نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌اکسیدان‌ها و هزار مسیر تاثیر بر سلول سرطانی

یک فرم جایگزین آنزیمی که در مسیر متابولیسم گلوکز دخیل است، سلول‌های سرطانی را از استرس‌اکسیداتیو محافظت می‌کند.

محققان با فعال کردن آنزیمی که در تجزیه گلوکز دخالت دارند، می‌توانند رشد سلول‌های سرطانی ریه را تسکین دهند و آسیب‌های تولید شده توسط گونه‌های فعال اکسیژن(ROS) تولید شده در متابولیسم طبیعی را کاهش دهند. این گونه‌های فعال اکسیژن می‌توانند باعث آسیب به سلول در غلظت‌های بالا شود. یافته‌های منتشر شده در Science Express می‌تواند در جهت تحت تاثیر قرار دادن درمان‌های سرطان مورد استفاده قرار گیرد و رشد تومور را به حداقل برساند.
Karen Vousden از مؤسسه تحقیقات سرطان گلاسکو، گفت: این مطالعه نشان می‌دهد که چگونه تومورها به طور طبیعی با افزایش استرس اکسیداتیو روبرو می‌شوند و راه را برای تبدیل این مکانیسم علیه سرطان فراهم می‌کند.

دانشمندان مدت‌هاست دریافته‌اند که سلول‌های سرطانی تمایل دارند فرم دیگری از آنزیم پیرووات کیناز (PKM1) داشته باشند که بخشی از مسیر گلیکولیزی است و گلوکز را به پیروات و ATP می‌شکند. بر خلاف PKM1 که سطح فعالیت آن‌ها ثابت است، فعالیت PKM2 می‌تواند بالا یا پایین باشد و فرم جایگزینی آنزیم در کمک به رشد سلول‌های تومور نقش مهمی ایفا می‌کند.
دانشمندان هم‌چنین با این واقعیت که سلول‌های سرطانی می‌توانند از آسیب به اجزای سلولی اصلی که به طور ناگهانی در نتیجه سطوح بالای ROS پایدار می‌باشند، تحریک شوند، سلول‌های سرطانی ROS بیشتری تولید می‌کنند، اما به طریقی از عواقب معمولی اجتناب می‌کنند. کار قبلی نشان داد که مسیر PKM2 در این مسیر آسیب اکسیداتیو نقش مهمی ایفا می‌کند.
Anastasiou و همکارانش خطوط سلولی سرطان ریه را با عوامل اکسیدکننده افزایش دادند و سطوح ROS و PKM2 را افزایش دادند اما متوجه شدند که این سلول‌ها فعالیت PKM2 را کاهش داده‌اند. از سوی دیگر، هنگامی که عامل‌های کاهش دهنده را اضافه می‌کنند تا سطوح ROS را کاهش دهند و اکسیداسیون PKM2 را معکوس کنند، فعالیت آنزیمی افزایش می‌یابد و این نشان می‌دهد که PKM2 به عنوان سنسور برای ROS عمل می‌کند.

سپس محققان فرم جهش PKM2 را ایجاد کردند که همچون PKM1 هم‌چنان به عنوان سطح “ROS” عمل می‌کند. سلول‌های سرطانی با فرم جهش PKM2 باعث آسیب بیشتر نسبت به کنترل سرطان‌ها شدند، که نشان می‌دهد توانایی سلول سرطانی برای کاهش فعالیت PKM2 در پاسخ به میزان ROS بالا نقش کلیدی در حفظ سلول‌ها از آسیب دارد. هم‌چنین محققان دریافتند که کاهش فعالیت PKM2 موجب می‌شود که سلول‌های سرطانی با بازسازی گلوتاتیون، یک مولکول خنثی کننده ROS، زنده بمانند.
آزمایش به گونه‌ای طراحی شد که سلول‌هایی با جهش اکسیداتیو PKM2 طراحی شده و به موش‌ها تزریق کرده و رشد آن‌ها را بررسی کردند. سلول‌های با فرم جهش‌یافته، تومورهای کوچک‌تر از همتایان نوع وحشی داشتند.

یافته‌های این پژوهش نشان می‌دهد که محققان ممکن است یک روز بتوانند PKM2 را فعال کنند تا سلول‌های سرطانی بیشتر به درمان‌های سرکوب کننده مانند شیمی‌درمانی و رادیوتراپی آسیب پذیر باشند.
هم‌چنین پرسش مهم این است که آیا می‌توان از مکانیزم‌هایی استفاده کرد که بتواند PKM2 را فعال کند؟ اگر بتوان PKM2 را فعال کرد، آیا می‌توان به عنوان درمان اصلی بیماری سرطان کاربرد داشته باشد؟

منابع:

Alexander, B.M., Wang, X.Z., Niemierko, A., Weaver, D.T., Mak, R.H., Roof, K.S., Fidias, P., Wain, J. and Choi, N.C., 2012. DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology* Biology* Physics83(1), pp.164-171.

