولکول مضر نیز می‌تواند باشد و 8OhdG یک ماده شیمیایی است که وقتی اکسیژن DNA را تخریب می‌کند، تولید می‌شود.

در سال 1997، دکتر فلینت بیال از کالج پزشکی Weil Cornell، سطوح بالای 8OhdG را در مغز افرادی که در اثر بیماری هانتینگتون جان خود را از دست داده بودند،نشان داد و این مطالعه در کارهای بعدی منجر به این ایده شده است که HD با افزایش استرس اکسیداتیو همراه است.

بر اساس این ایده‌ها در مورد افزایش استرس اکسیداتیو در بیماری هانتینگتون، در سال 2006 یک گروه تحت هدایت دیانا روسس و استیو هرش در بیمارستان عمومی ماساچوست در بوستون، میزان بیومارکر 8OhdG را در خون بیماران HD که تحت تیمار دارویی بودند، بررسی کردند . نتایج بسیار جالب توجه بودند، آن‌ها دریافتند که بیماران HD دارای میزان بالاتری از 8OhdG نسبت به افراد کنترل‌شده هستند که در حقیقت، 8OhdG بیش از سه برابر که افزایش چشم‌گیری است محاسبه شد. دارویی که مورد آزمایش قرار گرفت، creatine نامیده شد که به نظر می‌رسید استرس اکسیداتیو را کاهش می‌دهد. در واقع، مصرف این دارو میزان 8OhdG را کاهش می‌دهد.

بر پایه نتایج این آزمایش نسبتا کوتاه‌مدت ، creatine بر روی حدود 650 بیمار مبتلا به HD، برای مدت طولانی‌تری تست شده است. این آزمایش جدید که CREST-E نامیده می‌شود، سطوح 8OhdG را در خون نیز اندازه‌گیری می‌کند.

8OhdG بیانگر چیست ؟

مطالعات اخیر نشان داده است که 8OhdG کاملا به همان اندازه که انتظار می‌رفت مفید نیست. به عنوان یک بیومارکر مفید، انتظار می‌رفت تغییرات سطوح آن در افراد قبل از ابتلای شدید به بیماری هانتینگتون مشاهده شود. در سال 2012 مطالعه‌ای تحت عنوان PREDICT-HD ( پیش‌بینی بیماری هانتینگنون ) بر اساس بیومارکر 8OhdG انجام شد. این مطالعه علایم افراد مبتلا به جهش HD را بررسی می‌کند، اما هنوز نشانه‌هایی از بیماری را نشان نمی‌دهند. این‌ها افرادی هستند که در آینده درمان خواهند شد و نتیجه بررسی تغییرات در این جمعیت، گامی مهم در جهت توسعه آزمایش‌های دارویی مناسب است.

سطح 8OhdG در خون افراد در مطالعه PREDICT-HD اندازه گیری شد. در این گروه، تغییرات بسیار کمی در سطوح 8OhdG وجود دارد. تجزیه و تحلیل پیچیده ریاضی نشان داد که ممکن است افزایش سطح 8OhdG در افرادی که دارای جهش HD هستند، افزایش یابد، اما تغییر بسیار کم خواهد بود. محققان PREDICT-HD با استفاده از دو تکنولوژی متفاوت برای اندازه‌گیری 8OhdG به نتایج متضاد رسیدند که یکی از آن‌ها بیان‌گر افزایش اندک و دیگری هیچ تغییری را نشان نداد.

مطالعات جدید در جهت بررسی اهمیت 8OhdG

این مطالعات گیج‌کننده بودند و دانستن اینکه آیا 8OhdG می‌تواند در بیماران HD به عنوان یک بیومارکر اندازه‌گیری شود یا نه را دشوار می‌کرد. به امید روشن شدن این مسئله، دانشمندان بنیاد CHDI و TRACK-HD مطالعه جدیدی را انجام دادند که به طور اختصاصی در مورد درک آنچه برای8OhdG در خون بیماران HD و حامل‌های جهش اتفاق می‌افتد، طراحی شده است. در ابتدا این دانشمندان به دقت تکنولوژی اندازه گیری این بیومارکر را بررسی کردند، زیرا بدون اندازه‌گیری دقیق، هیچ نتیجه‌ای نمی‌تواند مورد استفاده قرار بگیرد.