Zhao, C., Tang, Z., Chung, A.C.K., Wang, H. and Cai, Z., 2019. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicology and environmental safety170, pp.495-501.

نوشته شده در دیدگاه‌تان را بنویسید

حسگرهای زیستی می‌توانند تولید اکسیدان را در موجودات زنده تشخیص دهند

گمان می‌رود که کلسیفیکاسیون شریانی و بیماری عروق کرونر قلب ، بیماری‌های عصبی مانند پارکینسون و آلزایمر ، سرطان و حتی روند پیری به خودی خود تا حدی در اثر استرس اکسیداتیو ایجاد شده یا تسریع شوند. استرس اکسیداتیو در بافت‌ها هنگامی ایجاد می‌شود که مقدار بیشتری از گونه‌های اکسیژن فعال (ROS) در سلول وجود داشته باشد. با این وجود ، تاکنون هیچ کس نتوانسته است به طور مستقیم تغییرات اکسیداتیو موجود در یک موجود زنده را مشاهده کند و مطمئناً چگونگی ارتباط آن‌ها با فرآیندهای بیماری مشخص نیست. فقط روش‌های نسبتاً نامشخص یا غیرمستقیمی برای تشخیص این‌که کدام فرآیندهای اکسیداتیو واقعاً در یک ارگانیسم اتفاق می‌افتند، وجود دارد.

برای اولین بار ، توبیاس دیک و همکارانش توانسته‌اند این روندها را در یک حیوان زنده مشاهده کنند. آن‌ها به طور مشترک با دکتر Aurelio ژن‌های مربوط به حسگرهای زیستی را در ماده ژنتیکی مگس‌های میوه معرفی کردند. این حسگرهای زیستی مخصوص اکسیدان‌های مختلف هستند و با انتشار سیگنال نوری وضعیت اکسیداتیو هر سلول را نشان می‌دهند. این نمایش در زمان واقعی ، در کل ارگانیسم و در کل طول زندگی نشان داده می‌شود.

محققان قبلاً دریافتند که در لاروهای مگس ، اکسیدان‌ها در سطوح بسیار متفاوت در انواع مختلف بافت تولید می‌شوند. بنابراین ، سلول‌های خونی نسبت به سلول‌های روده یا ماهیچه مقدار بیشتری دارند. علاوه بر این ، رفتار لاروها در تولید اکسیدان‌ها در بافت‌های فردی منعکس می‌شود: محققان توانستند تشخیص دهند که آیا لاروها با توجه به وضعیت اکسیداتیو بافت چربی چه طول عمری نشان می‌دهند..
تاکنون بسیاری از دانشمندان تصور می‌کردند که روند پیری با افزایش عمومی اکسیدان‌ها در بدن همراه است. با این حال ، این توسط مشاهدات انجام شده توسط محققان در کل طول عمر حیوانات بزرگسال تأیید نشده است. آنها شگفت زده شدند که تقریباً تنها افزایش وابسته به سن اکسیدان‌ها در روده مگس یافت شده است. علاوه بر این ، هنگام مقایسه مگس‌ها با طول عمر مختلف ، آنها دریافتند که تجمع اکسیدان‌ها در بافت روده حتی با طول عمر بیشتر تسریع می‌یابد. بنابراین این گروه هیچ مدرکی را برای تأیید این فرض که اغلب ابراز می‌شود محدوده عمر یک ارگانیسم با تولید اکسیدان‌های مضر است ، پیدا نکرد.

حتی اگر مطالعات جامع تا به امروز اثبات نشده است ، آنتی‌اکسیدان‌ها غالباً به عنوان محافظت در برابر استرس اکسیداتیو و در نتیجه ، تقویت کننده سلامت تبلیغ می‌شوند. دیک و همکارانش مگس‌های خود را با N-استیل سیستئین (NAC) تغذیه کردند ، ماده‌ای که به آن یک اثر آنتی‌اکسیدانی نسبت داده می‌شود و بعضی از دانشمندان آن را مناسب برای محافظت از بدن در برابر اکسیدان‌های احتمالاً خطرناک می‌دانند. جالب است که ، هیچ مدرکی مبنی بر کاهش اکسیدان در مگس‌های تغذیه شده با NAC یافت نشد. در مقابل ، محققان از اینكه تعجب كردند كه NAC مکان‌های تولید انرژی بافت‌های مختلف را به میزان قابل توجهی برای تولید اکسیدان ترغیب می‌کند ، شگفت زده شدند.
توبیاس دیک با بیان خلاصه یافته‌های خود گفت: “بسیاری از مواردی که ما در مگس‌ها با کمک بیوسنسورها مشاهده کردیم برای ما شگفت آور است. به نظر می‌رسد بسیاری از یافته‌های بدست آمده در سلول‌های جدا شده به سادگی نمی‌توانند به یک موجودات زنده منتقل شوند. وی می‌افزاید: “مثال NAC هم‌چنین نشان می‌دهد كه ما در حال حاضر قادر نیستیم از طریق فارماكولوژی شناسی بر فرآیندهای اکسیداتیو در یك ارگانیسم زنده تأثیر بگذاریم.” “البته ، ما به سادگی نمی‌توانیم این یافته‌ها را از حشرات به انسان منتقل کنیم. هدف بعدی ما استفاده از حسگرهای زیستی برای مشاهده فرآیندهای اکسیداتیو در پستانداران ، به ویژه در واکنش‌های التهابی و ایجاد تومورها است.”

 

منابع:

Swain, L., Nanadikar, M.S., Borowik, S., Zieseniss, A. and Katschinski, D.M., 2018. Transgenic organisms meet redox bioimaging: one step closer to physiology. Antioxidants & redox signaling29(6), pp.603-612.

Zhao, X., Peng, M., Liu, Y., Wang, C., Guan, L., Li, K. and Lin, Y., 2019. Fabrication of Cobalt Nanocomposites as Enzyme Mimetic with Excellent Electrocatalytic Activity for Superoxide Oxidation and Cellular Release Detection. ACS Sustainable Chemistry & Engineering.

نوشته شده در دیدگاه‌تان را بنویسید

آنتی‌بیوتیک‌ها در سرطان چه عملی انجام می‌دهند؟

ترکیبی از آنتی‌بیوتیک‌ها مانع از حرکت سلول‌های سرطانی می‌شوند

متخصصان در انگلستان راهی پیدا کرده‌اند که سلول‌های بنیادی سرطانی را تغییر داده و سیستم تکثیر معیوب را در آن‌ها ایجاد می‌کنند. این سلول‌ها توانایی تکثیر ندارند چون انرژی تولید نمی‌کنند.

یک ترکیب سه گانه از ویتامین C و دو آنتی‌بیوتیک استاندارد – داکسی‌سایکلین و آزیترومایسین – برای کاهش رشد سلول‌های بنیادی بیش از 90٪ در آزمایش‌های آزمایشگاهی کافی بودند. دانشمندان گفتند که آنها از نتایج منتشر شده در ژورنال Aging متحیر شدند.

تصور می ‌شود سلول‌های بنیادی مانند سرطان عامل اصلی مقاومت شیمی درمانی بوده و منجر به نارسایی در درمان بیماران مبتلا به بیماری پیشرفته و عود تومور و متاستاز (رشد مجدد و ثانویه) می‌شود. تحقیقات تیم دانشگاه Salford در مورد انرژی سلول‌های بنیادی سرطانی – فرآیندی که به سلول‌ها امکان زندگی و پیشرفت را می‌دهند – متمرکز شده است تا متابولیسم آن‌ها را مختل کند.

لیسانتی با پروفسور فدریکا سوتیا آزمایشات مربوط به آنتی بیوتیک Doxycycline در سال 2018 را در مورد عود مجدد سرطان در بیماران بستری در بیمارستان انجام داد و منجر به کاهش 40 درصدی سلول‌های بنیادی سرطانی در بیماران شد و تقریباً 90 درصد پاسخ داد. پروفسور لیزانتی اظهار داشت: کاهش 40٪ به طور متوسط ​​دلگرم کننده اما ما به 60٪ دیگر علاقه‌مند بودیم‌، بنابراین ما به ترکیبات دارویی جدید علاقه‌مندیم تا بیشترین اثرات داکسی‌سایکلین را داشته باشیم.

“هنگامی که دیدیم داکسی‌سایکلین در هدف قراردادن میتوکندری در سلول‌های بنیادی مؤثر است ، این چالش برای یافتن ترکیبی حتی مؤثرتر بود که معتقدیم با آزیترومایسین پیدا کرده‌ایم.”

در آزمایش‌های آزمایشگاهی ، آن‌ها دریافتند که این دو آنتی‌بیوتیک می‌توانند برای هدف قرار دادن 13 پروتئین کلیدی میتوکندری مورد استفاده قرار بگیرند که باعث کاهش تأمین سوخت در سلول‌های بنیادی می‌شوند. هم‌چنین محققان دریافتند که ویتامین C ، به عنوان یک اکسیدان خفیف عمل می‌کند و اثرات آن را تقویت می‌کند. پروفسور Sotgia توضیح داد: “آنچه این ترکیب را انجام می‌دهد، سرعت بخشیدن به تولید میتوکندری جدید است اما در عین حال آن‌ها را از نظر عملکردی غیرفعال می‌کند. بنابراین میتوکندری جدید قادر به تولید ATP نخواهد بود.”