با درک روشنی از دقیق بودن ابزارهای سنجش، تیم به 320 نمونه خون تحت مطالعه TRACK-HD تقسیم شد. این مطالعه به دقت افرادی که دارای جهش HD هستند را بررسی می‌کند. با استفاده از هر دو روش اندازه‌گیری، این مطالعه دقیق به وضوح ثابت می‌کند که در خون افراد مبتلا به جهش HD اختلاف سطح 8OhdG وجود ندارد. سطح بیومارکر در ابتدا و با پیشرفت بیماری تغییری نکرد. این بدان معنی است که سطوح 8OhdG یک نشانگر خوب برای آزمایشات HD نیست.

این ممکن است بد به نظر برسد، در ابتدا تصور می‌شد 8OhdG ممکن است یک بیومارکر خوب برای تیمارهای دارویی HD باشد، و اکنون مشخص شده است که این‌گونه نیست. اما در واقع این اطلاعات بسیار مفید است. دانستن اینکه 8OhdG مفید نیست، محققان را قادر می‌سازد که بر روی بیومارکرهای جدیدی که می‌تواند در این بیماری مورد سنجش قرار بگیرند، تمرکز کنند.

مطالعاتی مانند PREDICT-HD و TRACK-HD مجموعه عظیمی از بیومارکرهای بالقوه احتمالی برای پیگیری در اختیار قرار داده‌اند و این بدان معنی است که محققان یک گام به یافتن بیومارکر مفید در HD نزدیک شده‌اند.


منابع:

Rosas, H.D., Lee, S.Y., Bender, A.C., Zaleta, A.K., Vangel, M., Yu, P., Fischl, B., Pappu, V., Onorato, C., Cha, J.H. and Salat, D.H., 2010. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4), pp.2995-3004.

Lerch, J.P., Carroll, J.B., Dorr, A., Spring, S., Evans, A.C., Hayden, M.R., Sled, J.G. and Henkelman, R.M., 2008. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. Neuroimage, 41(2), pp.243-251.

Biglan, K.M., Ross, C.A., Langbehn, D.R., Aylward, E.H., Stout, J.C., Queller, S., Carlozzi, N.E., Duff, K., Beglinger, L.J. and Paulsen, J.S., 2009. Motor abnormalities in premanifest persons with Huntington’s disease: The PREDICT‐HD study. Movement Disorders, 24(12), pp.1763-1772.

Georgiou-Karistianis, N., Hannan, A.J. and Egan, G.F., 2008. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain research reviews, 58(1), pp.209-225.

نوشته شده در دیدگاه‌تان را بنویسید

آیا شما سطح استرس اکسیداتیو و بیومارکرهای آنتی‌اکسیدانتی خود را آزمایش کرده‌اید؟

استرس اکسیداتیو یک نیروی ثابت در زندگی روزمره ماست. هنگامی‌که بدن ما قادر به مقابله با استرس‌های اکسیداتیو باشد، قوی‌تر و سالم‌تر به عمر خود ادامه می‌دهد. افزایش استرس اکسیداتیو عامل اصلی بروز بیماری‌های دژنراتیو مانند سرطان، بیماری قلبی، سندروم خستگی مزمن و بیماری‌های نوروژنیک است. این بیماری‌ها زمانی رخ می‌دهد که دفاع آنتی‌اکسیدانی بدن برای خنثی‌کردن ترکیبات رادیکال آزاد به نام گونه‌های فعال اکسیژن  (ROS) عمل نمی‌کند.

این رادیکال‌های آزاد، مولکول‌های ناپایدار مولکولی هستند که در طی فعالیت‌های متابولیسم پایه‌ای مثل فعالیت‌های ایمنی بدن، تولید انرژی در میتوکندری و سم‌زدایی در کبد تولید می‌شوند. برای محافظت در برابر اثرات مضر این رادیکال‌های آزاد، سلول‌ها از آنتی‌اکسیدان‌ها استفاده می‌کنند. آنتی‌اکسیدان‌ها اکثرا از رژیم‌های غذایی مانند بیوفلاوونوییدهای مرکبات، پروانتوسیانین‌های موجود در انواع توت، پلی‌فنول‌های موجود در چای سبز، شکلات ، قهوه و کاروتنوئید موجود در زرده تخم‌مرغ، ماهی قزل‌آلا و هویج تامین می‌شوند.

این آنتی‌اکسیدان‌ها یک اثر ضدالتهابی قوی در بدن و محافظت از سلول‌ها، بافت‌ها و اندام‌ها از عوامل استرس‌زای التهابی و اکسیداتیو دارند که نقش مهمی دردوره سالمندی، کیفیت زندگی و پیشگیری از بیماری‌های مزمن دارد. نیازهای آنتی‌اکسیدانی می‌تواند بین افراد متفاوت باشد و بنابراین آزمایش‌های بالینی برای ارزیابی سطح فردی استرس اکسیداتیو و ترکیبات آنتی‌اکسیدانی توسعه داده شده است. این تست به پزشک اجازه می‌دهد تا کمبودهای کلیدی را مشخص کند تا توانایی بدن برای انطباق و ابتلا به بیماری را محدود نماید.

اندازه‌گیری کلیدی باید شامل آنتی‌اکسیدان‌های اصلی و متابولیت‌های بیوشیمیایی باشد که شامل نسبت گلوتاتیون، سیستئین، سیستئین / سیستین، نسبت سولفات و سیتستین / سولفات و ظرفیت آنتی‌اکسیدانی کل است. این آزمایش هم‌چنین باید در آنزیم‌های مهم آنتی‌اکسیدانی مانند سوپراکسید دیسموتاز و گلوتاتیون پراکسیداز مشاهده شود. در نهایت، آزمون باید سطوح آسیب سلولی مانند لیپید پراکسیدازها را تحلیل کند.

بدن هم‌چنین آنتی‌اکسیدان‌هایی مانند سوپراکسید دیسموتاز، گلوتاتیون پراکسیداز و کاتالاز تولید می‌کند که در داخل سلول تولید می‌شوند و به محافظت از غشای بیرونی سلول، DNA  و تولید انرژی در میتوکندری کمک می‌کنند.

رادیکال‌های آزاد و استرس اکسیداتیو بخشی ضروری از زندگی هستند و باعث رشد و انطباق در سراسر بدن می‌شوند. فردی با حفاظت آنتی‌اکسیدانی بهینه شده با موفقیت به کاهش استرس اکسیداتیو طبیعی در بدن می‌پردازد. فردی که دارای حفاظت آنتی‌اکسیدانی ضعیف است قادر نخواهد بود با استرس اکسیداتیو مقابله کند و در طول زمان مشکلات جدی سلامتی را متحمل خواهد شد. افزایش شدید سطح استرس اکسیداتیو، یک فرآیند کشنده است که می‌تواند به طور مداوم  قبل از علائم علمی رخ دهد. ارزیابی توانایی بدن برای تولید و استفاده از آنتی‌اکسیدان‌ها می‌تواند به صورت جامع انجام شود که شامل بیومارکرهای زیستی  ذخایر آنتی‌اکسیدانی، عملکرد آنزیمی و آسیب سلولی است.

 

منابع:

Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J., 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences97(6), pp.2940-2945.

Sorolla, M.A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J. and Cabiscol, E., 2008. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine45(5), pp.667-678.

Kasai, H., 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research/Reviews in Mutation Research387(3), pp.147-163.

نوشته شده در دیدگاه‌تان را بنویسید

اپیتوپ مالون‌دی‌آلدهید، عامل موثر در التهاب کبدی

بیماری‌های مرتبط با رژیم غذایی مانند بیماری کبد چرب غیر الکلی (NAFLD)، دارای یک عنصر التهابی عمده هستند. با این حال، مسیرهای مولکولی مرتبط با رژیم غذایی که منجر به التهاب می‌شوند، ناشناخته است. در یک مطالعه جدید، دانشمندان مرکز تحقیقاتی CeMM دانشکده مولکولی آکادمی علوم اتریش و دانشگاه پزشکی وین، پروسه‌های التهابی مهمی را در بیماری NAFLD شناسایی کردند. علاوه بر این، مطالعه منتشر شده در Hepatology نشان می‌دهد که مالون‌دی‌آلدهید (MDA) بیومارکر استرس اکسیداتیو، نقش مهمی در بروز NAFLD دارد و می‌تواند توسط آنتی‌بادی‌های طبیعی خنثی شود که به عنوان یک رویکرد جدید در درمان بالقوه این بیماری شایع معرفی می‌شود.