این تیم تأکید می‌کنند که ترکیب آن‌ها ارزان است ، و به راحتی و به دلیل این‌که دوزهای آنتی‌بیوتیک‌ها ناپدید می‌شوند (1میکرومولار) ، این روش از مشکل احتمالی مقاومت آنتی‌بیوتیکی جلوگیری می‌کند.

 

منابع:

Baden, L.R., Swaminathan, S., Angarone, M., Blouin, G., Camins, B.C., Casper, C., Cooper, B., Dubberke, E.R., Engemann, A.M., Freifeld, A.G. and Greene, J.N., 2016. Prevention and treatment of cancer-related infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 14(7), pp.882-913.

Kuczma, M.P., Ding, Z.C., Li, T., Habtetsion, T., Chen, T., Hao, Z., Bryan, L., Singh, N., Kochenderfer, J.N. and Zhou, G., 2017. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget8(67), p.111931.

نوشته شده در دیدگاه‌تان را بنویسید

گلوتاتیون در درمان سرطان

یکی از بزرگترین مشکلات در درمان فعلی سرطان این است که عوامل مؤثر در از بین بردن سلول‌های تومور ، در عین حال برای بقیه سلول‌ها و بافت‌های سالم بیمار بسیار سمی هستند.

برای حل این مشکل ، دانشگاه کشور باسک (UPV / EHU) به دنبال درمان‌های خاص‌تر و بررسی تفاوت‌های بین سلول‌های توموری و سلول‌های سالم است.

یک تیم تحقیقاتی از دانشکده پزشکی در تلاشند تا عوامل دارویی را افزایش دهند که باعث افزایش مزیت درمانی ترکیبات شیمی درمانی ، ایمنی و رادیوتراپی در معالجه بیماری‌های سرطانی می‌شود.

هدف تیم تحقیقاتی شناسایی ترکیباتی است که در مسیرهای متابولیک و فرآیندهای مختلفی بسته به اینکه آیا یک بافت بیمار یا یک بافت سالم درگیر است ، شناسایی شود. از این طریق میتوان اقدامات انتخابی را انجام داد ، افزایش حساسیت به درمان برای بافت‌های بیمار بدون آسیب رساندن به سلول‌ها یا بافت‌های سالم در همان زمان.

محققان با این هدف کلی ، مواد بیولوژیک مختلف را در تعدادی از ماژول‌های مختلف توموری مانند ملانوما ، سارکوم و سرطان روده بزرگ آزمایش کردند. از یک سو ، آن‌ها عوامل مؤثر در سطح گلوتاتیون (GSH) را مورد مطالعه قرار دادند. گلوتاتیون عنصر اصلی در فرآیندهای بیولوژیکی سلول‌ها ، سالم و توموری است. سلول‌های تومور با سطح GSH بالا از رشد و ظرفیت متاستاتیک بیشتر و حساسیت کمتری نسبت به عوامل ضد توموری برخوردار هستند. از طرف دیگر ، یکی از ویژگی‌های سلول‌های توموری این است که سطح تمایز طبیعی خود را از دست می‌دهند و به جای انجام یک عملکرد مشخص ، شروع به تکثیر و تولید تعداد بیشتری سلول‌های توموری می‌کنند. به همین دلیل است که محققان هم‌چنین از عواملی استفاده کرده‌اند که باعث ایجاد تمایز می‌شوند ، مانند رتینوئیدها.

هر دو گروه تعدیل کننده با عوامل کلاسیک مورد استفاده در درمان‌های ضد توموری همراه بوده و مزایای ناشی از آن را دیده‌اند. آن‌ها نشان داده‌اند که عامل تعدیل‌کننده سطح GSH – oxothiazolidine-carboxylate   اثر ضدتورمی در سلول‌های ضدتورم را افزایش می‌دهد و در عین حال از بافت سالم محافظت می‌کند. در این روش می‌توان مزایای درمانی را افزایش داد. با این وجود ، هنگامی که عامل تعدیل کننده سطح GSH دیگری با عوامل ضد تومور ، به عنوان مثال ، buthionine-sulphoxamide  (BSO  ترکیب شود ، محققان مشاهده کردند که تأثیر داروی استاندارد افزایش یافته است اما افزایش آسیب به بافت سالم نیز رخ داده است.

همچنین ، با هدف بازگشت سلول‌ها به حالت متفاوت‌تر ، نزدیک‌تر به رفتار سلول سالم ، این تیم تحقیقاتی در مورد استفاده از رتینوئیدها به همراه ترکیبات استاندارد تحقیق می‌کنند. پاسخ سلول‌های توموری به رتینوئیدها به میزان تمایز این سلول‌ها بستگی دارد. به طور کلی سلول‌های توموری بسیار متمایز نسبت به سلول‌های نسبتاً متفاوت نسبت به رتینوئیدها حساس هستند. این دومی ، در پاسخ به رتینوئیدها ، ممکن است مکانیسم‌های دفاعی را افزایش دهد که سطح GSH را افزایش می‌دهد و از این طریق ، ظرفیت متاستاتیک را افزایش می‌دهد.