ترکیبی از رژیم غذایی غلط و فقدان ورزش می‌تواند به مشکلات جدی سلامتی منجر شود: در سراسر جهان، موارد چاقی، فشار خون بالا یا مقاومت به انسولین در سطح هشداردهنده قرار دارند. در نتیجه، خطر ابتلا به بیماری‌های مرتبط با التهاب مانند دیابت نوع 2، NAFLD و بیماری‌های قلبی عروقی بر این اساس افزایش یافته است. با این حال، مسیرهای دقیق که عادات غذایی را با التهاب ناشی از آن پیوند دهند تاکنون به خوبی شناخته نشده است.

محققان تنها توانسته‌اند پروسه‌های زیست شناختی را که منجر به التهاب مزمن حاصل از رژیم غذایی غلط در موش‌ها بروز می‌کند را شناسایی کنند علاوه بر این، دانشمندان MDA را یک عامل کلیدی در التهاب کبدی می‌دانند که می‌تواند با آنتی‌بادی‌های طبیعی خنثی شود.

مالون‌دی‌آلدهید مولکول بسیار واکنشی، محصولی از تجزیه چربی و بیومارکر استرس اکسیداتیو است که بر روی سطح سلول‌های مرده در کبد تجمع می‌یابد. این مولکول به طور شیمیایی به پروتئین‌های غشایی و یا فسفولیپید‌ها متصل می‌شود و به این ترتیب اپیتوپ‌های MDA را تشکیل می‌دهد. گروه تحقیقاتی نشان داد که این اپیتوپ‌های MDA باعث ایجاد ترشح سیتوکین و همچنین استخراج لکوسیت‌ها می‌شود و در نتیجه باعث التهاب می‌گردد.

محققان نقش مهم این اپیتوپ‌های MDA را در التهاب کبدی ناشی از رژیم غذایی بررسی کرده‌اند. با تزریق داخل وریدی از یک آنتی بادی MDA خاص که به طور انتخابی به اپیتوپ‌های MDA متصل می‌شود، می‌توان التهاب را در موش‌ها بهبود بخشید. این مطالعه نشان می‌دهد که با بررسی توالی RNA و تجزیه و تحلیل بیوانفورماتیک داده‌های مربوط به ترجمه، مکانیزم‌های کلیدی در برخی از بیماری‌های شایع را می‌توان بررسی کرد که این یافته‌ها در مدل‌های موش تایید می‌کند که استفاده از آنتی‌بادی‌های خاص برای اپیتوپ‌های MDA یک رویکرد جدید امیدوار کننده برای توسعه استراتژی‌های درمانی می‌باشد.

 

 

منبع:

Busch, C.J.L., Hendrikx, T., Weismann, D., Jäckel, S., Walenbergh, S., Rendeiro, A.F., Weißer, J., Puhm, F., Hladik, A., Göderle, L. and Papac‐Milicevic, N., 2017. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology65(4), pp.1181-1195.

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکر چیست؟

بیومارکرها مولکول‌هایی هستند که فرایند طبیعی یا غیرطبیعی را در بدن شما نشان می‌دهند و ممکن است نشانه‌ای از وضعیت یا بیماری باشند. انواع مختلف مولکول‌ها، مانند DNA، ژن‌ها، پروتئین‌ها و هورمون‌ها می‌توانند به عنوان نشانگرهای زیستی عمل کنند، زیرا همه آن‌ها در مورد سلامتی اطلاعات بسیاری را در اختیار قرار می‌دهند. بیومارکرها ممکن است توسط خود بافت سرطانی و یا توسط سلول‌های دیگر در بدن در پاسخ به سرطان تولید شوند. آن‌ها می‌توانند در خون، مدفوع، ادرار، بافت تومور یا سایر بافت‌ها و یا مایعات بدن یافت شوند. به طور مشخص، نشانگرهای زیستی محدود به سرطان نیستند. بیومارکرها برای بیماری‌های قلبی، مولتیپل اسکلروز و بسیاری از بیماری‌های دیگر وجود دارد.

یادگیری برخی از حقایق اولیه برای درک اهمیت بیومارکر‌ها در سرطان، داشتن اطلاعات در مورد DNA، RNA و پروتئین مفید است. DNA یک مولکول درون سلولی است که اطلاعات ژنتیکی را حمل می‌کند و از یک نسل به نسل بعد منتقل می‌شود RNA یا اسیدریبونوکلئیک شامل اطلاعاتی است که از DNA کپی شده است. سلول‌های بدن چندین مولکول RNA مختلف را تشکیل می‌دهند که برای سنتز مولکول‌های پروتئین ضروری هستند. به عنوان مثال، mRNA، یا مولکول های RNA messenger، به عنوان الگوهایی برای تولید پروتئین از واحد‌های آمینو اسید عمل می‌کنند، در حالی که tRNA یا مولکول‌های RNA ناقل، واحدهای اسید‌آمینه را به ریبوزوم می‌رسانند. داخل ریبوزوم، فرآیند ترجمه به پروتئین انجام می‌گیرد.

پروتئین به عملکرد بدن کمک می‌کند و اساس ساختار بدن مانند پوست و مو است. آنها طیف گسترده‌ای از توابع در داخل بدن انسان دارند. برخی از پروتئین‌ها (آنزیم‌ها) سرعت واکنش‌های شیمیایی را افزایش می‌دهند، برخی (سیتوکنین‌ها) بر عملکرد سیستم ایمنی بدن تاثیر می‌گذارند و در عین حال سایر پروتئین‌ها که آنتی‌بادی نامیده می‌شوند، واکنش‌های ایمنی خاص را در پاسخ به آنتی‌ژن‌ها انجام می‌دهند.
بیومارکرهای سرطانی می‌توانند شامل موارد زیر باشند:

• پروتئین‌ها
• جهش‌های ژنی (تغییرات)
• بازسازی ژن
• کپی‌های اضافی از ژن‌ها
• حذف ژن‌ها
• مولکول های دیگر

هنگامی که مردم در مورد بیومارکرهای سرطانی صحبت می‌کنند، معمولا به پروتئین‌ها، ژن‌ها و مولکول‌های دیگر اشاره دارند که بر روی سلول‌های سرطانی رشد می‌کنند. در سال‌های اخیر، دانشمندان شروع به مطالعه درباره الگوهای بیان ژن و تغییرات در DNA به عنوان بیومارکرهای سرطانی پرداختند. در حالی‌که برخی از بیومارکرهای سرطانی می‌توانند در جهت پیش‌بینی سرطان، روند پیشرفت، درمان و بهبودی کمک کنند.

در قسمت‌های بعدی به تفصیل درباره انواع عملکرد بیومارکرهای سرطانی و به خصوص بیومارکرهای آنتی‌اکسیدانی بحث خواهیم کرد…

بیومارکرهای سرطان ( قسمت دوم )

بیومارکرهای استرس اکسیداتیو ( قسمت سوم )

نوشته شده در دیدگاه‌تان را بنویسید

بیومارکرهای سرطان

بیومارکر چیست؟ ( قسمت اول )

انواع مختلف بیومارکرهای سرطانی وجود دارد و هر یک از آن‌ها در بدن نقش متفاوتی دارند و به روش‌های مختلف واکنش نشان می‌دهند. به طور کلی، بیومارکرهای سرطانی به واسطه عملکردهای مختلف آن‌ها طبقه بندی می شوند:

  • بیومارکرهایی که منجر به رشد و تکثیر غیر طبیعی سلول‌ها می‌شوند

یک نمونه از این نوع بیومارکر، پروتئین HER2 است که به کنترل رشد سلول کمک می‌کند. اگر HER2 در سلول‌های سرطانی بیش از حد بیان شود، سلول‌ها HER2 مثبت در نظر گرفته می‌شوند، به این معنی که پروتئین بیشتری نسبت به حالت طبیعی دارند. این وضعیت احتمالا باعث می‌شود، سلول‌ها سریع‌تر رشد کنند و شانس خود را برای متاستاز کردن (گسترش) به سایر قسمت‌های بدن افزایش دهند. هم‌چنین به این معنی است که درمان‌هایی که به علت اختلال در مسیر سیگنالینگ HER2 شناخته می‌شود، به توقف رشد سرطان کمک می‌کند.

  • بیومارکرهایی که از فعالیت درمانی سلولی یا مولکولی پشتیبانی می‌کنند

این نوع بیومارکر به وسیله یک ژن به نام SPARC تولید می‌شود که منجر به ترشح پروتئین اسیدی Cysteine-Rich می‌شود.SPARC به انتقال آلبومین – نوعی از پروتئین موجود در خون، سفیده تخم مرغ، شیر و سایر مواد – به سلول‌ها کمک می‌کند. برخی از داروهای شیمی درمانی با آلبومین جهت جلوگیری از حل شدن در خون متصل می‌شوند.  بنابراین، بیان بیش از حد SPARC به درمان‌های مربوط با آلبومین کمک می‌کند و می‌تواند درمان سلولی موثری باشد.