این یک نکته جالب است ، با توجه به این‌که تا به امروز این ظرفیت متفاوت که می‌تواند رده سلولی مختلفی در یک نوع تومور مشابه داشته باشد شرح داده نشده است. آنچه محققان UPV-EHU انجام داده‌اند پیوند دادن هر دو خط مدولاسیون GSH و تمایز است. آن‌ها پیوندی بین این دو پیدا کرده اند، القای تمایز با رتینوئیدها هم‌چنین سطح GSH سلول‌های توموری را تعدیل می‌کند.

محققان در حال تجزیه و تحلیل مدل غلظت و تجویز داروهای مورد استفاده هستند ، با توجه به اینکه در مدولاسیون بیولوژیکی ، هر دو عنصر برای موفقیت در درمان اساسی هستند. غلظت ماده مشخص نیست، زیرا خیلی کم یا زیاد ممکن است اثرات متضاد یا نامطلوب ایجاد کند.

به دنبال آزمایشات آزمایشگاهی و in vivo توسط محققان آزمایشگاههای UPV / EHU ، یکی از اهداف تیم تحقیق انتقال اطلاعات به دست آمده به سیستم‌های با مدیریت راحت‌تر برای تحقیق و آزمایش‌های بالینی است.

 

منابع:

Baulies, A., Montero, J., Matías, N., Insausti, N., Terrones, O., Basañez, G., Vallejo, C., de La Rosa, L.C., Martinez, L., Robles, D. and Morales, A., 2018. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox biology, 14, pp.164-177.

Bansal, A. and Simon, M.C., 2018. Glutathione metabolism in cancer progression and treatment resistance. The Journal of cell biology217(7), pp.2291-2298.

نوشته شده در دیدگاه‌تان را بنویسید

مشتقات گرافن در تداخل با سلول های بنیادی سرطانی آنها را در هم می شکنند!

گرافن ها بر اساس خصوصیات الکترومکانیکی خود و با توجه به خاصیت ثابت نگه داشتن سلول‌های بنیادین سرطانی ترکیباتی منحصر به فرد تلقی می شوند. راهکارهای درمانی قدیمی سرطان با استفاده از شیمی درمانی و پرتودرمانی به عنوان اولین متد درمانی سرطان‌ها در درمان انواع سرطان‌هایی که در آینده با آنها مواجه خواهیم شد ناتوانند. سلول‌های بنیادین سرطانی یا CSCs قابلیت زنده ماندن و رشد و تکثیر در بازیابی ساختار تومور، متاستاز و مقاومت در برابر دارودرمانی می شوند. محققان دانشگاه منچستر و کالابریا به تازگی پی به خنثی و اکسید شدن CSCs توسط گرافن‌ها به روشی نامشخص می شوند.

یک سلول بنیادین سرطانی به تنهایی قادر است توده ای از سلول های بنیادین سرطانی را با نام تومور- اسفر یا سلول‌های سرطانی جدید مانند آنچه که در متاستاز مشاهده می شود تشکیل دهد. این سلول‌ها نامیرا، دارای سرعت تکثیر بالا و مقاوم به استرس می باشند. برای این منظور اکسید گرافن (GO) که فرم اکسید شده کربن بوده و قابلیت انحلال در حلال‌های متفاوتی را دارد به خوبی شناخته شده است.

برای بدست آوردن یک نگاه کلی از تاثیر متقابل اکسید گرافن بر روی سلول‌های سرطانی محققان از سلول‌های بنیادین سرطانی برگرفته از ۶ مدل سرطان پستان، پانکراس، ریه، مغز، تخمدان و پروستات و همچنین سلول‌های طبیعی پوست را برای اثبات عدم آسیب سلول‌های طبیعی تحت تاثیر اکسید گرافن استفاده نمودند.

پس از اینکه سلول‌ها به مدت ۴۸ ساعت در معرض محلول اکسید گرافن قرار گرفتند، محققان دریافتند اکسید گرافن نه تنها موجب ممانعت از شکل‌گیری تومور اسفر شدند بلکه نسبت به سلول‌های سالم پوست نیز بی‌تاثیر بودند.

سرپرست محققان اذعان داشت:

 به نظر می‌رسد GO تبدیل سلول‌های بنیادین سرطانی را به سلول‌های بنیادین غیرسرطانی القا می‌کند. در این راستا، GO بطورموثری مانع تجمع سلول‌ها بنیادین سرطانی می‌شود. در حال حاضر تئوری محققان برپایه‌ی تداخل GO با مسیرهای سیگنالینگ غشای سلول‌های سرطانی و محدود نمودن مکانیسم‌های تکثیر آنها استوار است.

نکته جالب اینجاست که، این مشتقات گرافن تا پیش از این به عنوان حامل داروها در تومورها مورد مطالعه قرار گرفته است، اما امروزه خود بطور مستقیم به عنوان یک عامل موثر در درمان تومور مطرح می‌باشد.

در عین حال که تاکید محققان بر روشن شدن مکانیسم‌های اثر مواد در درمان تومور‌ها می باشد، توانایی تخریب سلول‌های بنیادین سرطانی توسط این مواد موردی مهم در پروتوکل درمانی به شمار میاید چرا که آن‌ها قابلیت نابود کردن سلول های سرطانی و در نهایت ممانعت از متاستاز را ارائه می‌دهند.

منبع:

Fiorillo, M., Verre, A.F., Iliut, M., Peiris-Pagés, M., Ozsvari, B., Gandara, R., Cappello, A.R., Sotgia, F., Vijayaraghavan, A. and Lisanti, M.P., 2015. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget, 6(6), p.3553.

نوشته شده در دیدگاه‌تان را بنویسید

ارتباط TAC و بیومارکر MDA در مطالعات بالینی

زمانی که آنتی‌اکسیدان‌ها در بدن ضعیف می‌شوند و یا کاهش می‌یابند، سلول‌های بدن و بافت‌ها مستعد ابتلا به اختلالات عملکرد و بیماری می‌شوند بنابراین حفظ سطوح آنتی‌اکسیدانی کافی برای جلوگیری و یا حتی کنترل بسیاری از بیماری‌ها ضروری است.
استفاده از ظرفیت آنتی‌اکسیدانی تام (TAC) ، در بیوشیمی، پزشکی، علوم تغذیه و در بسیاری از بیماری‌های مختلف پاتوفیزیولوژی (بیماری‌های قلبی و عروقی، دیابت، بیماری‌های عصبی، روانپزشکی، اختلالات کلیوی و بیماری‌های ریوی) می‌تواند به عنوان یک بیومارکر قابل اعتماد تشخیصی و پیش آگهی مورد مطالعه قرار بگیرد، اگرچه چندین توصیه برای سنجش آن باید مورد توجه باشد. مطالعه بیومارکرهای آنتی‌اکسیدانی دیگر نیز مانند عناصر پاسخ آنتی‌اکسیدانی ژنتیکی (ARE) و یا ویتامین‌های آنتی‌اکسیدانی و دیگر بیومارکرهای ارزشمند اکسیداتیو / نیتروژنیک نیز می‌تواند برای ارزیابی مداخلات تغذیه‌ای با غذاهای غنی از TAC در مورد خطر و پیشگیری از بیماری، از جمله استراتژی های ضد پیری مفید باشد.

رادیکال‌های آزاد زمانی که بیش از حد تولید می‌شوند و یا در اثر کمبود آنتی‌اکسیدان‌ها سطح بالایی در سلول دارند، می‌توانند ساختار و عملکرد پروتئین را تغییر دهند و باعث پراکسیداسیون لیپیدها شده و باعث آسیب DNA گردد. تجزیه پراکسید‌های لیپید محصولات متنوعی را تولید می‌کند. از جمله آن، مالون‌دی‌آلدهید (MDA) یک محصول پراکسیداسیون لیپیدی است که به خوبی مطالعه و بررسی شده است. سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی در نتیجه حضور رادیکال‌های آزاد عمل می‌کند.

پراکسیداسیون لیپید ناشی از ROS در تغییرات بدخیم دخیل بوده و اهداف اولیه پراکسیداسیون توسط ROS اسید چرب غیر اشباع شده در چربی‌های غشایی است. علاوه بر این، تجزیه این لیپیدهای پراکسیداسیون، انواع محصولات نهایی مانند MDA را تولید می‌کند. MDA به عنوان بیومارکر موتاژنیک و سرطان زایی مورد توجه قرار گرفته است. همچنین می توان از آن به عنوان بیومارکر تشخیص بیان ژن‌های مربوط به پیشرفت تومور استفاده کرد. بنابراین، سطح MDA نشان دهنده میزان پراکسیداسیون لیپید به طور کلی است و به عنوان نشانگر آسیب سلولی حاصل از رادیکال‌های آزاد عمل می‌کند. افزایش سطح MDA در بیماران OSCC ( سرطان سلول‌های سنگفرشی دهان) نسبت به گروه شاهد مشاهده شده است. این افزایش در MDA ممکن است به علت شکل‌گیری رادیکال های آزاد بیش از حد و تجزیه اسیدهای چرب اشباع‌نشده موجود در غشاء باشد و یا ممکن است به علت اصلاح ناکافی رادیکال‌های آزاد توسط سیستم آنتی‌اکسیدانی ضعیف سلولی باشد. افزایش سطح MDA و کاهش میزان TAC موجود در سرم و بافت بیماران OSCC در مطالعات به خوبی بررسی و اثبات شده است.