  • بیومارکرهایی که باعث کاهش فعالیت درمانی سلولی یا مولکولی می‌شوند

برخی داروهای شیمی درمانی برای از بین بردن DNA تومور با پلاتین ساخته می‌شوند. با این حال، یک پروتئین به نام ERCC1 وجود دارد که DNA تومور را تعمیر می‌کند. اگر بیومارکر سطح بالای ERCC1 را در یک تومور بیمار تشخیص دهد، عامل‌های مبتنی بر پلاتین برای این بیمار بسیار مؤثر نیستند.

حتی در دسته‌های بیومارکر فوق، انواع مختلفی وجود دارد. به عنوان مثال، مولکول‌هایی که سبب رشد غیر طبیعی سلول می‌شوند می‌توانند از جهش ژنی یا از کپی‌های اضافی ژن دیگری در داخل DNA تومور، ایجاد شوند.

احتیاط: ژن‌های شما و بیومارکرهای سرطان شما دقیقا یک چیز نیستند

در برخی از افراد DNA ژن قابل شناسایی وجود دارد که می‌تواند منجر به افزایش خطر ابتلا به سرطان‌های خاص شود. به عنوان مثال، فردی که جهش‌های خاصی را در BRCA1 و BRCA2 به نام “ژن‌های سرطان پستان” به ارث برده است، خطر ابتلای بیشتر به سرطان پستان، تخمدان، پروستات و سایر انواع سرطان را دارد.

 

با این حال، اکثر سرطان‌ها به ارث برده نمی‌شوند و در اکثر موارد افرادی که با سرطان تشخیص داده می‌شوند، هیچ کدام از ژن‌های سرطان را ندارند. اما همه سرطان‌ها دارای بیومارکرهای زیستی هستند، از جمله نشانگرهای ژنتیکی. بنابراین، تفاوت چیست؟

 

سرطان شما یک نسخه منحصر به فرد از DNA شما دارد که با DNA در سلول‌های سالم شما متفاوت است. اکثر بیومارکرهای سرطانی که با درمان مرتبط هستند با ژن‌های منحصر به فرد تومور و ساختار مولکولی، به جای ژن‌های سالم، مرتبط هستند.

 

تشخیص و اندازه‌گیری بیومارکرها برای ایجاد یک برنامه درمان ضد سرطان شخصی

برای تعیین اینکه آیا و در چه سطحی، مشخصه‌های بیومارکرهای موجود در سرطان شما وجود دارد، پزشک شما باید یک نمونه از بافت تومور یا مایعات بدن را بیرون بیاورد و آن را به یک آزمایشگاه برای انجام یک سری از آزمایشات آسیب‌شناسی پیشرفته و آزمایش‌های پروفایل مولکولی ارسال کند. این آزمایشات سطوح بیومارکرهای خاص خود را برای سرطان مشخص می‌کند. سپس اطلاعات به دست آمده با تحقیقات منتشر شده توسط محققان پیشرو در زمینه سرطان در جهان مطابقت خواهند یافت تا مشخص شود کدام درمان‌ها به احتمال زیاد کار خواهند کرد. سپس پزشک شما یک گزارش را ارسال می‌کند که لیستی از عواملی را که در نمونه شناسایی شده‌اند، همراه با درمان‌هایی که به طور مثبت و منفی مرتبط با آن عوامل شناخته شده است، نشان می‌دهد. این فرآیند اجازه می‌دهد تا پزشک شما به شخصی‌سازی برنامه درمان ضد سرطان شما پرداخته و درمان منحصر به بیماری شما را تدوین نماید.

بیومارکرهای استرس اکسیداتیو ( قسمت سوم )

منابع:

Balkwill, F., BERLATO, C. and Fletcher, L., Cancer Research Technology Ltd, 2019. CCL22 and CCL17 cancer biomarkers. U.S. Patent Application 10/241,118.

Sölétormos, G., Duffy, M.J., Hassan, S.O.A., Verheijen, R.H., Tholander, B., Bast, R.C., Gaarenstroom, K.N., Sturgeon, C.M., Bonfrer, J.M., Petersen, P.H. and Troonen, H., 2016. Clinical use of cancer biomarkers in epithelial ovarian cancer: updated guidelines from the European Group on Tumor Markers. International Journal of Gynecologic Cancer26(1), pp.43-51.