اثرات آنتی‌اکسیدانی NO-MDA با یکدیگر مرتبط هستند؛ NO باعث پراکسیداسیون لیپید می‌شود که به نوبه خود MDA را تولید می‌کند. فعالیت های MDA و NO در سرطان زایی بستگی به وضعیت آنتی‌اکسیدانی کل دارد. بدین ترتیب که این مکانیزم‌ها به طور متقابل در ارتباط هستند، نیاز به مطالعه آن‌ها با هم وجود دارد.
مطالعات نشان می‌دهد میزان استرس اکسیداتیو و نیتروژنیک در بیماران سرطانی دهان افزایش یافته و بیانگر سطح بالایی از NO و MDA و کاهش TAC به عنوان دفاع آنتی‌اکسیدانی اثبات شده است. افزایش سطح NO سرم و بافت منجر به پراکسیداسیون لیپیدها و در نتیجه باعث افزایش سطح سرمی و بافتی MDA می‌گردد. ارتباط مثبت NO-MDA نشان می‌دهد که DNA آسیب دیده در اثر اکسیداسیون، یک پدیده حیاتی برای سرطان زایی است که به دلیل تعامل ROS و RNS ( گونه‌های فعال نیتروژن) همراه با TAC رخ می‌دهد.

هم چنین در بیماران مزمن کلیوی، سطح MDA و گلوتاتیون اکسیدشده (GSSG) افزایش و غلظت GSH و GPx کاهش یافته که بررسی‌ها در این بیماران سطح پایینی از TAC را نشان می‌دهد. بیماران مبتلا به صرع دارای گلوتاتیون ردوکتاز اریتروسیتوز و سطح ویتامین‌های A و C پایین نسبت به گروه شاهد هستند و سطوح بالاتری از اریتروسیت MDA، سرولوپلاسمی و همولیز را نسبت به افراد کنترل نشان دادند که در این بیماران نیز TAC کاهش یافته است.
Pleural effusion لنفوسیت‌ها در بیماران مبتلا به سرطان، کاهش سطح TAC و درجه بالاتری از آسیب اکسیداتیو DNA را نشان می‌دهد. کودکان مبتلا به سرطان استخوان، لنفوم Burkitt و لوسمی حاد ميلوئژن، سطح پلاسماي MDA بالاتري داشته و در زنان مبتلا به سرطان سینه ، بیماران مبتلا به فیبروآدنوم و آدنوکارسینوم پستان سطح پلاسما و اریتروسیت MDA افزایش یافته و غلظت GSH و ویتامین های C و E کاهش می‌یابد.

در نتیجه می‌توان به این نکته اشاره کرد که با افزایش سطح رادیکال‌های آزاد در سلول مانند NO و فعالیت اکسیداسیونی آن، سطح MDA به عنوان یک بیومارکر افزایش می‌یابد و سطح TAC که دفاع آنتی اکسیدانی در مقابل استرس اکسیداتیو محسوب می‌شود، در مقایسه با گروه شاهد کاهش معناداری را از خود نشان می‌دهد.  سنجش میزان TAC سلولی می‌تواند به تشخیص و پیش‌آگاهی بیماری و میزان استرس اکسیداتیو سلولی در نتیجه حضور رادیکال‌های آزاد منجر شود.

 

منابع:

 

Alipour, M., Mohammadi, M., Zarghami, N. and Ahmadiasl, N., 2006. Influence of chronic exercise on red cell antioxidant defense, plasma malondialdehyde and total antioxidant capacity in hypercholesterolemic rabbits. Journal of sports science & medicine5(4), p.682

Sies, H., 2007. Total antioxidant capacity: appraisal of a concept. The Journal of nutrition137(6), pp.1493-1495

Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M.L. and Benedito, J.L., 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary science80(2), pp.133-139

Samouilidou, E. and Grapsa, E., 2003. Effect of dialysis on plasma total antioxidant capacity and lipid peroxidation products in patients with end-stage renal failure. Blood purification21(3), pp.209-212

Korde, S.D., Basak, A., Chaudhary, M., Goyal, M. and Vagga, A., 2011. Enhanced nitrosative and oxidative stress with decreased total antioxidant capacity in patients with oral precancer and oral squamous cell carcinoma. Oncology80(5-6), pp.382-389.

 

نوشته شده در دیدگاه‌تان را بنویسید

آیا آنتی‌اکسیدان‌ها سرعت پیشرفت سرطان را افزایش می‌دهند؟

مطالعات جدید نشان می‌دهد که افراد سیگاری و سایر افراد مبتلا به بیماری ریه، خطر پیشرفت بیماری را در صورت مصرف مکمل‌های آنتی‌اکسیدانی نشان می‌دهند.

محققان در سوئد گزارش دادند که آنتی‌اکسیدان‌ها به سرعت پیشرفت سرطان را با کوتاه شدن یکی از پاسخ های کلیدی ایمنی بدن به سلول‌های بدخیم نشان می‌دهند. دوزهای نرمال ویتامین E و دوزهای کمتر از آنتی‌اکسیدان استیل‌سیستئین باعث افزایش رشد تومورها در موش‌های مبتلا به سرطان ریه می‌شوند.

دکتر مارتین برگو در یک کنفرانس مطبوعاتی بیان کرد: “ما دریافتیم که آنتی‌اکسیدان‌ها باعث افزایش سه برابر تعداد تومور‌ها شده و رشد تومورها را تشدید می‌کنند.” آنتی‌اکسیدان‌ها، موش‌های مبتلا به سرطان را دو برابر سریع‌تر می‌کشند و تأثیر آن به صورت وابسته به دوز است. اگر دوز کمتری به موش‌ها تزریق کنیم، تومورها رشد کمی نشان میدهند و اگر دوز بالاتری از آنتی‌اکسیدان تزریق کنیم، تومورها رشد بیشتری را نشان می‌دهند.

برگو مدیر مرکز سرطان در دانشگاه گوتنبرگ گفت که یافته‌های مربوط به این موضوع بسیار با اهمیت هستند زیرا استیل‌سیستئین برای بهبود تنفس در بیماران مبتلا به بیماری مزمن انسدادی ریوی یا COPD مورد استفاده قرار می‌گیرد. اکثر افراد مبتلا به COPD را افراد سیگاری تشکیل می‌دهند.

آنتی‌اکسیدان‌ها از طریق جلوگیری از آسیب سلولی ناشی از مولکول‌هایی به نام رادیکال‌های آزاد، بدن را از بیماری محافظت می‌کنند. این رادیکال‌ها می‌توانند به تقریبا هر چیزی در داخل سلول، از جمله DNA، آسیب برسانند و آسیب DNA می‌تواند منجر به سرطان شود.

هنگامی که بدن تشخیص می‌دهد آسیب DNA سلولی رخ داده است که می‌تواند منجر به سرطان شود، پروتئین مهار‌کننده تومور به نام p53 آزاد می‌شود. محققان در آزمایشات بالینی بر روی سلول‌های سرطانی موش و انسان، متوجه شدند که آنتی‌‌اکسیدان‌ها، آزاد شدن p53 را متوقف می‌کنند و باعث آسیب DNA در سلول‌های سرطانی توسط رادیکال‌های آزاد می‌شوند. در اثر کاهش آسیب  DNA، آنتی‌اکسیدان در حقیقت به سلول‌های سرطانی کمک می‌کند تا از تشخیص جلوگیری کنند.

یافته‌های این تحقیق نشان می‌دهد که افرادی که تومور‌های ناشناخته در ریه خود دارند، باید از مصرف آنتی‌اکسیدان‌های اضافی جلوگیری کنند.

برگو گفت: “اگر سرطان ریه دارید یا خطر ابتلا به سرطان ریه نشان می‌هید، آنتی‌اکسیدان‌های اضافی ممکن است مضر باشند و باعث رشد سریع تومور شوند.” آزمایشات انسانی در دهه های 1980 و 1990 نشان می‌دهد که آنتی‌اکسیدان‌های بتا کاروتن، ویتامین A و ویتامین E، میزان بروز سرطان ریه را در افراد سیگاری افزایش می‌دهد.

بدن انسان، آنتی‌اکسیدان‌های مورد نیاز خود را تولید می‌کند، و با مصرف مکمل‌های آنتی‌اکسیدانی که از مواد غذایی تامین می‌شوند ، توانایی بدن برای مبارزه با سرطان و بیماری افزایش می‌یابد. این یک باور قدیمی در زمینه تاثیر آنتی‌اکسیدان‌ها بر سرطان است که امروزه با تحقیقات بیشتر زیر سوال می‌رود.

مسیرهای پیچیده و چرخه‌های فراوانی در بدن وجود دارد که باید در جهت تشخیص صحیح تاثیر آنتی‌اکسیدان‌ها در بیماری سرطان مطالعه شوند. با این حال،در سوئد تا زمان مطالعات بیشتر، مصرف مکمل‌های آنتی‌اکسیدانی در بیماران مبتلا به سرطان ریه ممنوع شده است.

 

منابع:

Emfietzoglou, R., Spyrou, N., Mantzoros, C.S. and Dalamaga, M., 2019. Could the endocrine disruptor bisphenol-A be implicated in the pathogenesis of oral and oropharyngeal cancer? Metabolic considerations and future directions. Metabolism91, pp.61-69.

Cipolletti, M., Solar Fernandez, V., Montalesi, E., Marino, M. and Fiocchetti, M., 2018. Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ers) signaling. International journal of molecular sciences19(9), p.2624.